Exploiting Java, Objects, & Components

USING ORACLE OBJECTS IN SQLJ PROGRAMS

Ekkebard Robwedder, Oracle Corporation

INTRODUCTION

The Oracle8/ data server supports the definition of object types and the storage of object instances in the database. Objects
can be manipulated using Java programmatic interfaces such as JDBC and SQLJ. This paper examines and illustrates object
manipulation through static SQL statements in SQLJ programs. We describe a general mechanism with which any kind of
SQL data may be read and written by Java in fully user-customizable fashion. As an example, we show how users can provide
their own customized mapping from RAW columns in SQL to serialized Java objects. The same mechanism is then employed
to create mappings from SQL object types to Java classes. We show how the JPublisher tool (formetly Object Type
Translator) assists in the generation of customized Java class definitions for these types. Several examples illustrate these
concepts from the creation of the object types in the database, to the examination of the generated Java wrappers, and to
using these classes in SQLJ programs for querying and updating objects in the database. We also compare the SQLJ and
JDBC approaches. The underlying representation of objects is shared between both APIs, which makes all Java class
declarations for object types fully interchangeable. On the other hand, SQLJ users benefit from concise code -object types do
not need any special syntactic treatment- as well as from translate-time checking of SQL syntax, semantics, and type
compatibility.

After giving a brief introduction to SQLJ, we discuss in section 2 the basic representation of SQL data. A general
customization mechanism for mapping SQL data to Java is described in section 3, and we provide an in-depth example
mapping RAW data to Java serializable objects. In section 4 we focus on the representation of SQL object types, REFs, and
collection types in Java. The JPublisher tool is also discussed, as well as the Java code generated by it. Several examples show
SQL code for object creation, and the SQLJ code for corresponding object manipulation. The final section concludes with an
assessment of our approach and a comparison between using the JDBC and SQLJ APIs for exploiting SQL objects.

1. SQLJ-OVERVIEW

This section summarizes the SQLJ standardization effort, as well as the basic features of the SQLJ translator program, see also
[1]. We examine the benefits of using SQLJ, and survey the basic mechanism that permits the SQLJ translator to support
Oracle8-specific types.

1.1 STANDARDIZATION

SOL] is a standardization effort that defines the interoperability between Java and SQL. It is driven by several vendors,
including Oracle, Compaq/Tandem, IBM, Sybase, Microsoft, Informix, and Sun Microsystems. SOLJ Part 0 specifies the
embedding of static SQL statements in the Java language and has been submitted to ANSI as draft X3H2 98-227. We refer to
this document when we talk about the standard for Embedded SQL. in Java.

1.2 SQLJ TRANSLATOR

A reference implementation of the SQLJ #ranslator, written in pure Java, has been created by Oracle and its partners and is
publicly available. The translator converts SQL]J programs with embedded SQL statements into Java programs with calls to
the SOLJ runtime. This is similar to the Pro*C precompiler translating SQL statements embedded in C. The SQLJ translator
employs an open architecture, permitting it to be integrated into different development environments, such as graphical IDEs
as well as the Oracle87 server side JavaVM. Additionally, SQLJ can support SOL checking and SOL runtime customizations for
arbitrary databases through Java plug-ins.

Developing an SQLJ application is a straightforward process that consists of four steps after the code is written:

1. Translation of SQLJ source files with the SQLJ translator. This generates new Java source files with calls to the SQLJ
runtime, as well as additional SOLJ profile files containing all the information about the static SQL statements that were
found in the SQLJ source.

2. Compilation of Java sources with a Java compiler.

641

Exploiting Java, Objects, & Components

3. Customization of the generated SQL profiles for improved runtime performance and vendor-specific features.
4. Running the application, using the SQLJ runtime library.

Usually, steps 1 to 3 are automatically performed by the SQLJ translator by transparently invoking a Java compiler in a
subprocess. At translation time, the static SQL statements in the program can be checked against a given database schema.
The SQLJ runtime can either use an arbitrary JDBC driver, or it can be implemented separately without any relationship to
JDBC. The Oracle SQLJ runtime uses the Oracle JDBC driver.

Java Java

source .class

file Compiler file

SQLJ

Translation

EAZ

SQLJ code

Oracle Oracle

Figure 1-1 - SQLJ development process

1.3 ADVANTAGES OF SQL]J

Assume you wanted to create Java applications that require database access. Should you consider SQLJ rather than the JDBC
API for database connectivity? The following are benefits provided by SQLJ.

