Exploiting Java, Objects, & Components

AN OVERVIEW OF SQLJ: EMBEDDED SQL IN JAVA

Julie Basu, Oracle Corporation

INTRODUCTION

Over the past two years, Java has become the language of choice for developing Internet and intranet applications. Its
promise of a standardized, portable, and network-centric application development solution is being realized steadily, and Java
applets and serviets are appearing all over the World Wide Web, bringing rich and varied functionality to the previously static
medium. The industry-leading Oracle8; data server provides comprehensive Java support at both the client and the serverin a
variety of ways [1]. In this paper, we present an overview of the features of SQLJ, a tool that allows embedding of static SQL
statements textually in Java programs. The SQLJ translator converts such programs to pure Java code, optionally checking
the static SQL statements against a database schema. The generated Java code can be compiled, and then executed through a
JDBC driver against the database. Oracle8/ also supports SQLJ stored procedures, functions, and triggers, which execute on a
Java Virtual Machine integrated with the data server [2], thus enabling flexible deployment configurations, and code partition
and migration across different tiers. Some major benefits of SQLJ are: increased user productivity through compact syntax,
robust programming due to SQL checking at development time, standardization by major database vendors, and portability of
binary code across different vendors’ databases.

The paper is organized as follows. In section 1, we review the SQL]J framework for program development and its benefits.
Section 2 provides a technical overview of the SQLJ language, including the use of complex Java host expressions as bind
parameters, SQLJ iterators for querying data, and calls to stored procedures. We illustrate through a detailed example the
steps involved in developing a SQLJ program, showing how to have the SQLJ translator check all the static SQL statements
against a database schema. Next, we demonstrate the use of dynamic SQL, and show how SQLJ interoperates seamlessly
with JDBC code, allowing dynamic SQL statements written in JDBC to coexist with the static ones in SQLJ. Finally, we
describe the process of defining and running a SQLJ stored procedure in the Oracle8: data server. We conclude with a
comparison of the SQLJ API with the JDBC interface, and summarize the benefits of SQL]J and Oracle’s SQLJ strategy.

1. THE SQLJ FRAMEWORK AND ITS BENEFITS

This section describes the application development framework for SQLJ, in terms of the steps required to translate, compile,
and run a SQLJ program. We also discuss the benefits of the SQLJ standard, and of its implementation by Oracle.

1.1 DEVELOPING APPLICATIONS USING SQLJ

The SQLJ translator converts Java programs containing embedded static SQL statements into Java programs with calls to the
SQLJ runtime. This process is similar to the Pro*C precompiler translating SQL statements embedded in C, a main difference
being that generated code in SQLJ conforms to a vendor-neutral standard. Vendor-specific features and extensions are well-
supported in SQLJ through subsequent customzzation of Java byte code. Developing and running a SQLJ application with
Oracle consists of four steps, which are shown in Figure 1.1 and listed below:

1. Translation of SQLJ source files with the SQLJ translator. This generates Java files with calls to the SQLJ runtime, as well
as binary SQLJ profile files that contain information about the static SQL statements present in the SQLJ source.

2. Compilation of Java code with a Java compiler.
3. Customization of the generated SQLJ profiles for using Oracle-specific datatypes and extensions.
4. Running the application, using the SQLJ runtime library and a JDBC driver for Oracle.

SQLJ can perform Steps 1 to 3 by transparently invoking the SQLJ translator, a Java compiler, and then a profile customizer.
At translation time, the translator can optionally check the SQL syntax and semantics against a user schema, and verify the
type compatibility of host variables with SQL types for all static SQL statements in the program. In general, the SQLJ runtime
is able to use any JDBC driver for execution, and will work even with a non-JDBC implementation. The Oracle SQLJ

Paper 607



Exploiting Java, Objects, & Components

runtime can use either Oracle’s JDBC/OCI or JDBC thin drivers, as specified by the user. Details of the JDBC/OCI and
JDBC thin drivers from Oracle can be found in [4].

