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• We assume that the observed data were 
generated as follows:

– For Gaussian component 

– For each observation 

• The task is to infer the posterior distribution of 
parameters given some 

• Intractable: need for approximations

Bayesian Gaussian Mixture Model

zn

xn



Approximate inference 
(for Bayesian GMM)

• Variational Bayes
– Approximate intractable with 

tractable

– Iteratively tune parameters of minimize 

• Gibbs sampling
– Instead of obtaining , we only generate 

samples from this distribution

– Integrating over (e.g. for predictive 
distribution) can be approximated with empirical 
expectations

• …



Variational Bayes

• Find , which is good approximation for the true posterior 

• Maximize w.r.t. , which in turn minimizes 

– “Handcraft” a reasonable parametric distribution and optimize 
w.r.t. its parameters .

– Mean field approximation assuming factorized form = … 



Minimizing Kullback-Leibler divergence
• We optimize parameters of (simpler) distribution to minimize 

Kullback-Leibler divergence between and 

• Two local optima when (numerically) 
minimizing 

• VB performs this optimization

• Minimizing 

• Not VB objective

• Expectation propagation



VB – Mean field approximation

• Popular Variational Bayes optimization method

• Variant of Variational Bayes, where the set of model variables , can 
be split into subsets , with conditionally conjugate priors

∀  is tractable with conjugate prior

– E.g. for Bayesian GMM has prior

• We assume factorized approximate posterior

• This factorization dictates the optimal (conjugate) distributions 
for the factors and brings well defined iterative update 
formulas:

= 𝒊

∗
∀  ∀  



Mean field - update

• For example, let 𝑀 = 3

• Now, lets optimize the lower bound  ℒ 𝑞 𝐘 w.r.t only one distribution 𝑞 𝐘

where 𝑝 𝐘 is normalized to be a valid distribution (therefore +𝑐𝑜𝑛𝑠𝑡)

• ℒ 𝑞 𝐘 is maximized by setting the 𝐷  term to zero, which implies

• In general, we can iteratively update each 𝑞 𝐘 given the others 𝑞 𝐘 as:

where each update guaranties to improve the lower bound ℒ 𝑞 𝐘



• Joint likelihood for Bayesian GMM

where

• Mean field approximation  dictates 
updates:

Variational Bayes for GMM



VBGMM – update for 

• We see that further factorizes - so called induced factorization

Similar to responsibilities from EM



VBGMM – update for 

• Again, we obtain induced factorization for 



Flashback - Factorization over components
Example with only 3 fames (i.e )

𝑞(𝑧 )

𝑛

𝑓 𝑧 =

𝑛𝐳

𝑞 𝑧 𝑞 𝑧 𝑞 𝑧 𝑓(𝑧 ) + 𝑞 𝑧 𝑞 𝑧 𝑞 𝑧 𝑓(𝑧 ) + 𝑞 𝑧 𝑞 𝑧 𝑞 𝑧 𝑓(𝑧 ) =

𝑞 𝑧 𝑓 𝑧 𝑞 𝑧 𝑞 𝑧 + 𝑞 𝑧 𝑞 𝑧 𝑓 𝑧 𝑞 𝑧 + 𝑞 𝑧 𝑞 𝑧 𝑞 𝑧 𝑓 𝑧 =

𝑞 𝑧 𝑓 𝑧 + 𝑞 𝑧 𝑓 𝑧 + 𝑞 𝑧 𝑓 𝑧 =

𝑞 𝑧 = 𝑐 𝑓(𝑧 = 𝑐)

𝐶

𝑐=1

+ 𝑞 𝑧 = 𝑐 𝑓(𝑧 = 𝑐)

𝐶

𝑐=1

+ 𝑞 𝑧 = 𝑐 𝑓(𝑧 = 𝑐)

𝐶

𝑐=1

=

𝑞 𝑧 = 𝑐 𝑓(𝑧 = 𝑐)

𝑛

𝐶

𝑐=1



VBGMM – update for 

Updating distribution means updating the parameters ∗ ∗ ∗ ∗



VBGMM – update for 

Updating distributions means updating the vector ∗ ∗ ∗ ∗



VBGMM – update for 

where is digamma function

Updating distributions means computing responsibilities 



Summary of VB-GMM updates
• Update distributions (i.e. the responsibilities ):

• For all , update parameters of and :

∗

• Iterate until convergence



VB parameter posteriors
• Priors:

• Posteriors:

17.1  8.3  32.2  1.0  1.0  46.4

for the 6 Gaussian components

Fallback 
to prior 

Fallback 
to prior 

Fallback 
to prior 



Evaluating VB-GMM

• Lower bound can be evaluated to check for the convergence

– Formula not shown here

• Posterior predictive distribution is a mixture component specific 
posterior predictive of Student’s t-distributions

∗ ∗
∗ ∗

∗ ∗
∗

where mixture weights are give by categorical posterior predictive:

∗
∗

∗



VB predictive vs. ML solution

• VB was initialized from ML solution – first update of  and 
uses the responsibilities from last ML iteration

• VB recovers from ML overfitting and more robust solution closer to 
the true distribution for generating the training data



Approximate inference 
(for Bayesian GMM)