1. a much more concise syntax for database access,

2. strong typing, e.g. of queries through zzerator types, and of connections through connection context types,
3. checking of syntax and semantics of all SQL statements,
4

full binary portability of SQLJ programs through multi-vendor ANSI standardization, including the SQLJ runtime;
additional uniformity is provided through the translator reference implementation,

5. plug-in architecture facilitates tool support for SQLJ. For example, both, Oracle JDeveloper and the Oracle8; JavaVM
integrate the SQLJ translator,

O. customization of the runtime profile, which describes the static SQL statements, encompasses:
* performance enhancements, e.g. through caching or pre-compilation,
* added functionality, such as the support of vendor-specific types,
* migration supportt, and
* debugging or logging functions.
7. multi-vendor standard for embedded static SQL in Java.

Even for applications that contain some dynamic SQL mixed in with static SQL statements using SQLJ may be advantageous,
since it is possible to mix-and-match SQLJ and JDBC in the same application. Specifically, connections as well as result sets
can be shared between both APIs. SQLJ and JDBC constitute complementary technologies and strengths. While SQLJ provides
more concise syntax for static SQL, it relies on the established JDBC interface for embedding dynamic SQL in Java.

It should also be noted, that the SQLJ runtime is immediately available on top of any JDBC driver. This means that SQL]J
applications can be deployed wherever JDBC is deployed, such as on a thin client, a fat client, or in the server.

1.4 SQL]J SUPPORT FOR ORACLE TYPES

SQLJ can support Oracle8 types through an Oracle-specific customization of the SQLJ runtime profile. This customization
will be automatically performed when you use the SQLJ translator that is provided with the Oracle87 database. In this process,
runtime calls to standard JDBC entry points, such as get Qbj ect () and set Cbj ect () are replaced with calls to Oracle’s
JDBC APL

641

Exploiting Java, Objects, & Components

We do expect the SQLJ specification to evolve in the future to encompass structured SQL3 types, such as those that were
introduced in JDBC 2.0, and are supported preliminarily in the Oracle87 JDBC drivers.! Currently, support for Object Types
can only be provided as a vendor-specific extension.

The Object Type support that is outlined here is based on the efficient, direct representation of the SQL data. The next
section provides a description of this representation.

2. SQL DATA TYPES AND JAVA OBJECTS

Oracle’s 8.1 JDBC driver [3] introduces a new package or acl e. sql that contains Java classes corresponding to all existing
SQL types. In addition to providing efficient low-level representation and manipulation of SQL data, all of these types also
permit full customization for user-provided Java classes. This customization mechanism is desctibed in section 3, and it also
forms the basis for reading and writing SQL Object Types as instances of Java classes.

2.1 SQL TYPES AND ORACLE.SQL CLASSES

The table below outlines the correspondence between SQL types and or acl e. sgl classes. All Java representations of SQL
data in the second column subclass the Java type or acl e. sgl . Dat um All of these classes also hold a binary representation
of the SQL data in the form of a byt e array. It is returned by the get Byt es() method.

SOL Type Java representation JDBC Typecode? Associated with SQL. Type Name
All Numeric Types oracl e. sql . NUMBER O acl eTypes. NUMBER no

CHAR, VARCHAR, oracl e. sql . CHAR O acl eTypes. CHAR no
VARCHAR2

DATE oracl e. sql . DATE O acl eTypes. DATE no

RAW oracl e. sql . RAW O acl eTypes. RAW fno

ROW D oracl e.sqgl . ROND O acl eTypes. RON D no

CLOB oracl e.sqgl . CLOB O acl eTypes. CLOB fno

BLOB oracl e. sql . BLOB O acl eTypes. BLOB no

BFI LE oracl e. sql . BFI LE O acl eTypes. BFI LE fno

Object Type oracl e. sql . STRUCT O acl eTypes. STRUCT yes

REF Type oracle.sql . REF Oracl eTypes. REF references an Object Type
Varray or Nested Table oracl e. sql . ARRAY Or acl eTypes. ARRAY yes

Table 2-1 - Representation of SQOL Data in Java

The CLOB, BLOB, and BFILE classes encapsulate locator types, and provide a stream API for accessing and manipulating
the actual data. The STRUCT, ARRAY, and REF classes cotrespond to named types, varrays/nested tables, or references to
named types, respectively - we will explain these SQL types further in section 4. The classes NUMBER, CHAR, DATE,
RAW, and ROWID provide several conversions from the SQL data to native Java types.

