SQLJ: Embedded SQL in Java

An Oracle Technical White Paper
May 15, 1998

Introduction

During the past year and a half, Javall has become the language of choice for developing and
deploying Internet/Intranet applications. Its promise of a unified portable application development
solution that can execute on a simpler, lower cost network-centric I'T infrastructure has prompted
major development tool vendors and infrastructure providers to provide support for Java. Client-
side Java interfaces and tools are being complemented by highly productive, scaleable, reliable, and
performant Java servers as leading software vendors such as Oracle integrate Java Virtual Machines
with their databases and other application platforms. Leading browser platforms are building Java
Virtual Machines into their systems. Java applets and servlets are appearing all over the Web, bringing
rich functionality to what was before only a static medium. Java’s value proposition is so compelling
that many large companies are already beginning to re-architect their business critical applications in
Java.

This paper provides a technical overview of SQLJ, a new language that has emerged as a result of a
multi-vendor effort to provide support for static SQL in Java programs. It does so in 5 sections:

* The first section provides a brief review of the promise of Java and Oracle’s Java strategy,
with an overview of the SQLJ product.

* The next section highlights SQLJ’s design goals, how it works, its most important features,
and how it compares with dynamic SQL APIs such as JDBC.

* The third section desctibes the various configurations in which SQLJ can be used.

¢ The fourth section summarizes SQL]’s benefits.

* Finally, the fifth section provides a clear description of Oracle’s future plans for SQL]J.

1. The Promise of Java and Oracle’s Java Strategy

Java has raised considerable interest both within the application developer community and within the
corporate CIO community, because it promises to provide both a very productive application
development language and the potential to significantly simplify and reduce the cost structure of the
information technology infrastructure within companies today.

1.1 Java’s Interest to Software Developers

Software developers are attracted by Java’s power and productivity as an application programming
language.

* Modern, Object-oriented: Java is provides a modern, object-oriented programming language
with features such as garbage collection that make application development simpler and quicker
than with other programming languages such as C++.

* Component Model: It provides component models - Java Beans and Enterprise Java Beans -
which allow users the facility to very easily assemble and distribute applications using off-the-
shelf components. As Java tools and Java setvers are increasingly providing a rich development
and execution environment for these components, they will become widely used in both client-
side GUI development and server side component creation and distribution.

* Internet-centric: Most importantly, Java was designed from the ground up to facilitate Internet-
centric application development with facilities to allow transparent partitioning and distribution
of application components across a network. Java is, therefore, very rapidly becoming the
predominant language to build enterprise applications.

1.2 Java’s Interest to CIOs

While Java has attracted the attention of the software development community, it has also raised
considerable excitement among Fortune 500 Chief Information Officers [CIOs]. CIOs are attracted
by Java’s promise of:

* Lower cost I/T infrastructure: By offering downloadable applets that execute in a browset,
Java eliminates the need for pre-installation and configuration of software on a client, thereby,
considerably lowering the cost of software maintenance.

* Broad choice of products: CIOs are also attracted by the growing variety of low cost tools,
Java setrvers, and clients that are coming to market offering them a broad array of choices at
modest prices.

* Openness: Finally, Java’s openness and portability allows CIOs to train their developers on a
single programming language and tool set while ensuring that they do not face proprietary lock-
in from any single software vendor.

1.3 Oracle’s Java Strategy

Oracle’s Network Computing Strategy brings the Internet model of computing to enterprise
applications. Oracle has had a significant Java project underway aimed at providing a complete Java
solution to its enterprise customers including an enterprise class Java server platform and a highly
productive set of Java development tools. Oracle Data Server Technologies, the division that
builds Oracle’s industry leading database server, has a number of projects underway to deliver client-
side programmatic interfaces and Java integration with the Oracle database.

* Client-side programmatic interfaces: Oracle will offer two different client-side programmatic
interfaces for Java developers - JDBC and SQLJ.

— JDBC Drivers: It offers two different JDBC drivers - one for developers writing client-
server Java applications or Java-based middle tier setvers, the other for those writing Java
applets. A specialized version of JDBC is also being developed to execute within the
database setrver, allowing Java applications that execute on the setver’s Java VM to access
data defined locally [i.e., on the same machine and in the same process| via JDBC.

— SQLJ: Oracle is working with a number of partners to develop SQLJ - a standard way to
embed SQL statements in Java programs. SQLJ offers a much simpler and more productive
programming API than JDBC to develop database applications in Java.

* Server: Oracle is delivering a Java VM that is tightly integrated with, and leverages the
performance and scalability advances of, the Oracle8 server to offer an ideal platform for
traditional OLTP applications, intranet and internet-based applications, and e-commerce
applications. The Oracle Java VM will support two different programming models: Integration
with SQL allowing users to write traditional database stored procedures, triggers, and methods in
Java. The Java VM will also provide a transaction server platform for distributed Java

components called Enterprise Java Beans that allow programmers to develop reusable server-
side application components in Java. Browser-based or middle-tier Java or CORBA clients can
communicate with server-side EJB components via an object-based protocol such as IIOP
[CORBA’s Internet Interoperability Protocol]. Oracle’s offers a common set of services between
this platform and its Application Server’s Java platform.

* Strategy: In delivering its Java solution to customers, Oracle is focused on three primary
differentiators:
— A complete solution consisting of both a Java setver platform and an integrated set of Tools
— Enterprise Quality Platform: Fast, scaleable and operationally robust
— Standards compliant: All of Oracle’s products are 100% compatible with Java standards.