Java Java
SQLJ code code byte ustomizer
code
Oracle Oracle

Figure 1-1 - The SQLJ Application Development Process

A Reference Implementation of SQLJ has been developed at Oracle, in collaboration with major vendors such as IBM, Informix,
JavaSoft, Sybase, Tandem, and others. This Reference Implementation is written entirely in Java, and has a plug-in
architecture for easy integration into development tools. The SQLJ translator architecture is also open and extensible, which
permits SQL checking and runtime customization for arbitrary databases through Java plug-ins. Source code for the SQL]J
Reference Implementation has been made available freely to the public and to other database vendors.

1.2 BENEFITS OF THE SQLJ STANDARD

SQLJ was developed cooperatively by the major database vendors primarily to provide Java application developers with a
simple and highly productive database programming tool. The major benefits of the SQLJ standard are enumerated below.

1. A much more concise syntax for database access, and improved developer productivity.

2. Translate-time checking of the syntax and semantics of all static SQL statements.

3. Strong typing of queties through szerator types, and of database connections through connection context types.
4

Dynamic SQL support through the established JDBC interface for database access. SQLJ and JDBC constitute
complementary technologies, and it is possible to mix-and-match SQLJ and JDBC code in the same application.

5. Source-level portability through vendor-neutral language syntax, and binary portability through ANSI standardization of
SQLJ profiles and runtime. Additional uniformity is obtained from the shared Reference Implementation and
standardized JDBC dtivers.

6. Database independence through customization of the binary SQLJ profiles that describe the static SQL statements.
Customization can be utilized for vendor-specific features, for migration to different databases, for debugging and logging
purposes, and for performance enhancements through caching or pre-compilation of SQL operations.

7. Flexible deployment configurations. The SQLJ runtime is written in pure Java, which means that SQLJ applications can
be deployed wherever JDBC is deployed, such as on a thin client, a thick client, in the middle tier, or in the server.

As part of the multi-vendor standards effort, the SOLJ Part 0 specification for the embedding of static SQL statements in the
Java language has been submitted to ANSI as Draft X3H2 98-227. SQLJ Part 1 and Part 2 proposals deal with SQLJ stored
procedures and stored Java classes, and are at present being developed by the SQLJ partners, including Oracle.

1.3 STRENGTHS OF ORACLE’S SQLJ IMPLEMENTATION

As the industry leader, Oracle has not only helped to develop the SQLJ standard, but has also adopted it fully. Additionally,
Oracle has integrated SQLJ in its database and tools. We note below the major strengths of Oracle’s SQLJ implementation.

1. Tight integration with the JavaVM embedded in the Oracle8; data server. Integrating SQLJ with the server alows stored
procedures, functions, and triggers to be written in SQL J, and supports a uniform programming style at the client and the server.

2. Integration of the SQLJ translator with Oracle’s JDeveloper tool. JDeveloper is a graphical IDE that allows SQLJ
tranglation, Java compilation, and profile customization to be performed in one step, also provides debugging support at the SQLJ
source code level. A production version of JDeveloper is currently available.

3. Oracle’s own SQL Checker module for translate-time verification of the syntax and semantics of static SQL statements.

Paper 607



Exploiting Java, Objects, & Components

4. Support for Oracle-specific datatypes such as REFCURSORs, LOBs, and Oracle8 object types through Oracle’s own profile
customizer. The SQLJ customization process allows Oracle-specific extensions without jeopardizing standards compliance.

5. Improved performance for the Oracle database through customized profiles.

Further extensions and improvements are planned in Oracle’s SQLJ support, such as integration with the Personal Oracle Lite
database, complete NLS messages for globalization, and better performance and scalability through further integration with
Oracle’s JDBC drivers.

2. SQLJ] LANGUAGE FEATURES

In this section, we illustrate the main concepts and constructs in the SQLJ language with the help of an example. Topics
covered include using host expressions in SQL statements, performing updates, querying data through SQLJ iterators, calling
PL/SQL stored procedures and functions, and using JDBC for dynamic SQL operations.