The Oracle JDBC driver provides additional methods, such as get NUMBER() and set NUMBER() , etc. for reading and
writing these or acl e. sql types on Oracle result sets and statements.

2.2 SQLJ SUPPORT FOR ORACLE.SQL CLASSES

SQLJ also supports all of the types in or acl e. sgl directly. Users may declare host variables of these types and use them to
materialize result set columns, to pass values in DML statements, ot in stored functions, procedures, and PL/SQL blocks.?

10racle SQLJ currently does not support the JIDBC 2.0 types. With full Oracle JIDBC 2.0/JDK 1.2 driver availability, we expect that
SQLJ support will be extended to all IDBC 2.0 SQL types, with the interfacej ava. sql . SQLDat a playing asimilar role as
oracl e. sqgl . Cust onDat umdescribed in section 3.

641

Exploiting Java, Objects, & Components

oracl e. sql . NUMBER nunber ;
oracl e. sqgl . NUMBER no = new oracl e. sql . NUMBER(7902) ;
#sql { SELECT COWM I NTO : nunmber FROM EMP WHERE EMPNO = :no };
if (nunber == null) {
System out . pri nt | n(“Commission is NULL");
}else {
System.out.printin(*“Commission is:” + number.doubleValue());

Figure 2-1 - Using oracle.sg NUMBER in SOL]

3. CusTOMIZING SQL DATA TYPES

Oracle’s SQLJ translator (as well as the Oracle 8.1 JDBC driver) support a mechanism that permits users to fully customize
the way in which an or acl e. sql datum is read from or written to the database - for more details, see also [2]. In effect,
users can provide their own customized wrappers for reading and writing SQL data. These wrappers implement the

Cust onDat uminterfaces described below.

3.1 CUSTOMDATUM INTERFACES

All data that is passed to or from the database is in form of an or acl e. sqgl . Dat um A user will be providing her own
customized Java data through implementing the Cust onmDat uminterface. In order to send a Cust onDat umto the database,
it must be convertible to an or acl e. sgl . Dat umvia a public t oDat un() method.

interface oracle.sqgl.CustomDatum

oracle.sqgl.Datum toDatum();

Figure 3-1 - oracle.sql.CustomDatum interface

Additionally, given an appropriate or acl e. sql . Dat um we need to be able to construct an instance of the uset’s
Cust onDat um This property is captured in the cr eat € method of the or acl e. sql . Cust onDat unfact ory interface.*

interface oracle.sgl.CustomDatumFactory

oracle.sql.CustomDatum create(oracle.sqgl.Datum d);

Figure 3-2 - oracle.sql.CustomDatumFactory interface

We still have to connect both of these interfaces. We do so by requiring that the uset’s implementation of the Cust onDat um
interface also provide a corresponding Cust onDat unFact or y which may be obtained by the static method:5
public static oracle.sql.CustomDatumFactory getFactory();

Most likely, wrappers implementing this interface will be used in conjunction with an or acl e. sgl . STRUCT (in the case of
Object Types), an or acl e. sql . REF (an SQL reference to an Object Type), or an or acl e. sql . ARRAY (for SQL varrays
and nested tables) - this is detailed in section 4.

However, it can occasionally be useful to provide customized wrappers for one or more of the other types as well. Such
wrappers might be used, for example

* to perform encryption and decryption of data,

2racl eTypes referstoor acl e. j dbc. dri ver. O acl eTypes. Thefirst four typecodes in the table are identical to corresponding
valuesinj ava. sql . Types. They are, respectively, Types. NUMERI C, Types. CHAR, Types. DATE, and Types. Bl NARY.

% There is one caveat: types associated with SQL names, such as STRUCT, REF, and ARRAY, represent weak types, and may not be
used as OUT or INOUT host variables in stored procedures, functions, or PL/SQL blocks.

“For pedagogical purposes we omit two minor detailsin these interfaces. Read on to discover them.

®Since interfaces cannot declare st at i ¢ methods, we could not list this requirement in the Cust onDat uminterface.

641

Exploiting Java, Objects, & Components

* to perform validation of data,
* to perform logging of values that have been read or are being written,

* to parse character columns (e.g. character fields containing URL information) into smaller components, ot to map
character strings into numeric constants,

* to perform mapping of data (e.g. a DATE field) into more desirable Java formats (e.g. j ava. uti | . Dat e),

* to serialize and deserialize Java objects into and out of RAW fields, etc.