2. SQLJ - A Brief Overview and Description

Having provided an overview of Oracle’s Java strategy in general, this section provides considerably
more detail on SQLJ - an important component in this strategy. The section is divided into three
parts:

* First: It describes SQLJ and its design goals

* Second: It describes how SQLJ works

* Third: It provides an overview of the most important features of SQLJ
* Fourth: It compares SQLJ code with equivalent JDBC code

2.1 SQLJ: The Product and Design Goals

SQLJ provides a standard way to embed SQL statements in Java programs. In writing a SQL]J
application, a user writes a Java program and embeds SQL statements in it following certain standard
syntactic rules governing how SQL statements can be embedded in Java programs. The user then
runs a SQLJ translator which converts this SQLJ program to a standard Java program, replacing the
embedded SQL statements with calls to the SQLJ runtime. The generated Java program is compiled
using any Java compiler and run against a database. The SQLJ runtime environment consists of a
thin SQLJ runtime library which is implemented in pure Java, and which in turn calls a JDBC driver
targeting the appropriate database.

SQLJ is, therefore, similar to the ANSI/ISO "Embedded SQL" standards, which presctibe how
static SQL is embedded in C, COBOL, FORTRAN, and other languages. For example, Oracle's
pre-compiler product PRO*C is an implementation of the Embedded SQL standard in the host
language C - those familiar with the Oracle pre-compilers may think of SQLJ as if it were PRO*Java.
For Java developers who are unfamiliar with embedded SQL interfaces to databases, there are two
important facets to SQLJ that require further exploration:

* SQLJ is a Standard: The Language Specification is a joint specification supported by all the
leading database and database-tools vendors including Oracle, IBM, Sybase, Informix,
Compaq/Tandem, and Javasoft. All these vendors have also cooperated to provide a Reference
Implementation of the SQLJ Translator to ensure that the SQLJ implementations from the
different database vendors are compatible and interoperable.

* Design Goals for SQLJ: SQL]J was primarily designed to significantly improve the productivity
of Java developers building database applications. To facilitate this, its definition was focused
around a few important design goals:

Compact and high-level interface: SQLJ provides application programmers with a higher level
interface resulting in more compact and etror free code than JDBC for static SQL. SQLJ
does not address dynamic SQL - users can however combine both SQLJ and JDBC in a
single application to address both static and dynamic SQL respectively.

Translation-time syntaxc and semantic checking of SQL. statements: For static SQL, the SQLJ
translator performs type-checking and schema-checking to detect syntax and semantic errors
in SQL statements at program development-time rather than runtime. Programs written in
SQLJ are therefore more robust compared to JDBC programs.

Multi-Vendor Interoperability: SQLJ Applications were designed to be vendor independent in
three important ways: [i] First, the syntax for embedding SQL in Java programs is a standard
shared by all the SQLJ partners. [ii] Second, the partner’s share a common SQLJ translator
reference implementation. [iii] Third, since a SQLJ program performs database access using
JDBC at runtime, SQLJ can access any data server for which JDBC drivers are

implemented.

Vendor-specific customization: The SQLJ standard also allows vendor-specific customizations - a
binary SQLJ application includes a set of SQLJ profiles that describe the SQL operations
appearing in the original program source. These profiles can be used to create vendor-
specific customizations that can be installed into the binary SQLJ application. Two types of
customizations are possible: [i] Profile customizations to improve SQL execution
performance using optimization techniques. [ii] Customizations to grant access to vendor-
specific features not otherwise available to SQLJ programs. Multiple customizations can be
installed into the same SQLJ binary, so that the same binary can be used to execute SQL on
databases from different vendors, and the execution of that operation will take advantage of
the customization available for each vendor.

Flexible Deployment: The code generated by the SQLJ translator is 100% standard Java code
and can be executed in any standards-compliant Java Virtual Machine. This allows SQLJ
programs to be partitioned easily across different tiers in a distributed architecture, and
deployed in many different environments without any code changes.

2.2 SQLJ: How it Works

A SQLJ Application is a standard compiled Java program that was prepared from SQLJ source files.
A SQLJ program is typically compiled in two steps. In the first step, a SOLJ Translator translates the
SQLJ application into a Java application with calls to the SQLJ runtime replacing the SQLJ clauses -
its output is a set of standard Java source files. In the second step, any Java compiler can be used to
compile those Java files.

2.2.1 SQLJ Translator
A SOLJ Translator performs two important functions:

Translates the SQLJ source code: The SOLJ Transiator translates the SQLJ application into a
Java application with calls to the SQLJ runtime replacing the SQLJ clauses, generating a set of
standard Java soutce files.

Type Checking: It petforms SQL syntax-checking, schema-checking, and type-checking of
host variables at translation time, if logon information to the database is provided. This
checking is performed szatically, i.e., all SQL statements in the program are checked irrespective
of the actual code paths executed at application runtime.

Reference Implementation: The SQLJ partners (Oracle, IBM, Sybase, Informix,
Compaq/Tandem, JavaSoft, and others) have collaborated to produce a Reference Implementation of a
SQLJ Translator. The SQLJ Reference Implementation is written entirely in Java, and is designed so
that it can be incorporated into Java development tools which will allow SQLJ translation and Java
compilation to be performed in one step.

2.2.2 SQLJ Runtime

A compiled SQLJ application is a standard Java program and can run wherever a Java VM, the SQLJ
runtime library and a JDBC driver are available. There are three important aspects to consider
regarding executing SQLJ applications:

SQLJ Runtime: At runtime, a SQLJ application communicates with a database through the
SQLJ runtime library which is a thin layer of pure Java code above a JDBC driver. A variety of
JDBC drivers can be used at runtime - the figure below illustrates the three alternative runtime
configurations of a SQL]J program using a variety of different JDBC drivers to target Oracle.