2.1 EXAMPLE

We consider a mini project-tracking system consisting of a table PRQJIECTS, with a nested table column OANERS of type
OMNER_SET that contains the names of the owners of a project:
CREATE TYPE OMER_SET AS TABLE OF VARCHAR(20)

/
CREATE TABLE PRQJECTS (

| D NUVBER( 4),

NAMVE VARCHAR(30) PRI MARY KEY,

START_DATE DATE,

DURATT ON' NUVBER( 3) ,

OMNERS OWKNER SET ) NESTED TABLE OWNERS STORE AS OANERS TAB
/

Let us design an application that can: (1) update the duration of a project, (2) list the open projects that are yet to be
completed, (3) show the time to complete all open projects, (4) calculate which projects are due this month, etc. We will
implement each of these functions using a different feature of SQLJ. Below is the skeleton of the Java class Pr oj Deno for
this application. Following Java’s file naming rules, the file containing this public class must be named Pr oj Denp. sql j .

i mport sqlj.runtine.*;
i mport sqlj.runtinme.ref.*;
i mport java.sql.*;

public class ProjDenpo {
public static void main(String[] args) {

try
dbConnect () ; /1 logon to the database
i nt nunDays = 5;
String projName = "That Project”;
updat eDur ati on( proj Name, nunDays); /1 update project duration
I i st OpenProj ects(); /'l 1ist open projects using naned iterator
I'i st Owmners(proj Nane) ; /1 list owners using positional iterator
get MaxDeadl i ne(); /1 get max deadline via PL/SQ procedure
bool ean dueThi sMonth = true;
proj ect sbue(dueThi shMonth ); /1 list due projects via dynam c SQ./JDBC
Dat e deadline = projDeadline(projNane); // get deadline via SQLJ stored function
}

catch (Exception e) {
Systemerr.printIn( "Error running ProjDeno: " + e );

... Definitions of the above nethods ...
}

We will gradually fill in the method definitions of the ProjDemo class in the following sections.

Paper 607



Exploiting Java, Objects, & Components

2.2 SQLJ STATEMENTS

All SQLJ statements start with the #sql prefix and end with a semi-colon. SQLJ statements are classified into two
categories: declarative and executable. Declarative statements introduce Java types in the program, whereas executable statements
specify database operations. Java types for SQLJ izerators and connection contexts are defined through the declarative statements,
and such type declarations may appear where a Java class definition can legally appear. In contrast, executable SQLJ
statements contain a static SQL operation within cutly braces, and can be placed whetever a Java statement may appear.
Examples of declarative and executable SQLJ statements are given below.

#sql iterator Projlter (String name, int id, Date deadline); /1 declares Java type

#sql { CREATE UNI QUE I NDEX projid_index ON projects (id) }; /1l executes SQL

2.3 HOoST EXPRESSIONS

In executable SQLJ statements, the inputs and outputs to SQL occur through Java host expressions that are embedded into the
SQL statements with a colon prefix. In its basic form, a host expression is the simple name of any valid Java variable, field, or
parameter. In our example, the method updat eDur ati on() can be implemented with host variables pr oj Nane and
nunDays as follows:

public static void updateDuration(String projName, int nunDays) throws SQ.Exception {
#sqgl { UPDATE projects SET duration = duration + : nunDays
VWHERE nane = : proj Nane };
#sgql { COWM T };

SQLJ also supportts the use of qualified names and complex Java host expressions, which must appear in parentheses after the
colon prefix, as shown in the example below.

#sql { UPDATE PRQIECTS SET duration = :(getNewburation(id)) WHERE ID = :id };
Here, get NewDur ati on(i d) is a Java method call that returns a numeric value denoting the updated duration of the
project. At runtime, this expression is evaluated in Java, and then passed to the SQL statement as an input bind parameter.

All standard JDBC types, such as boolean, byte, short, int, String, byte[], Integer, Double, java.sql.Date etc. are valid host
expression types in SQLJ. Additionally, Oracle’s SQLJ translator supports the use of Oracle7 and Oracle8 types such as
ROWID, CLOB, BLOB, as well as Object and REF types. Details on use of the Oracle8 types may be found in [3] and [4].