We will expand on the last bullet and show how users can define a customization for RAW columns that provides automatic
serialization and deserialization of Java objects.

3.2 EXAMPLE: SERIALIZATION OF JAVA OBJECTS

The user’s class is called Ser i al i zabl eDat umand defined in the file Ser i al i zabl eDat um j ava. The program uses
classes from j ava. i 0,j ava. sql ,oracl e. sql ,and oracl e. j dbc. dri ver , however we do not explicitly show the
import statements here. The skeleton of this program follows the Cust onDat uminterface outlined above.

public class Serializabl eDatuminpl enments CustonDatum
Client_methods_for_constructing_and_accessing_the_Java_Olbject

public Datum t oDat um O acl eConnection c) throws SQ.Exception
{

Implementation_of t oDat um

public static CustonDatunfFactory getFactory()
{
return FACTORY,

}
private static final CustonDatunfactory FACTORY =

Implementation_of a_Cust onDat unfFact ory_for_Seri al i zabl eDat um ;

Constructing_Ser i al i zabl eDat um_froz_or acl e. sql . RAW
public static final int _SQ _TYPECODE = O acl eTypes. RAW

Figure 3-3 - Skeleton of SerializableDatum class

Here the get Fact or y method simply returns a static member that implements the Cust onDat unfact ory interface. We
also notice that the t oDat ummethod on the Cust onDat uminterface actually takes an Oracle JDBC connection as an

argument (this is necessaty to ensure proper type checking and conversion for named types at runtime) - we glossed over this
detail in Frgure 3-1.

The declaration above contains an additional field _SQL_TYPECCDE, designating the actual or acl e. sql type that we expect
to read and write. The SQLJ translator expects the typecode to be present and employs it to determine compatibility between
the user-specified Java type and the SQL type in the database. These codes (as well as additional information required in
certain cases) are also used by the JDBC runtime.

Next we provide the definitions of the client methods for creating a Ser i al i zabl eDat um populating it with a Java object,
and retrieving a Java object.

Client_methods_for_constructing_and_accessing_the_Java_Object ::=

private Object mdata;

public Serializabl eDatum) { mdata = null; }
public void setData(Cbject data){ mdata = data; }
public Object getData() { return mdata; }

641

Exploiting Java, Objects, & Components

Figure 3-4 - Client methods of SerializableDatum

The implementation of t oDat ummust return a serialized representation of the object in the m dat a field as an
oracl e. sql . RAWinstance. You will see the well-known steps required for serialization of a Java object. A RAWcan
immediately be constructed from a byt e array.

Implementation_of t oDat um::=

try {
Byt eArrayQut put Stream os = new Byt eArrayQut put Strean();

hj ect Qut put St ream oos = new (bj ect Qut put St rean(0s) ;
oos.witeCbject(mdata); oo0s.close();
return new RAW os. toByteArray());
} catch (Exception e){
t hrow new SQLException("Serializabl eDatumtoDatum "+e.toString());

Figure 3-5 - Serializing a Java object to an oracle.sql. RAW

In the opposite direction, we must program the conversion of an or acl e. sql . RAWinstance to a Java object. Now we have
to perform deserialization steps. Rather than just return an Cbj ect , we construct a new instance of Seri al i zabl eDat um
with the dat a field instantiated.

Constructing_Ser i al i zabl eDat um from_or acl e. sql . RAW::=

pri vat? Serial i zabl eDat um{ RAW raw) throws SQ.Exception {

try
| nput St ream rawSt ream = new Byt eArrayl nput St rean(raw. get Byt es());
bj ectlnputStreamis = new Obj ectl nput Strean(rawStreamn;
data = is.readObject();
is.close();

} catch (Exception e)

t hrow new SQLException("Serializabl eDatumcreate: "+e.toString());

} o}

Figure 3-6 - Constructing an instance of SerializableDatum from oracle.sql.RAW

Finally, we add the last puzzle piece to the program by providing an implementation instance of the Cust onDat unfact ory
interface. We create the implementation in form of an anonymous class.

Implementation_of a_Cust onDat unFact ory_for_Seri al i zabl eDat um:=
new Cust onmDat unfactory() {
public CustonDatum create(Datumd, int sql Code)
t hrows SQLException
if (sqgl Code != _SQ._TYPECODE)
t hrow new SQ.Exception("SerializablebDatum invalid SQ type "+sql Code);

}
return (d == null) ? null : new Serializabl eDatunm((RAW);

Figure 3-7 - Implementation of CustomDatumFactory

Note that we previously omitted the fact that Cust omDat unFact ory. cr eat e takes a second argument of type i nt with
the JDBC typecode of the or acl e. sql . Dat um We also see in this example how this code is used for type checking.