SQL]J Application

SQLJ runtime lib

Javasoft Oracle Oracle

ODBC based JDBC/OCI Thin J]DBC
driver Driver Driver

ODBCC OCIC

library library Java sockets

Figure: SQLJ Runtime Configurations

Type Safety: SQLJ associates the properties of result-sets and database connections with the
fypes of the Java objects that represent them, so those types can appear in the interfaces between
separately developed Java components. For example, the shape of rows of an iterator object
(the number and types of the columns) is encoded by its type (its class). That iterator-class can
appear as the type of parameters and results in the interfaces between software components.
Therefore, components can exchange SQL result-set data as type-safe, first-class objects with
known row shapes, so that the SQLJ translator and Java compiler can check that accesses of
column data are correct wherever it is used.

Binary portability: Applications translated by the SQLJ Reference Implementation can access
any database that is supported by an implementation of JDBC or a compliant implementation of
the SQLJ runtime APIL This property of binary portability allows compiled applications to be
portable not only across platforms, but also across different vendors' databases. For example, a
SQLJ Application, that contains SQL conforming to SQL92 Entry Level, augmented by

BEGIN..END blocks and calls to stored procedures, can connect to an Oracle, IBM, Tandem,
or Sybase, database and interact successfully with any of these databases.

2.3 SQL]J Features

Having described what SQLJ is and how it works, let us now examine its most important features
using an example. There are 5 important features each of which are described in more detail below.

* SQLJ Clauses
e Host Variables
* Result Sets Returned by Queries

* Database Connection Management
* Combining static and dynamic SQL: using SQLJ and JDBC together

2.3.1 SQLJ Clauses

Static SQL statements appear in a SQLJ program text as SOLJ clauses. A SQLJ clause is introduced
by the token #sql, and contains a SQL statement inside curly braces. An executable SQLJ clause
may appear where a Java statement may appear. Here is a SQLJ clause that contains a SQL
UPDATE statement:

#sql { UPDATE TAB SET COL1 = :x WHERE COL2 > :y AND COL3 < :z };

2.3.2 Host Variables

The inputs and outputs of SQL statements are passed through host-variables. A host-variable is a Java
variable, parameter, or field that is embedded in a SQL statement, prefixed by a colon character. The
standard JDBC types, such as boolean, byte, short, int, String, byte[], java.sql.Date, Integer, Double,
etc. are valid host variable types in SQLJ. In addition, Oracle’s SQLJ translator supports Oracle7 and
Oracle8 specific types, such as ROWID, CLOB, BLOB, as well as Object and REF types.

The following example consists of two SQL table definitions, and a Java method containing SQL]J
clauses that access those tables.

CREATE TABLE PARTS MASTER
(PART_| D NUVBER(8) PRI MARY KEY,
PART_NAME VARCHAR(40),
SUPPLI ER VARCHAR(200)) ;

CREATE TABLE MRP
(PART_| D REFERENCES PARTS_MASTER,
QUANTI TY_ON_HAND NUMBER(6),
REORDER THRESHOLD NUMBER(6)) ;

/1l Part of a SQ.J program show ng definition of one nethod:
public class inventory {

' “publ ic void pull Stock (int part, int quantity) throws Qut O Stock {
int on_hand, threshold;

#sql { SELECT QUANTI TY_ON HAND, REORDER THRESHOLD
I NTO : on_hand, :threshold FROM MRP
WHERE PART ID = :part FOR UPDATE };
on_hand -= quantity;

if (on_hand < threshold) {
String supplier;
#sql { SELECT SUPPLI ER I NTO : supplier FROM PARTS MASTER
VWHERE PART_ID = :part };

i nventory. orderMre(part, quantity, supplier);

if (on_hand < 0) {
#sql { ROLLBACK };
t hrow new Qut O St ock();
} else {
#sql { UPDATE MRP SET QUANTI TY_ON HAND = :on_hand
VWHERE PART_ID = :part };
#sgql { COMT };

The above example shows that SQLJ is quite similar to ANSI/ISO Embedded SQL. It allows SQL
statements to appear directly in program logic. At program development time, static analysis can
detect errors in their SQL syntax, in their uses of tables and other schema definitions, and in their
numbers and types of arguments and results.

2.3.3 Result Sets Returned by Queries

In a SQLJ program, a result-set returned by a multi-row query is manipulated by means of an izerator
object, that iterates through the rows in the result-set. An iterator is an object of an #erator-class,
which is a Java class that is defined by a declarative SQLJ clause that may appear where a class
definition may appear. The clause defining a named-iterator class lists the Java names and types for
columns in a row of a result-set. The following clause defines an iterator-class called AllStock:

#sql iterator AllStock (String part, int quantity);

The above clause implicitly defines Java class AllStock with methods named part and quantity, of
types String and int, respectively. Those column-accessor methods return the values of columns from
rows of a result-set contained in an iterator of type AllStock. The following SQLJ program fragment
defines a local variable of class AllStock, executes a query to populate that variable with an iterator
object, and calls the column-accessor methods of the iterator and prints the column values:

public void printStock () {
Al |l Stock iter;
/Il Instantiate the iterator with a SQ query
#sql iter = { SELECT PART_NAME AS "part",
QUANTI TY_ON_HAND AS "quantity"
FROM PARTS_MASTER, MRP
VWHERE PARTS_ MASTER. PART_I D = MRP. PART_ID };
I/ Now | oop through the result rows
while (iter.next()) {
Systemout.printin("Part: " + iter.part() + ", Quantity:
+ iter.quantity());

%ter.cl ose();

}

In addition, SQLJ provides support for defining positioned iterators that use traditional FETCH...INTO
syntax to access query columns by position.
2.3.4 Database Connection Management

The example above contains no explicit management of database connections. Its SQL statements
execute on the default database connection, which is global to the program. SQLJ programs may

also manipulate multiple database connections. Users may explicitly declare a connection-context class,
wherever a Java class declaration is permitted. For example:

#sql context PartsDB; /1 declares a class PartsDB
PartsDB pdb = new PartsDB(url, user, password);

Each SQLJ clause may designate a particular instance of a connection context, in square brackets,
immediately following the token #sql, for example.