2.4 ITERATORS

In a SQLJ program, a result set returned by a SQL query can be represented as an zerator object that is used to examine the
data. An iterator object is an instance of an iterator class, which may be defined using the #sql iterator <wame> ...
declaration. An iterator type declaration is expanded by the SQLJ translator to a Java class declaration of the same name. A
SQLJ iterator class corresponds to the JDBC result set, with the additional important property that it is strongly typed in
terms of the shape of the SQL query as defined by the number and Java types of selected attributes, and optionally their names
too. This strong typing of SQLJ iterators allows them to be treated as type-safe, first-class Java objects with known row
shapes, so that both the SQLJ translator and the Java compiler can statically check the validity of column data access wherever
the iterator is used. SQLJ supports two different types of iterators - named and positional, both of which are illustrated below.

2.4.1 NAMED ITERATORS

A named iterator declaration specifies both column accessor names and their Java types. The accessor names must match the
names (or aliases) of the selected columns in a SQL query bound to the iterator, and the accessor types must be valid JDBC
or Oracle types compatible with the corresponding SQL datatypes. For our example, the following declarative statement
introduces a named iterator type Pr oj | t er with three columns namne, i d, and deadl i ne:

#sql iterator Projlter (String name, int id, Date deadline);
This type declaration can be placed where a Java class definition can appear, for example, after the imports in the file
Proj Denp. sql j . During translation of this SQLJ program, the above declaration generates a Java class named Pr oj | t er
with three special column accessor methods: name() , i d() , and deadl i ne(), that return St ri ng, i nt, and java.sql.Dat e
values respectively, and are used to access the fetched column values. Other methods of the Proj I t er class are similar to
those found on JDBC result sets, such as next () to iterate over fetched rows, and cl ose() to release the resources held by
the iterator.

Paper 607



Exploiting Java, Objects, & Components

After an iterator type is defined, a SQLJ program can declare instances of this iterator type, and populate it using a SQL query.
During execution, the SQLJ runtime matches the names of the column accessors in the iterator with the SQL column names
in a case-insensitive way. Note that column aliases must be used for those SQL columns whose names are not valid Java
identifiers. We now illustrate these concepts in the method | i st OpenPr oj ect s() for our example:

public static void listOpenProjects() throws SQ.Exception {
Projlter projs = null; /] Declare the iterator instance
/1 Populate the iterator with a SQ query
#sqgl projs = { SELECT start_date + duration as deadline, nane, id
FROM projects WHERE start_date + duration >= sysdate

while (projs.next()) { /1 Loop through the result rows
/1 Access data via colum accessors
Systemout.printIn("Project nanmed '" + projs.name() + "' id " +
projs.id() + " conmpletes on " + projs.deadline());

projs.close();

Notice that the columns selected by the query do not match the iterator accessors in order, but have the same names. An alias
named dead| i ne denotes the completion time of a project, as computed by adding its St art _dat e to its dur at i on.

2.4.2 POSITIONAL ITERATORS

In contrast to named iterators, positional iterators specify only the number and types of columns, and not their names, as in:
#sql iterator Omerlter (String);

As for named iterators, this declaration generates a Java class named Oamner | t er, but it does not have any special methods
for column access; however, internally it encodes the query shape. Column data may be accessed by position only, through
traditional FETCH. . | NTOsyntax. The same benefits of strong typing as for named iterators are applicable for positional
iterators also. The only difference is in the way column data is accessed, named access being more flexible and less etror-
prone in some cases, while FETCH. . | NTO may be adequate and more convenient in others. The choice is left to the SQLJ
user, depending on the requirements of his/her program. Below we define the method | i st Oaner s() for our example
using a positional iterator owner s of type Oamnerlter:

public static void listOwmers(String projNane) throws SQ.Exception {

Omerlter owners = null; /1 Declare the iterator instance
#sql owners = { SELECT * /1 Populate iterator with SQ. query
FROM THE( SELECT ( p. owners) FROM projects p
WHERE p. nanme = :proj Nane) };
String ownerNane = null;
while (true) { /
#sql { FETCH :owners | NTO : owner Nane }; /
if (owners.endFetch()) break; /
System out. pri ntl n( owner Nane) ; /

Loop though the results

FETCH inmplicitly gets next row
Check if no nmore rows

El se print data

~—~ —

owners. cl ose(); /1 Close the iterator
}
Observe that the termination condition in the whi | e loop for the FETCH statement is detected by calling the endFet ch()
method on the owner s iterator, and this condition must always be checked before fetched data is accessed. This method is
available only for positional iterators, and not for named ones. Positional and named iterators are separate Java entities, and
the two paradigms cannot be mixed for the same iterator.