We conclude the example by demonstrating how the user-defined type can be immediately used in an SQLJ program. The
display below shows the creation of a table with a RAWcolumn. The corresponding SQLJ code fragment inserts a Java object

641

Exploiting Java, Objects, & Components

(in the particular example, an array of Cbj ect) into this table.

CREATE TABLE PERSDATA (NAME VARCHAR2(20) NOT NULL, | NFO RAW 2000));

Serial i zabl eDat um pi nfo = new Seri al i zabl eDat um() ;

pi nfo. set Dat a(new Cbj ect[] { “Some objects”, new Integer(51), new Double(1234.27) });
String pname = “MILLER”;

#sql { INSERT INTO PERSDATA VALUES(:pname, :pinfo) };

Figure 3-8 - Inserting a SerializableDatum into a table
We can also create an iterator for traversing PERSDATA that returns a Ser i al i zabl eDat umcolumn. Iterator definition
and traversal consists of the following steps.
1. Declaration of an iterator type. Here we declare Per sl t er, a named iterator type with the columns name and i nf o.
2. Definition of an iterator instance. We call it pcur in our example.

3. Assigning the result of a query to the iterator instance. Since we used a named iterator, the binding of columns will be
performed by name, and the column order in the query does not matter.

4. Traversing the rows of the query result via the next () method. The values of the columns nanme and i nf o are available
through corresponding accessor methods on the iterator pcur .

#sql iterator Perslter (SerializableDatum info, String name);

I5.erslter pcur;

#sql pcur = { SELECT * FROM PERSDATA WHERE info IS NOT NULL };
while (pcur.next())

System.out.printin(*Name:” + pcur.name() + “Info:"+ pcur.info());

Figure 3-9 - Using SerializableDatum in an iterator

From the point of view of SQLJ, a Seri al i zabl eDat ummay be used in SQLJ code, whenever the type RAW is expected
in SQL. This example also exhibits the following limitations in reading and writing Java objects. We may exceed the size of the
RAWcolumn into which we write. Moreover, Java must also serialize all objects referenced by the object contained in

Seri al i zabl eDat um m dat a. Thus, if Java objects are shared, many copies of them may actually be deserialized. Later,
when retrieving the serialized data back to Java, sharing will have been broken. In these cases it is better to model objects
directly in SQL, such as with the Oracle8 Object Types and REFs that are desctibed in the next section.

4. PUBLISHING SQL OBJECT TYPES AND COLLECTIONS TO JAVA

We briefly survey Object Types, REFs, and Collection Types in Oracle8 and examine how users may create Java wrappers for
these types. Oracle provides the JPublisher tool (similar in functionality to the Object Type Translator for C) for automating
much of the effort in creating the corresponding Java declarations for these types. We do give examples of using JPublisher,
as well as of employing the generated Java types in SQLJ programs.

4.1 OBJECT TYPES

An object type is similar to a SQL3 named row type and consists of one or more attributes that define the structure of an
object.5 Objects are useful when representing real-world entities which may have a complex set of attributes. Once an object is
created, it can be stored in or accessed from relational tables as easily as any of the basic SQL data types such as a NUMBER
or CHAR. The SQL declaration in the display below defines the Object Type PERSON. Subsequently, the constructor
PERSON is invoked on the attribute values of the type to create a new object instance of PERSON type.

CREATE TYPE PERSON AS OBJECT
(FIRSTNAME VARCHAR2(15),

®Oracle8 Object Types actually constitute an extension of SQL3 Named Row Types. They may have member methods or functions that
model the behavior of an object. Since the Java publishing mechanism currently ignores these methods, we will also not deal with them
in this paper.

641

Exploiting Java, Objects, & Components

LASTNAVE VARCHAR2(30) ,
Bl RTHDAY DATE

K
CREATE TABLE EMPS (PERS PERSON, EMPNO | NTEGER, SAL NUMBER(7, 2));

DECLARE P PERSON;

BEG N
P := PERSON('Albert’, "Einstein’, TO_DATE('14-MARCH-1879"));
INSERT INTO EMPS VALUES(P 1001, 5000.0);

END,;

Figure 4-1 Declaring and instantiating the type PERSON

4.2 PUBLISHING JAVA WRAPPERS FOR OBJECT TYPES

SQL Object Type values are materialized in Java as instances of the class or acl e. sgql . STRUCT. A STRUCT contains a field
val ues which is an array with elements of type or acl e. sql . Dat umholding the actual values of all of the attributes of the
Object Type.