#sql [pdb] { INSERT I NTO MRP VALUES (:id, :quantity, :threshold) };

Multiple connection context classes can be used in the same program to partition SQL statements that are
executed on different schemas. At translation time, different SQL checking can be performed for each
connection context class used.

2.3.5 Combining Static and Dynamic SQL. - SQOLJ and [DBC

A SQLJ program may contain both SQLJ clauses and JDBC calls, for static and dynamic SQL,
respectively. The two paradigms interoperate at the level of database connections and result
sets/iterators. For example, a SQLJ connection context can be initialized with an existing JDBC
connection:

j ava. sgl . connection conn=..,;
PartsDb pdb = new PartsDB(conn);

It is also possible to extract a JDBC connection object from a SQLJ connection context. Similar
conversions are possible between JDBC result sets and structured SQLJ iterators. For example:

AllStock iter;
#sql iter = { SELECT ... };
java.sqlj.ResultSet rs = iter.getResultSet();

Thus, the dynamic SQL API for SQLJ is simply JDBC.

2.4 SQLJ code versus JDBC code

For SQL statements with input arguments, SQLJ clauses are often shorter than the equivalent
dynamic SQL (JDBC) calls, because SQLJ uses host variables to pass arguments to SQL statements,
while JDBC requires a separate statement to bind each argument and to retrieve each result.
Contrast SQLJ and JDBC program fragments for the same single-row SELECT statement:

/Il SQJ
float w, java.sql.Date x; int y; String z;

#sql { SELECT Cl, C2 INTO :w, :x FROMTAB WHERE C3 = :y AND 4 = :z };

/1 JDBC
float w, java.sql.Date x; int y; String z;

PreparedSt at enent s = connecti on. prepareSt at enent (
"SELECT Cl1, C2 FROM TAB WHERE C3 = ? AND C4 = ?");

s.setint(1, y);

s.setString(2, z);

Resul tSet r = s.executeQuery();

r.next();

w = r.getFloat(1);

X = r.getDate(2);

r.close();

s.close();

Unlike dynamic SQL, SQLJ permits compile-time checking of the SQL syntax, of the type
compatibility of the host-variables with the SQL statements in which they are used, and of the
correctness of the query itself with respect to the definition of tables, views, stored procedures, etc.
in the database schema. Type-checking and schema-checking is also done where column-data is
fetched from an iterator object (by a FETCH statement, or by column-accessor methods), because
the class of the iterator object defines the number and types of columns in rows contained by that
iterator.

3. SQL]J Deployment Configurations

Having understood how SQLJ works and what its most important features are, it is now approptiate
to consider how SQLJ programs can be deployed in a variety of different configurations. This
section is divided into two parts: first, it discusses platform requirements to run a SQLJ program;
next, it discusses five different scenarios in which SQLJ can be deployed.

3.1 Requirements for SQLJ Deployment

The only requirements from a platform point of view to run a SQLJ program are the availability of:
* The SQLJ runtime library

* A JDBC driver - Oracle’s SQLJ Translator can be used with any JDBC driver including
JDBC/ODBC bridges, Oracle’s JDBC/OCI drivet, or Oracle’s Thin JDBC Driver

* A Java Virtual Machine where SQLJ programs will execute.
3.2 Deployment Scenarios

SQLJ Programs can be deployed in a number of different configurations including either fat or thin
clients, in middle tier Java web servers or application servers, or as stored programs on the Java
Virtual Machine integrated with the Oracle8.1 database setver. Since the SQLJ runtime library is a
thin layer of pure Java code that sits above the chosen JDBC driver, the user must choose the JDBC
driver best suited for the particular deployment configuration he needs. The remainder of this
section illustrates how Oracle’s SQLJ Translator can be used in combination with Oracle’s own
JDBC drivers in five different deployment configurations:

* For traditional two-tier client-server Java applications

* For multi-tier applications with a middle tier application server
* For Java Applets

* With Oracle’s Net8 Connection Manager

* For Oracle8.1 Database Stored Programs

3.2.1 SQOLJ for Client-Server Java Applications

Oracle’s JDBC/OCI driver is targeted to two kinds of application developets - those who are
beginning to use Java for traditional client-server application development in an Intranet
environment and those who are choosing to develop Java-based middle tiers such as Java application
setvers. SQLJ can be used with Oracle’s JDBC/OCI dtiver in a traditional two-tier client-server
using SQLJ in combination with Oracle’s JDBC/OCI Driver. The Java application makes calls to the
SQLJ library which in turn translates calls via the JDBC/OCI driver across SQL*Net to

communicate with Oracle Database Server. In this configuration, users will need to deploy the
following libraries on each client:

* SQLJ Runtime Library
* JDBC/OCI Driver
* Oracle Client Libraries including OCI, SQL*Net and CORE libraries

SQLJ Runtime

- A

Figure: Using SQL]J in a Two Tier Client Server Configuration

3.2.2 QL] for Multi-tier Applications

In a 3-tier configuration, a browser-based client communicates with a Java-based middle tier either
using a stateless protocol such as HI'TP today or a stateful protocol such as IIOP in the future. The
middle tier in turn executes the Java application logic written in SQLJ and communicates with the
back end database server. The following diagram indicates how SQLJ can be used in combination
with Oracle’s JDBC/OCI Driver in a three-tier configuration either in an Intranet setting or an
Extranet setting [where the web server is located behind the firewall].