• Variational Bayes
– Approximate intractable with 

tractable

– Iteratively tune parameters of minimize 

• Gibbs sampling
– Instead of obtaining , we only generate 

samples from this distribution

– Integrating over (e.g. for predictive 
distribution) can be approximated with empirical 
expectations

• …



Gibbs Sampling
• Assume we cannot sample from complex joint distribution 

but it is possible to sample from conditional distributions 
and 
1. Given ∗ and generate ∗

2. Given ∗ and generate ∗

3. Iterate previous two steps

• After several iterations (burn-in) the algorithm starts generating 
samples from 

• It can be extended to more than two variables



Gibbs Sampling for Bayesian GMM
• Using sampled values of ∗ ∗ and ∗, generate new samples 

(hard assignments of observations to GMM components) from 
posterior over ∗

– The distribution is just like the responsibilities from EM:

• Using the sampled values ∗ for each component , generate new 
samples of GMM parameters ∗ ∗ from posteriors ∗

– Estimate sufficient statistics 𝑁∗, �̅�∗, 𝑠∗ using the observations {x : 𝑧 = 𝑐} (i.e. 
those hard assigned to the component 𝑐) and calculated the posterior as:

• Sample ∗ from posterior ∗ ∗ where the vector 
of component occupation counts ∗ ∗ ∗ ∗ is given by  ∗

∗ ∗ ∗

∗ ∗ ∗



First 5-iterations of GS

Predictive distributions can be approximated by empirical expectations using the 
samples from the posterior distribution 𝒍:



First 30-iterations of GS

Predictive distributions can be approximated by empirical expectations using the 
samples from the posterior distribution 𝒍:



Collapsed GS for Bayesian GMM
• Sampling discrete latent variables like is fine as they have limited 

number of possible values

• For continuous latent variables like , however, we might 
need too many samples to get a reasonable representation of their 
posterior distributions (especially for multivariate higher dimensional 
variables).

• Collapsed Gibbs Sampling
– Iterates over (and samples only from) a subset of the latent variables in the 

model (e.g. the discrete ones)

– integrates (marginalizes) over the remaining (continuous) variables

• CBS for Bayesian GMM:

where

\ is with removed

\ is with removed



CGS for BGMM -

• How do we obtain \ ?

• Lets first introduce some useful distributions

• Posterior distribution of weights given \ (or corresponding vector 
of component occupation counts \ )

• Posterior predictive distribution for given \



CGS for BGMM -
• Let \ define the subset of observations assigned by \ to component 

• Posterior distribution of given \ \ is estimated in the usual way 
using only the observations \

• Posterior predictive distrib. of for component given observations \



CGS for BGMM -
• Finally, using Bayes rule

• The Collapsed Gibbs sampling iterations

gives us samples from ∗ . What can we do with that?

• GMM posterior predictive distribution for new given and (sampled) 

• Full predictive distribution can be approximated using the samples ∗ as



Infinite Bayesian GMM
• Lets consider Bayesian GMM with an infinite 

number of Gaussian components 

• The priors for for Gaussian component 
can be defined as before:

• However, we need an infinite number of 
mixture weights = [ so that

• We also need a suitable prior distribution for 

zn

xn



Stick breaking process - GEM

•

• Take a unit length stick
For 

– Generate in range from 

– Break the stick into two pieces with proportions  

– The length of the first piece corresponds to 

– The second piece is the stick to be broken in further iterations

• The resulting infinite dimensional vector of weights is a sample from 
the stick breaking process (Griffiths, Engen and McCloskey)

• can be used as a prior for  infinite number of  component weights 

• With small concentration parameter , only few weights will be non-negligable



Infinite Bayesian GMM

zn

xn

• We assume that the observed data were 
generated as follows:

– For Gaussian component 

– For each observation 

• Obviously the observed data can be generated 
from at most Gaussian components.

• Again, the task is to infer the posterior 
distribution of parameters 
given some 



CGS for infinite Bayesian GMM

• We can use the same Collapsed Gibbs sampling iterations that we 
used in the case of the BGMM with fixed number of Gaussian 
components

where again

and the component posterior predictive

• The only difference will be in \ , which is evaluated using 
Chinese Restaurant Process (CRP)



Chinese Restaurant Process

• Let the prior on the infinite weight vector be 

• Let be samples generated from an (unknown) “infinite 
categorical distribution” 

• The posterior is intractable
– We cannot even easily sample from it as the sample would be infinite 

vector of weights

• However the predictive posterior 
can be evaluated as

where is the number of observations assigned by to category 
and is a new so far not seen category.



Chinese Restaurant Process

• Imagine Chinese Restaurant with an infinite number of tables, each 
with infinite capacity

• The first customer sits at the first table

• Every new customer:
– Joins already occupied table with probability proportional to the number 

of customers sitting at that table

– or starts a new table with probability proportional to concentrarion 
parameter



Dirichlet Process
We have defined Infinite BGMM as (for simplicity assuming the same for all 
Gaussian component variances and conjugate prior ):

Alternative definition using 

or using Dirichlet Process with base distribution and concentration 
parameter



Dirichlet process
Samples 

is discrete distribution with continuous support
is distribution over discrete distributions with continuous support