Given this information, we could now go ahead and manually write a Cust onDat umwrapper for a given SQL Object Type.
However, this endeavor is better left to a tool - JPublisher. The JPublisher is given SQL Object Types and creates the source
code for a corresponding Java wrapper classes. The attributes of the SQL type can be materialized in one of two styles:

1. the default JDBC mapping from SQL types to Java types, or
2. theoracl e. sqgl representation.

We have to communicate to JPublisher the names of wrapper classes that are to be generated, as well as the SQL Object
Types from which they originate. This is accomplished via a #ypefile that is passed to JPublisher. The syntax of the entries in the
typefile is: TYPE <SQLType> AS <JavaType>. In the example we request that the wrapper class be called MyPer son.

Contents of the file types.in:
TYPE PERSON AS MyPerson

Command line invocation of | Publisher:
jpub -user=scott/tiger -typefile=types.in

Figure 4-2 - Invocation of [Publisher for the ObjectType PERSON

JPublisher will now generate two files, MyPer son. j ava with the Java wrapper for PERSON objects, and

MyPer sonRef . j ava, with the Java wrapper for (strongly typed) REFs to PERSON. Below we show the content of
MyPer son. j ava (after removing implementation details). The second file will be examined in the next section, where we
discuss REF types.

public class MyPerson implements CustomDatum

public static final String _SQL_NAME = "SCOTT.PERSON";

public static final int _SQL_TYPECODE = OracleTypes.STRUCT;
public static CustomDatumFactory getFactory() {..

public Datum toDatum(OracleConnection c) throws SQLExceptlon {...}

public String getFirstname() throws SQLException{ ... }

public void setFirstname(String first_name) throws SQLException { ... }
public String getLastname() throws SQLException{ ... }

public void setLastname(String last_name) throws SQLException{ ... }
public java.sql.Timestamp getBirthday() throws SQLException{ ... }
public void setBirthday(java.sqgl.Timestamp birthday) throws SQLException { ... }

Figure 4-3 - [Publisher-generated Java class for PERSON

Several observations are noteworthy about this code.

1. From our discussion of the Cust onmDat uminterface components, the methods get Fact ory() and creat e(), as well
as the _SQL_TYPECODE field should already be familiar. Object Type values are materialized as or acl e. sql . STRUCT
instances, and we specify the corresponding type code Or acl eTypes. STRUCT. We do encounter the additional field
_SQL_NANE containing the full SQL name of the Object Type that is encapsulated here. At SQLJ translation time, this

641

Exploiting Java, Objects, & Components

information is necessary in order to perform type checking against the database. Additionally, the SQL type name may be
requited in certain situations at runtime, such as when an OUT parameter of a stored procedute ot a PL/SQL block must
be registered with JDBC.

2. 'The attributes are represented through accessor (get ter and set ter methods). This provides for more encapsulation and
flexibility as compared to a representation via fields.

3. All accessors can raise an SQLExcept i on. This permits, for example, the Java wrapper code to flag an exception,
whenever an attempt is made to retrieve a primitive (i.e. non-object) Java type, such as i nt that was read as an SQL
NULL. For Java objects, we can always map Java nul | to SQL NULL.

4. The SQL types have been mapped to their JDBC counterparts: VARCHAR?2 is represented as St ri ng and DATE as
java. sql . Ti mest anp. This is the JDBC or Java native mapping. By providing a different value for JPublisher’s
command line option “- mappi ng”, we could have requested the Oracle native mapping, where all SQL types will be
produced as instances of corresponding or acl e. sql classes. In our example, VARCHAR?2 would be represented as
oracl e. sql . CHAR and DATE as or acl e. sql . DATE. In this representation NULL information is preserved, since all
attributes are Java objects. Furthermore, this mapping is fully information preserving, since it is based on the internal
(byte-)representation of the SQL data.

The MyPer son class has a public constructor without arguments. (Not shown here.)

Although not shown in the code fragment above, conversions from or acl e. sql types to JDBC types ate only
performed as needed. This provides a performance enhancement in many cases.