The client is a web browser that communicates with the web server using the HI'TP protocol. The
Java application [the executable], the SQLJ runtime libraty, the JDBC/OCI driver, and the OCI,
CORE and SQL*Net libraries ate installed on the web server. The user can start/invoke the Java
application in a number of different ways: The user can use a CGI script, Oracle’s Web Request
Broker API [if the application is deployed on Oracle’s Web Application Servet|, or even an IIOP
style invocation. Once the Java application has been invoked, it communicates with the backend
database server using SQL*Net.

BROWSER
HTTP :
SQLJ
Application
SQL*Net
JDBC/OCI
FIREWALL OAS 4.0

Figure: Using SQL]J in a Three Tier Architecture

There are three important deployment issues that arise from this form of application deployment -
how to manage application state, how to improve the scalability of the application, and how to
optimize application responsiveness. Users are directed to Oracle’s JDBC technical white paper
which discusses these issues in considerably greater detail.

3.2.3 SQOLJ for Java Applets

SQLJ programs may be run as Java applets - Java applets execute in a browser and therefore cannot
require any client-side installation. From the browser, the user simply clicks on a Uniform Resource
Locator (URL) in a HI'ML page that contains a Java applet tag. When the user loads the page, the
Java applet (which can be a translated SQLJ program), the SQLJ runtime library (which is 100%
Java), and the necessary JDBC driver are downloaded into the browser from the web setver. Once
they are in the browser and begin executing in the browset’s Java VM, the compiled SQLJ code
establishes a connection with the database setver via the JDBC driver. Since it needs to be
downloadable along with the Java applet and the SQLJ runtime library, the JDBC Driver also needs
to be a pure Java implementation. It also needs to be relatively small in size so that it can be
downloaded quickly and execute in a performant manner on browser-based Java VMs.

Oracle’s SQLJ Runtime and the Thin JDBC driver have been designed explicitly for such
implementations. By eliminating the need for a client-side installation, Oracle’s downloadable SQLJ
Runtime and its Thin JDBC driver reduce the costs associated with maintenance and administration
in an Intranet environment. They are even better suited for Extranet applications where client-side
installations preclude the universal access that is fundamental to the success of the worldwide web.
The following diagram shows the typical configuration in which the SQLJ Runtime and the Thin
JDBC driver can be used with Java applets. The Java applet, SQLJ runtime library and Thin JDBC
are downloaded into the browser after the user opens a URL. The SQLJ application communicates
directly with the database setver using SQL*Net. The web server and the database server can be on
physically separate machines or on the same machine. In an Intranet deployment the entire

configuration is behind a firewall; in an Extranet deployment, the web server and the database are
both behind the firewall.

BROWSER
HTTP

SQLJ Java
Application

SQLJ Runtime

| mipne [

Figure: Using SQL]J with Thin Clients

The deployment configuration described above raises three important issues - how to handle Java
security, how to manage application state, and how to support large numbers of browsers connecting
in this two tier configuration. These issues are discussed in considerably greater detail in Oracle’s
JDBC Technical Whitepaper to which the user is referred.

3.2.4 SQOLJ with Net§8 Connection Manager

The SQLJ Translator and the Thin JDBC Driver can be used together with the Net8 Connection
Manager to achieve significantly greater scalability in a two-tier or three-tier configuration on
platforms with physical number of end point limitations. Oracle Connection Manager is a
multipurpose networking service for Oracle environments providing client connection
concentration, client connection access control, and multiprotocol connectivity. Oracle Connection
Manager enables large numbers of users to connect to a single server by multiplexing multiple client
database sessions across a single network connection thereby reducing internal memory usage within
the database server [the server allocates memory internally to handle each connection or typically
establishes a pool of connections that it swaps between a number of active connections]. By
reducing the resource requirements within the database setver, Oracle Connection Manager allows
the Oracle database server to support a large numbers of concurrent users.

Net8 CMAN
Figure: Using SQL]J with Net8 Connection Manager

3.2.5 Writing Database Stored Procedures in SQLJ

Oracle8.1 tightly integrates a highly scaleable and high performance Java Virtual Machine with the
database kernel. It provides an ideal platform on which to run data intensive Java application logic. A
key element of the Java VM’s architecture is an efficient interface through which Java programs can
access SQL and PL/SQL within the database. The Java VM provides two ways with which users can
write such queries:

Embedded SQLJ Translator: For static SQL queties, users can write embedded SQL in Java
application code. The Java VM includes the SQLJ translator and Java compiler to transparently
compile embedded SQL in Java programs to Java binaries. The Java VM also integrates the
SQLJ runtime library which uses an embedded JDBC Driver to communicate with SQL and
PL/SQL.

Embedded JDBC Driver: Those choosing to write dynamic SQL can directly target JDBC -
the Java VM incorporates a specialized implementation of Oracle’s JDBC Driver corresponding
to the Javasoft JDBC 1.2.2 specification that provides all of the functionality that it provides in a
client-side environment but is optimized to run within the database server and provide efficient
access to SQL data and PL/SQL subprograms on the local database.