2.5 CALLING PL/SQL STORED PROCEDURES, FUNCTIONS, AND ANONYMOUS BLOCKS

SQLJ provides convenient short-hand syntax to call stored procedures and functions stored in the database, as well as
anonymous procedural blocks. Assume for our example that we wish to print the completion date of all open projects.

We can define a stored procedure named MAX_DEADLI NE using PL/SQL in the Oracle database, as follows:

CREATE OR REPLACE PROCEDURE MAX DEADLI NE (deadline QUT DATE) IS
BEA N SELECT MAX(start_date + duration) |INTO deadline FROM projects;
END;

Paper 607



Exploiting Java, Objects, & Components

/
Then, we can call this stored procedure from SQLJ, as in the method get MaxDeadl i ne() below.

public static void get MaxDeadl i ne() throws SQ.Exception {
Dat e maxDeadl i ne;
#sqgl { CALL MAX_DEADLI NE(: QUT maxDeadl ine) }; /'l CALL syntax for stored procedures
Systemout. println("Last project conpletes on " + maxDeadline);

OUT and INOUT parameter modes must be declared explicitly for stored procedures, functions, and anonymous blocks.
The syntax for a function call is different from that of a procedure call, in that it uses the VALUES construct instead of CALL.
For example, if we defined a PL/SQL function GET_MAX_DEADLI NE returning a DATE instead of the stored procedure
MAX_DEADLI NE with an out parameter, the call to this function would appear in SQLJ as:

#sql maxDeadline = { VALUES(GET_MAX DEADLINE()) }; // VALUES syntax for stored functions

Anonymous blocks in SQLJ statements are placed within the curly braces using BEG N. . END syntax.

2.6 CONNECTING TO THE DATABASE

Database connections come into the picture at application runtime, and at translation time as well. Runtime SQL operations
using the default context require the SQLJ Def aul t Cont ext to be initialized with a connection from the JDBC driver.
Establishing a runtime connection to the Oracle database consists of the steps shown below.

public static void dbConnect() throws Exception
{ DriverManager.registerDriver(new oracle.jdbc.driver.OacleDriver());// register driver

String url = "jdbc:oracle:oci8: @; /1 Using JDBC/ OCl driver to connect
String user = "scott"; String pwd = "tiger"; [// Logon user id and password
Def aul t Cont ext . set Def aul t Cont ext ( /1 Initialize SQ.J default context

new Def aul t Context (url, user, pwd, false)); // with autoConmit off

This connection is used to execute all #5ql statements that do not have a context 74g, as in the Pr oj Denp examples above.

To enable SQL checking at translation time, database connection information can also be specified on the SQLJ command-

line, or more conveniently, in a SOL] properties file. Below we show an example of SQLJ command-line invocation that uses

the JDBC/OCI driver and the scott/tiger schema during translation to check static SQL operations on the default context:
sqlj -user=scott/tiger -url=jdbc:oracle:oci8 @ ProjDenp.sqlj

For flexibility, SQLJ supports many other options, such as for specification of the JDBC driver class used at translation time.

Most options have common default values, e.g., the driver is preset to or acl e. j dbc. dri ver. Oracl eDri ver.

2.6.1 CONNECTING TO MULTIPLE DATABASES

In the examples given above, we have used a single default connection context for all our SQL operations. SQLJ supports
connecting to multiple schemas in the same program. Different schemas used at runtime are modeled as distinct connection
context classes in SQLJ programs. For example, a non-default connection context class Pr oj Db is defined as:

#sql context Proj Db;
This declaration is expanded by the SQLJ translator to a Java class named Pr oj Db, of which an instance can be declared and
initialized with a database connection as follows:

Proj Db myPr oj Db; /1 Declare instance of ProjDb connection context class
nmyProj Db = new ProjDb(url, user, pwd, true); /1 Initialize with autoComit on

Subsequently, this connection context instance may be used in an embedded SQL operation as follows:

#sql [ myProjDb] { UPDATE ... }; // Execute SQL on myProjDb connection context
The SQLJ translator also supports SQL checking on multiple connection contexts at translate time, through command-line
options that are (optionally) Zagged with the connection context class name. An example of such use is:
sqlj -user=scott/tiger -user@ProjDb=roger/lion -url=jdbc:oracle:oci8:@ ProjDemo.sqlj
Such an invocation makes the SQLJ translator use two different schemas for checking SQL operations: scott/ tiger for those
that use the default context, and roger/lion for the SQL executed on instances of the ProjDb connection context class.