7. Users may find the different mapping styles insufficient, and might prefer to use their own customized mapping. This is
also accommodated by JPublisher with a special generation mode in the type file. For example, JPublisher can generate
one Java class for the SQL type PERSON, such as Per sonW apper , but use another Java class, say MyPer son,
wherever a PERSON occurs in other SQL types. The user then provides the customized implementation of MyPer son
by subclassing Per sonW apper .

8. Users are also able to specify customized attribute names in the type file.

It is now straightforward to use the MyPer son type in SQLJ programs. We also create the stored SQL function BDATE that
will be called by the SQLJ code.

A new SQL. function that takes a PERSON argument:
CREATE FUNCTI ON BDATE(P PERSON) RETURN DATE AS
BEG N RETURN P. Bl RTHDAY; END;

MyPer son p;

#sqgl { SELECT PERS I NTO :p FROM EMPS WHERE EMPNO = 1001 };
System out . pri ntl n(“The name is:” + p.getFirstname() + “ “ + p.getLastname());
java.sqgl.Date d;

#sql d = { VALUES(BDATE(:p)) };

System.out.printin(“The birth date returned by BDATE is:” + d);

Figure 44 - Using the MyPerson wrapper in SQLJ code

In this example we use MyPer son in a SELECT INTO clause, and as a stored function argument. Note that whenever SQLJ
performs online checking during precompilation (this is turned on by passing the “~- user ” option to the translator), it will
verify that the SQL type SCOTT.PERSON is permitted wherever we are using a MyPer son host variable in an SQL

statement.

4.3 REFs

An Oracle8 REF type is a persistent, strongly typed object reference defined in SQL. There are different kinds of REFs: those
with system-generated globally unique Ids, scoped REFs, and user-defined constructors which allow database users to supply
a primary-key instead of the ROWID into the REF structure.

Whenever JPublisher unparses an SQL Object Type and generates a Java wrapper <]JavaClass> it also automatically generates a
corresponding wrapper <JavaClass>Ref to encapsulate a strongly typed SQL REF that can reference instances of that Object
Type. In the example that we discussed previously, JPublisher created an additional file MyPer sonRef . j ava. The content of

641

Exploiting Java, Objects, & Components

this file (after removing implementation details) is shown below.

public class MyPersonRef inplements CustonDatum
{ public static final String _SQL_BASETYPE = "SCOIT. PERSON';
public static final int _SQ_TYPECODE = O acl eTypes. REF;
publ i c Datum toDat un{ Oracl eConnecti on c) throws SQLException{...}
public static CustomDatumFactory getFactory() { ... };

public MyPersonRef() { ...}
public MyPerson getValue() throws SQLException { ... }
public void setValue(MyPerson c) throws SQLException { ... }

Figure 4-5 - [Publisher-generated Java class for REF PERSON

As expected, this class implements the Cust onDat uminterface with the t oDat un() and get Fact or y() methods and the
_SQL_TYPECODE field. The type code for REFs is Or acl eTypes. REF. Instead of a _SQL_NAME field, however, we now
see a _SQL_BASETYPE field that holds the name of the Object Type that is being referenced by this REF.

Once a MyPer sonRef instance (representing a REF to PERSON) has been retrieved from an Oracle8 database, the value of
the referenced object can be obtained with the method get Val ue() . Conversely, the referenced object can be assigned a
different PERSON value with set Val ue(#ew_value) . Note that each of these calls is sent directly to the database. Thus,
oracl e. sql . REFs possess a purely value-based semantics.

Note that we cannot create REF’s to individual table columns, such as the PERS column of the EMPS table in our example
above. Thus, in the sample code below, we must first create an extent table of PERSON, before we can manipulate REFs to
PERSON in SQLJ.

SOL. code to prepare an extent table:
CREATE TABLE PERSON_EXT OF PERSON;
INSERT INTO PERSON_EXT VALUES(PERSON(Albert’, ‘Einstein’, TO_DATE('14-MARCH-1879)));

MyPersonRef pref;

#sql { SELECT REF(p) INTO :pref FROM PERSON_EXT p WHERE p.LASTNAME = ‘Einstein’ };
MyPerson p = pref.getValue();

System.out.printin(“Birthday:” + p.getBirthday());

p.setFirstname(“Hans Albert”); p.setBirthday(new java.sql.Timestamp(04, 04, 14, 0, 0, 0));
pref.setValue(p);

java.sgl.Date d;

#sql { SELECT p.BIRTHDAY INTO :d FROM PERSON_EXT p WHERE p.LASTNAME = ‘Einstein’ };
System.out.printin(“Birthday:” + d);

Figure 4-6 - Using MyPersonRef in SQLJ code

4.4 COLLECTIONS

Collections can be viewed as data types grouped in a certain way. They can be attributes of objects or elements of a relational
table.