Database Stored Procedures: Traditional database stored procedures, triggers and methods
can be implemented using SQLJ in the Oracle8.1 RDBMS. These database stored procedures
implemented in Java can be invoked from three types of clients:

— Any Java client: Java clients - fat clients, middle-tier Java clients ot browsers - can invoke
database stored procedures via JDBC or SQLJ

— Any SQL*Net client: Any other SQL*Net client ie OCI, Pro*, Developet/2000 or any other
tool that communicates with the RDBMS across SQL*Net

— Any CORBA client: CORBA clients can also access these stored procedures using the
CORBA standard IIOP protocol.

Oracle 8.1

IIOP

SQL*NET Embedded SQLJ

Figure: Using SQL]J for Database Stored Procedures

4. Benefits of Oracle’s SQL]J Translator

Having understood some of the technical underpinnings of Oracle’s SQLJ Translator and the
numerous configurations in which it can be used, it is important to discuss the various benefits that
Oracle’s SQLJ Translator provides developers building database applications in Java. These benefits
can be divided into two different categories:

Benefits of SQLJ Standard

— Improved application developer productivity

— Database independence and multivendor interoperability
— Vendor-specific customization

Benefits of Oracle’s SQLJ Translator

— Access to Oracle-specific features

— Compliance with SQLJ standard

— Integration with AppBuilder for Java 1.0

— Integration with many different browsers and Java VMs

— Flexible deployment configurations - two tier and multi-tier
— Intranet and Extranet deployment

— Access to heterogeneous data sources

4.1 Benefits of SQL] Standard

The SQLJ Partners - Oracle, IBM, Javasoft, Compaq Computer/Tandem, Sybase, Informix, and
others - are all cooperatively developing a common standard - the SQLJ Standard - to integrate Java
and SQL providing customers a highly productive, open, multivendor solution to build enterprise
applications in Java. The SQLJ Standard shared by these vendors provides a number of important
benefits.

4.1.1 Improved application developer productivity

SQLJ was developed cooperatively by the major database vendors primarily to provide Java
application developers a simple and highly productive way to build database applications.

Comprehensive functionality: SQLJ] provides embedded SQL syntax to simplify database
access for a variety of different facilities including transaction management, quetries, DDL
statements to create and drop schema objects, DML statements to manipulate the data, and
stored procedure and function calls

Compact and high-level interface: SQLJ provides application programmers with high-level
embedded SQL syntax for easy database access. SQL]J programs have more compact code and a
higher level programming abstraction compared to JDBC, and thus are less etror prone and
easier to understand and maintain.

Translation-time syntax and semantic checking of SQL statements: The SQLJ translator
performs type-checking and schema-checking to detect syntax and semantic errors in SQL
statements at program development-time rather than runtime. In contrast, in a dynamic API like
JDBC, the syntax of SQL statements and the types of the arguments are not known until
runtime. Programs written in SQLJ are therefore more robust compared to JDBC programs,
since they can be statically type-checked independent of the control flow at runtime.

Complements JDBC: While SQLJ provides a highly productive interface for static SQL, users
can easily combine calls to JDBC from within a SQLJ program to perform dynamic SQL
operation. SQLJ provides a ConnectionContext Java object which can be used to create JDBC
Statement objects needed for dynamic SQL operations. SQLJ, therefore, combines the best of

both worlds allowing users to type-check their static SQL without restricting their use of
dynamic SQL within the same application.

4.1.2 Database Independence - Multivendor Interoperability

By cooperatively developing the SQLJ standard, Oracle, IBM, Sybase, Compaq, Informix and
Javasoft and several other leading industry partners are developing a common, open standard that
bridges Java and SQL. There are a number of elements to SQLJ’s vendor independence.

Common SQLJ Specification: All the partners share a common SQLJ specification is being
submitted to the international ANSI/ISO standards body. It consists of 3 patts:

— Part 0 - The SQLJ Language Specification - provides standard language syntax and
semantics for embedding static SQL in Java programs.
(http://ww. oracl e. cont st/ products/jdbc/)

— Part 1 - The Stored Procedure Specification - provides standards for implementing
database stored procedures and functions in Java. This will allow customers who have
written stored procedures in Java to easily migrate them between databases.

— DPart 2 - The Stored Java Class Specification - addresses standard ways to store Java
datatypes and classes as objects in a database.

Portability: SQLJ offers portability at two levels: [i] Java source for stored procedures can be
moved from one vendor’s platform to another; [ii] Binary portability: Compiled Java classes
[Java bytecodes| from translated SQLJ programs can be moved to any compatible SQLJ

platform and executed regardless of which platform did the original translation.

Vendor-neutral SQLJ syntax: SQLJ syntax is designed to be database neutral - the SQLJ
translator makes minimal assumptions about the SQL dialect.

Vendor-neutral runtime environment: SQLJ’s runtime environment consists of a thin layer of
pure Java code that in turn communicates with the database server across a call-level API. The
runtime environment is therefore vendor neutral in two important ways: [i] Nothing about the
SQLJ language is JDBC-specific - it can be implemented with interfaces other than JDBC.
Oracle’s particular implementation uses JDBC as its runtime environment. [ii] Even a JDBC-
specific SQLJ implementation is not restricted to any particular database vendor’s JDBC driver.
For instance, the Oracle JDBC driver can be used with a JDBC-ODBC bridge to communicate
with another vendor’s database.

Interoperable translator implementations: Finally, the SQLJ partners are ensuring
interoperability between their SQLJ translators by sharing a common SQLJ translator
implementation. This will allow SQLJ to be moved seamlessly between compatible
implementations from many different vendors and is consistent with Java's philosophy of write-
once run-anywhere.

4.1.3 Viendor-specific customizations

According to the SQLJ standard, the SQL operations appearing in the original program source are
placed into a set of SQOLJ profiles. This facility provides vendors with the ability to customize a SQLJ
application for a vendor’s database. By creating and installing a specific customization into a profile,
vendors may customize the SQLJ application for their platform. Customizations may used for the
following reasons:

To improve SQL execution performance.
To provide full database portability.