Paper 607



Exploiting Java, Objects, & Components

2.7 USING DYNAMIC SQL THROUGH JDBC

In some cases, for example when a WHERE clause condition or the set of selected attributes is unknown, the SQL statement is
not known in advance, and therefore dynamic SQL must be used. The dynamic SQL API for SQLJ is JDBC, and a SQL]J
program may contain both SQLJ code and JDBC calls. Access to JDBC connections and result sets from a SQLJ program
might also be necessary for finer granularity of control. The two paradigms interoperate seamlessly with each other through
conversions between JDBC connections and SQLJ connection contexts, and between JDBC result sets and SQLJ iterators.
For example, a SQLJ connection context can be initialized with an existing JDBC connection:

j ava. sgl . Connection conn=...; [/l Create JDBC connection
ProjDb pdb = new ProjDB(conn); // Use to initialize SQLJ connection context

Conversely, it is also possible to extract a JDBC connection object from a SQLJ connection context instance. This feature is
illustrated below, where we define the method projectsDue() using dynamic SQL via JDBC statements and connections:
public static void projectsDue(boolean dueThisMonth) throws SQLException {

/I get IDBC connection from previously initialized SQLJ DefaultContext
Connection conn = DefaultContext.getDefaultContext(). getConnection();

String query = "SELECT name, start_date + duration FROM projects " +
"WHERE start_date + duration >= sysdate "; // Query open projects
if (dueThisMonth) /I Add condition to check month due
query +=" AND to_char(start_date + duration, 'Month") " +
" = to_char(sysdate, 'Month") *; // Extract and compare month from dates

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

System.out.printin("Project: " + rs.getString(1) + " Deadline: " + rs.getDate(2));

rs.close(); pstmt.close();

}

Similar conversions as for database connections are also supported between JDBC result sets and SQLJ iterators:
Projlter projs; Il Declare iterator instance
#sql projs = { SELECT ... }; /I Initialize it

java.sgl.ResultSet rsProjs = projs.getResultSet(); // Get its JDBC result set
Likewise, we can instantiate a SQLJ iterator object using a JDBC result set. The example below shows such a conversion to
the SQLJ named iterator Pr 0] S. In this case, the column names in the SQL query must match the accessors in the iterator.
java.sql.ResultSet rs = ...; // Create and initialize a JDBC result set
#sql projs = {CAST :rs}; /I Cast the result set to a SQLJ iterator

Notice the use of the CASToperator above, which is special syntax provided for conversion of JDBC result sets to iterators.

3 DEFINING SQLJ STORED PROCEDURES ON THE SERVER

Finally, we demonstrate the use of SQLJ stored procedures and functions on the Oracle8: data server, which provides an
integrated JavaVM [2], and supports SQLJ. SQLJ code defined at the server is automatically translated into Java byte code,
and then stored in the database. For example, using SOL*P/us, we can define a static function getDeadline() in a Java
class named ProjUtil as follows:

CREATE OR REPLACE JAVA SOURCE NAMED "Projutil" AS
import java.sql.*;
public class Projutil {
public static Date getDeadline (String projName) {
I N{ote: connection is automatic for server-side execution of SQLJ programs
try
Date completionDate;
#sql { SELECT start_date + duration INTO :completionDate FROM projects
WHERE name = :projName }; // single-row query by key project name
return completionDate;
} catch (SQLException e) {returnnull;}}}