A varray is an ordered set of zero or more elements of the same type (including a user-defined Object Type). Each element has
a position that uniquely identifies the element in the varray. A position is an integer ranging from 1 to the maximum declared
number of elements in the varray.

A nested table 1s a one-column table that can be treated as a data type (such as an object, NUMBER, or VARCHAR?2). It can
be an attribute of an object or be ‘nested’ into a column of a relational table. A nested cursor is used to iterate through the rows
of a nested table. This may be useful when it is too cumbersome to retrieve an entire nested table.

Analogously to the Object Type case, JPublisher can also create Java wrapper classes for varray and nested table types. Both
of these SQL types are represented in Java as or acl e. sql . ARRAY. The generated Cust onDat umclass contains the SQL
type name in the _SQL_NAME field. Also note that vatrrays and nested tables cannot be referenced by SQL REFs.
Consequently, JPublisher will not generate any REF wrappers for these types.

641

Exploiting Java, Objects, & Components

As mentioned previously, Java wrapper classes may be used in SQLJ statements wherever the corresponding SQL types occur
in SQL. For brevity, we omit the SQLJ code examples for varrays and nested classes here

Nested cursors do not constitute SQL data. Rather, they represent result sets. They can be materialized in SQLJ either as a
JDBC result set, or in a structured manner as named or positioned SQLJ iterator instances

5. CONCLUSION

This paper charts a gateway between SQL and Java objects. It introduces an efficient SQL data representation in Java with the
oracl e. sql package. The Cust onDat uminterface mechanism maps SQL data to user-defined Java types. We illustrate the
usefulness of Cust onDat umthrough an example where Ser i al i zabl e Java objects are stored in RAW database columns.
We also show that the same mechanism is used for mapping SQL object types, REFs, and varray/nested table types to Java.
Finally, we examine how the JPublisher tool generates Java wrappers for SQL types, and how these types are subsequently
used in SQLJ programs.

SQLJ offers several advantages over JDBC. It provides much more concise syntax for embedding static SQL in Java. More
importantly, it offers ahead-of-time checking of SQL syntax and semantics at translation time, rather than runtime. Type
checking between SQL types and Java types is performed with an online database connection and is particularly useful when
programming with structured SQL types, REFs, and varrays/nested tables. The Cust onDat ummechanism for mapping SQL
data to Java provides the necessary support for static type checking.

Additionally, all user-defined Java types that wrap SQL types can be used transparently in SQLJ programs, as if they were
“built-in” JDBC types. Contrast this with corresponding Oracle JDBC programs, where users may have to use Oracle specific
methods as well as providing casts from JDBC result sets and statements to their Oracle-specific implementations. All this is
encapsulated in the SQL runtime provided with Oracle.

Note that you need not choose between either SQLJ or JDBC. You can use both of these fully complementary and
interoperable APIs together. Their basic, efficient SQL data representation is the same. Their mechanism for mapping SQL
data to user-defined Java types for Object Types, REFs, varrays/nested tables, and other SQL types is the same. The
JPublisher tool is equally useful for SQLJ and JDBC programmers. Thus, user-defined data representations can be used with
both, dynamic SQL statements in JDBC as well as with static statements in SQLJ.

Oracle8: connects Java and SQL programming in an unprecedented way. You are welcomed to travel the exciting Object road
mapped out here between these two languages.

ACKNOWLEDGMENTS

This paper is based on the work of the SQL]J and JDBC teams at Oracle. I would like to thank Julie Basu, Brian Becker,
Ragamayi Bhyravabhotla, Rakesh Dhoopar, Pierre Dufour, Salman Khan, Prabha Krishna, Thomas Kurian, Alan P. Thiesen,
Jerry Schwarz, and Brian Wright for their contributions and comments.

REFERENCES

[1] An Overview of SOLJ: Embedded SQOL. in Java, Julie Basu. Oracle Open World 1998.

[2] Developing Java Applications with Oracle Objects, Prabha Krishna. Oracle Open World 1998.
[3] Oracle8: SQLJ, JDBC, and JPublisher user documentation. Oracle Corporation, 1998.

641