To grant access to vendor-specific features not otherwise available to SQLJ programs.

Multiple customizations can be installed into the same SQLJ binary, so that the same binary can be
used to execute SQL on databases from vendors, and the execution of that operation will take
advantage of the customization available for each vendor.

Oracle’s own SQL Translator complies with the SQLJ Standard specification, but provides
customizations for both performance and to access Oracle-specific features.

4.2 Benefits of Oracle’s SQL] Translator

In addition to providing the benefits described above that are common to all compliant SQLJ
implementations, Oracle’s own SQLJ translator and runtime library has a number of other important
benefits that are described in the remainder of this section.

4.2.1 Access to Oracle-specific features

While complying with the SQLJ Standard, Oracle’s SQLJ Translator has been customized with
Oracle-specific extensions designed to simply and easily expose the database servet’s capabilities to
Java application developers. SQLJ developers wishing to use these Oracle-specific features need to
install the Oracle SQLChecker classes, the Oracle runtime customizer classes, and an Oracle JDBC
driver. Oracle’s SQLJ Translator provides support for a number of Oracle-specific features
including:

* Oracle Specific Types: The following Oracle-specific types are supported in Oracle’s SQLJ
Translator:
— ResultSet and Iterator Support.
— ROWID Support.
— Extended Output Stream Support.
— Extended BigDecimal Support.
— BLOB, CLOB, and BFILE Suppott.
— Oracle8.1 Object and REF Support.

* PL/SQL Stored Procedures: Oracle’s SQLJ Translator provides access to PL/SQL Stored

Procedures and anonymous blocks.

¢ Comprehensive Globalization/Multibyte Character Support: Oracle’s SQLJ Translator
provides excellent support for national language character sets. Oracle’s SQLJ Translator fully
supportts Java’s Unicode escape sequences. Additionally, it allows the use of ISO8859_1 (Latin-
1) characters directly in SQLJ programs. It also allows the use of Unicode characters inside of
any SQL code fragment.

* Java Stored Procedures: With the integration of a Java Virtual Machine with Oracle8.1 and the
embedding of a SQLJ translator within the VM, SQLJ can also be used to write traditional
database stored procedures, functions and triggers in Java.

4.2.2 Standards Compliance

Oracle’s SQLJ Translator, runtime library and generated SQLJ programs comply with a number of
different Java and SQL standards.

* JDK Versions: Oracle’s SQL] Translator is compliant with JDK 1.1.1 - both the SQLJ
translator itself and the generated SQLJ programs require Java 1.1.1 or later.

* JDBC Drivers: Oracle’s SQLJ Translator can be used with any industry standard JDBC driver;
the generated SQLJ programs does not restrict its use with Oracle’s own JDBC driver. However,
Oracle suggests the use of its own JDBC drivers particularly to access Oracle database-specific
functionality.

* SQLJ Standard Version: When made available in production, Oracle’s SQL]J Translator will be
compliant with the SQLJ 1.0 specification. The current web release is compliant with an eatlier
version of the SQLJ specification.

* RDBMS Versions: SQLJ programs generated by Oracle’s SQLJ Translator can be used with
both the Oracle7 and Oracle8 JDBC drivers. The appropriate JDBC Driver needs to be chosen.

4.2.3 Integration with AppBuilder for Java

Oracle’s AppBuilder for Java 1.0 release provides a number of features integrating SQLJ programs
with the AppBuilder for Java development environment. Specifically, the AppBuilder for Java
development environment provides a very rich environment for SQLJ developers to develop and
deploy applications. It includes three specific capabilities:

* Syntax-directed editing: By providing a syntax-directed editor for SQLJ source programs,
AppBuilder for Java 1.0 provides capabilities such as proper indentation as users type in SQLJ
source into the tools source editor, and the ability to chroma-code SQLJ constructs.

* Project Creation: AppBuilder for Java 1.0 supports the inclusion of SQLJ files in projects and
knows how to build SQLJ files. Further, the tool integrates the SQLJ translator allowing
application developers to transparently invoke it to process SQLJ and Java files that have
changed [make dependencies| - this eliminates the need for separate translation and compilation

steps to a user. Finally, the tool allows developers to set and change the translate time options
for SQLJ within the tool.

* Debugging: SQLJ also provides a set of runtime interfaces which is integrated with AppBuilder
for Java customers to debug SQLJ programs at the source level within the tool. The debugging
capability will be further enhanced with future releases of SQLJ and AppBuilder for Java.

4.2.4 Integration with Browsers and Java 1V Ms

Oracle’s SQLJ translator will be certified in a number of different configurations with most industry
standard browsers and Java VMs.

* Browsers: Oracle’s SQLJ runtime library used in combination with the Thin JDBC driver will
be certified with the most popular browsers on the market today - Netscape Navigator 3.0 and
4.0 and Internet Explorer 4.0.

* Java Virtual Machines: Further, the SQL]J translator and runtime library will be certified with a
number of different Java VMs including JDK, Oracle’s AppBuilder for Java development tool,
and others. For the complete list of supported configurations on different operating systsms and
hardware platforms, users are encouraged to read platform specific SQL] documentation or
contact Oracle’s Worldwide Support organization.

4.2.5 Flexible Deployment Configurations

SQLJ applications can be deployed in a variety of different configurations as described earlier in this
paper. Specifically, they can be used for three kinds of applications:

* Fat Clients: SQL] Applications can be deployed in traditional two-tier client-server
configurations together with Oracle’s JDBC/OCI Driver.

e Thin Clients: SQLJ Applications can be deployed in two-tier thin client-database server
configuration together with Oracle’s Thin JDBC Driver.