Paper 607



Exploiting Java, Objects, & Components

Once this SQLJ function has been created successfully, it can be invoked from SQL statements. But first a wrapper has to be
defined for mapping the Java invocation signature to SQL. This wrapper definition is based on PL/SQL syntax, e.g.,
CREATE OR REPLACE FUNCTI ON get Deadl i ne( proj Name VARCHAR2) RETURN DATE

AS LANGUAGE JAVA NAME ' Proj Util.getDeadline(java.lang.String) return java.sql.Date’;

/

Then, the stored function or procedure can be invoked from both client-side and setver-side SQLJ code, just like any other
stored PL./SQL function or procedure. Thus, we can define the method pr oj Deadl i ne() using the above SQL wrapper:
public static Date projDeadline(String projName) throws SQLException {

Date deadline = null;

#sql deadline { VALUES( getDeadline(:IN projNane)) };
return deadl i ne;

}
4 CONCLUSIONS

This paper has presented a comprehensive overview of the goals, benefits, and capabilities of SQLJ. Using a detailed example,
we have explained the various language features and demonstrated their usage. From the examples in this paper, we see that
SQLJ statements are usually much shorter than the equivalent dynamic SQL calls in JDBC, because SQLJ uses embedded Java
host variables to pass arguments to SQL. In contrast, the JDBC user must write separate calls to bind each argument and to
retrieve each result. Another important advantage of SQLJ is that it supports translate-time checking of all static SQL
statements against a database schema, and verification of the type compatibility of host variables with SQL datatypes.
Additionally, strongly-typed SQL]J iterators enable Java type checking and SQL schema checking where data is fetched from
an iterator (either using named column accessors or through a FETCH. . | NTO statement), because the iterator’s class defines
the number and types of the fetched columns. This type-checking greatly enhances program robustness by catching errors at
development time, rather than at application runtime, and such benefits cannot be obtained in a dynamic APT like JDBC.
However, SQLJ and JDBC are complementary to each other - the former handles dynamic SQL, while the latter addresses
static SQL. The user can easily combine both SQLJ and JDBC code in the same application program, and have them
interoperate at the level of connections/contexts and result sets/iterators.

Besides the inherent power of Java’s portable development and flexible deployment model, the SQLJ application development
framework provides many other important advantages. The SQLJ language and runtime are being standardized by ANSI, so
that SQLJ programs written for one vendor’s database can be easily adapted to another’s. By design, SQLJ supports code
portability not only at the source level through standard syntax, but also at the level of binaries, since it adds vendor-specific
customizations to the binary profile files. Additionally, a Reference Implementation of SQLJ has been developed at Oracle
using Java, and its source code is available freely to the public and to other database vendors. SQLJ is blazing a new path in
its domain, in terms of its openness, robustness, flexibility, extensibility, standardization, and integration with tools. As the
industry leader, Oracle has further reinforced the power of SQLJ through tightly-integrated support for it on the Oracle8/ data
server, allowing SQLJ procedures and functions to be stored in the database and invoked from SQL, PL/SQL, and Java.
Oracle-specific datatypes and SQL extensions are fully accessible in SQLJ through binary profile customization, without
compromising standards compliance. Oracle8 types such as LOBs, objects, and collections are also easily manipulated in
SQLJ [3]. Oracle’s JDeveloper tool provides an integrated development environment with built-in support for editing,
translation, and debugging of SQLJ code. Further improvements in integration, tools, and performance are on the way.

ACKNOWLEDGMENTS

This paper is based on the work of the SQLJ, JDBC, and JavaVM teams at Oracle. I would like to thank Brian Becker, Ragamayi
Bhyravabhotla, Cheuk Chau, Rakesh Dhoopar, Pierre Dufour, Thomas Kurian, Ekkehard Rohwedder, and Brian Wright for their
contributions and helpful comments.

REFERENCES

[1] Oracle8 and Java, Technical White Paper, Oracle Corporation, 1997.

(2] Industrial Strength Java: Overview of Oracle’s Server-Side Java, Dave Rosenberg, Oracle Open World, Nov. 1998.
[3] Using Oracle Objects in SQL] Programs, Ekkehard Rohwedder, Oracle Open World, Nov. 1998.

[4] Oracle8;SQLJ and JDBC User Documentation, Oracle Corporation, 1998.

Paper 607