* Middle Tier Web Servers or Application Servers: Database-centric Java applications that
execute in any middle-tier Java web server or application server can be written using SQLJ.
Specifically, SQLJ applications targeting the Oracle database server can be executed on the
Oracle Application Servet’s Java VM.

* Database Stored Programs: With Oracle8.1, SQL] programs can execute on the database
server’s Java VM which provides a very high performance and scaleable platform to execute
SQLJ code. Traditional database stored procedures and functions, triggers, or object-relational
methods can then be implemented using SQLJ.

4.2.6 Intranet and Extranet Deployment

SQLJ applications can work across firewalls. Since the runtime environment for SQLJ applications is
essentially a thin layer of pure Java code together with the JDBC driver selected by the user, SQLJ
applications work with all the firewalls with which the specific JDBC driver chosen works. Oracle’s
own JDBC drivers can work in both an Intranet and in an Extranet setting. In an Extranet
deployment, the drivers can be used with most industry leading firewalls which have been SQL*Net
certified. Today, the following firewall vendors have certified their Firewalls with SQL*Net:

* Stateful Inspection Firewalls: Firewalls from Checkpoint, SunSoft, and CISCO Systems

* Proxy-based Firewalls: Firewalls from Milkyway Networks, Trusted Information Systems,

Raptor, Secure Computing Corporation, and Global Internet are proxy-based and are all
SQL*Net certified.

4.2.7 Access to Heterogeneous Data Sonrces

SQLJ applications can also be used to access a wide variety of heterogeneous data sources. By using
Oracle's Transparent Gateway products, SQLJ can provide high performance transparent
connectivity to over 25 different enterprise and legacy databases from Java applications or applets as
shown in the figure below.

SQLJ
Application

Ingres

JDBC/OCI or
Thin JDBC SQL*Net ORACLE
Driver Gateways

Java Client or
Mid-Tier

Figure: Using JDBC to access Heterogeneous Data Sources

4.2.8 Performance

Recognizing that Java application performance is one of the critical gating factors that can drive the
widespread adoption of Java, Oracle has designed its SQLJ runtime environment with performance
in mind. There are three important ways in which the SQLJ has been optimized to provide excellent
performance:

* Direct Database Access: The Oracle-specific SQLJ profile has a number of important Oracle -
specific customizations that are installed into the binary SQLJ application for better
performance. For instance, Oracle is implementing advanced SQL precompilation techniques to

improve SQL execution performance. SQLJ performance can therefore be competitive with the
best JDBC drivers in the marketplace.

API Extensions: Oracle provides a number of extensions to its SQLJ Translator to provide
performance improvements. They include:

— Bulk operations: Oracle’s SQLJ] implementation allow a user to set a number of rows to
prefetch into the client during queries, thereby reducing round trips to the server. This
dramatically improves the throughput of relational data.

— Execution Batching: Oracle’s SQLJ Translator allows a user to batch INSERTS and
UPDATES to the setver, further reducing round trips to the setver.

— Define Query Columns: It allow a user to inform the drive of the types of columns in an
upcoming quety, saving a separate define round trip to the database.

Optimized SQLJ Runtime: Finally, Oracle’s own SQLJ implementation is a very thin layer of
Java code thereby reducing to the minimum overhead introduced by the SQLJ runtime itself.

5. Conclusions and Future Directions

The paper has provided an overview of SQLJ, a highly productive, open standard for Embedded
SQL in Java supported by all the leading database vendors including Oracle, IBM, Sybase, Informix,
Javasoft and Compaq/Tandem. SQLJ program can be deployed in a number of different
configurations including two-tier client server applications, three-tier Intranet and Extranet
applications, and to write database stored procedures, triggers and methods with Oracle8.1.

Oracle’s SQLJ Translator conforms to the SQLJ standard but provides support for a number of
database features. Oracle will aggressively evolve its SQLJ implementation as a critical aspect of its
comprehensive server-centric Java strategy. Oracle will be making its SQLJ translator commercially
available with Oracle8.1. Some of the additional features that Oracle will include in its Oracle8.1
SQLJ product are:

Oracle8 Datatypes: Support for Oracle8 specific features such as Large Objects [LOBs] and its
object-relational extensions such as object types and collections [varrays and Nested Tables].
Oracle7 types such as REFCURSORs and PL/SQL Tables will also be supported.

Improved globalization support: Additional services in SQLJ, such as complete NLS support
for its message files.

Petformance and scalability improvements: Further improvements in performance and
scalability by further integration with features of Oracle’s JDBC driver. SQLJ performance will
reap the benefits of improvements in the JDBC drivers themselves, leveraging performance and
scalability optimizations in the database server such as connection pooling, elimination of bind
round trips, DML RETURNING syntax and optimizations in SQL*Net.

SQLJ: Embedded SQL for Java
May 15, 1998

Copytight © Oracle Corporation 1997, 1998
All Rights Reserved Printed in the U.S.A.

This document is provided for informational purposes
only and the information herein is subject to change
without notice. Please report any errors herein to
Oracle Corporation. Oracle Corporation does not
provide any warranties covering and specifically
disclaims any liability in connection with this document.

Oracle and SQL*Net are registered trademarks of Oracle Corporation
JDBC and Java are registered Trademarks of JavaSoft Corporation

ORACLE

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shotes, CA 94065
U.S.A.

Worldwide Inquiries:
415.506.7000
Fax 415.506.7200

Copyright © Oracle Cotporation 1997, 1998
All Rights Reserved

