SQLJ: Tricks, Tips, and Gems

SQLJ: TRICKS, TRAPS, AND GEMS
AN IRREVERENT, INDISPENSABLE, AND INTERACTIVE PRIMER ON ORACLE SQL]J

Ekkebard Robwedder, Oracle Corporation

WHO 1S THIS FOR? You know SQL and Java, and you want to learn Oracle SQL] — read on!

WHAT IS THIS? This is a primer —a small introductory pamphlet— on Oracle’s version of SQLJ. If you use paint primer, you
cover the entire area, although the primer might not cover everything in the required depth or finish. You also use primer to
ignite an explosive charge. We hope you will find this primer wide-ranging, brief, indispensable, and lighthearted — in other
wotds: a blast.

WHAT ELSE DO I GET? A truckload of warnings, references, and exercises.

e Throughout this primer you will find dire warnings.

Warning: Even if you do not read anything else, read (and heed) these warnings! You will be glad you did and will
save yourself time and frustration.

* You will also find a number of references to the real documentation, as well as to the demo programs. Follow these if you
are stuck, if you need more information, or if you want to learn the truth. Also make sure you peruse the other available
SQLJ information.

Ref SOLJ Developer’s Guide and Reference, Part No. A64684-02

Ref SQLJ Demo Programs at [Oracle Home|/ sql j / deno/

Ref [DBC Developer’s Guide and Reference, Part No. A64685-02

Ref JPublisher Developer’s Guide and Reference, Part No. A68027-02

Ref SQLJ Whitepaper “An Overview of SQLJ - Embedded SQL in Java”, at [Oracle Homel]/ sql j / doc/ sql j - over vi ew. pdf
Ref SQLJ Whitepaper “Using Oracle Objects in SQLJ Programs™, at [Oracle Home)/ sql j / doc/ sql j - obj ect s. pdf

Ref SQLJ Runtime Documentation, at [Oracle Homel/ sql j / doc/ runti me/ j avadoc/ packages. ht mi

Ref Oracle SQLJ Website, at ht t p: / / www. or acl e. com j ava/ sql j/

Ref Oracle Technology Network Website, atht t p: // t echnet . oracl e. com -> java -> sqlj & dbc

* Finally, you will discover lots of exervises throughout. The number of stars indicate the difficulty of the exercise — easy (¥),
medium (**), and hard (***). If you are a learning-by-doing kind of guy (or gal), then just pick up some of the problems
and have fun. At this point, there are no sample solutions to the exercises. You might want to check the preceding web

site or —better yet— send in your solutions.

Exercise 1: (*) Why are the exercises given in small print? Answer: Just as in life, it’s the small print that counts.

e This primer specifically addresses the command line version of SQLJ. Not everything covered here is equally applicable to the
Oracle JDeveloper development environment or to the SQLJ translator that is part of the JServer VM.

INSTALLING SQL]J

Install the Java Development Kit 1.1 or later (you can get it from www. sun. com. Note that JDK 1.0.2 will not do. Make sure
that the current directory “.” is in your CLASSPATH. You should now be able to say j ava and j avac.

Get an Oracle JDBC driver (unless you already have one installed). It contains the file cl asses111. zi p (and

cl asses12. zi p if you are using JDK 1.2), which must be placed in your CLASSPATH. Depending on the type of driver you
use, you might also need a dynamic library (*.s0 or *.dI I) in your LD_LI BRARY_PATH or, respectively, PATH. Follow the
JDBC installation instructions for this. You should now be able to compile and run JDBC programs.

Ref See also [DBC Developer’s Guide and Reference, Chapter 2, Section “Verifying a JDBC Client Installation”.

If you obtained Oracle SQLJ from an Oracle8/ or later database installation, then you have an [Oracle Home|. The SQL]J
executable (named sql j orsql j . exe depending on your flavor of operating system) lives in [Oracle Home]/ bi n, which
will be in your PATH. You must also put [Oracle Home|/ sql j /| i b/ transl at or. zi p —which contains the SQL]J
translator— in your CLASSPATH.

Page 1

SQLJ: Tricks, Tips, and Gems

If you obtained Oracle SQLJ from the Oracle website, you must perform a bunch of untarring and (g-)unzipping, and you will
eventually end up with a sql j directory. The executable lives in sql j / bi n and must be in your PATH, and the
sqlj/lib/translator. zip file must be in your CLASSPATH.

Are you greeted with a help screen when you say sl j ? Yes? Then you are in business!

Warning: Make sure that you have a JDK and the Oracle JDBC drivers propetly installed before starting the SQLJ
installation. Also, if you have several versions of Java or Java Development Environments installed, we recommend
that you “build” up your PATH and your CLASSPATH environment from scratch to make sure to properly pick
up a known Java and JDBC configuration. On NT, consider creating a .bat file that you can use in a DOS window
to provide the appropriate setup.

Warning: If you are using SQLJ version 8.1.5 on N'T, you must set SQLJ_OPTI ONS=- passes.

Ref For more details, see SOLJ Developer’s Guide and Reference, Chapter 2, Sections “Checking the Installation and Configuration” and “Testing the Setup”.
While we mention only the t r ansl at or . zi p file in this discussion, you should distribute ther unt i me. zi p file (not t r ansl at or . zi p)
with any SQLJ applications that you create.

WHAT’S IN A NUMBER?

This primer describes the Oracle SQLJ 8.1.6 release. Applications that you created with the Oracle SQLJ 8.1.5 translator will
continue to run with the 8.1.6 runtime, or you can recompile them to take advantage of new features, such as statement
caching (see Section “5.8 Give Me Speed ... or More Speed”). Although you would typically use the 8.1.6 version of SQLJ
with Oracle’s 8.1.6 JDBC driver, you can also use it together with the 8.0.6 or 7.3.4 JDBC versions.

The following features are new in version 8.1.6: the - checksour ce flag (see Section “1.1 I Need To Tell You”), the method
Oracle. close() (seeSection “1.4 Getting Connected”), support for JDBC 2.0 types and interfaces

(java. sql . Struct /Ref /Array/Bl ob/ C ob and Sql Dat a - see Sections “3.3 She Is An Oracle Type” and “5.5 Let’s
Get Objective”), the - j dbl i nemap and - P- CshowThr eads options (see Section “4.2 Where Is The Bug”), the offline SQL
parser (see Section “5.7 Isn’t It — Portable”), performance enhancements (see Section “5.8 Give Me Speed ... or More
Speed”), and support for iterator subclassing (see Section “5.9 Classy Kinds of Iterators”).

CONTENTS
SECTION 1 SKELETON OF A SOLJ PROGRAM: SQLJ command line / Online checking of SQLJ programs / SQLExceptions in
SQLJ / Connecting to the database at runtime / Starting a TCP/IP listener on Unix

SECTION 2 THE MEAT OF A SOLJ PROGRAM: SQL statements in SQLJ / Host expressions / Stored function calls / Stored
Procedure calls and argument modes / SQLJ iterator concept / Named iterators / Positional iterators

SECTION 3 A UNIVERSE OF TYPES: SOME SOL, SOME [A17A: JDBC types and NULL handling in SQLJ / SQLJ Stream types
/ Oracle type extensions

SECTION 4 YOUR OWN PRIVATE TRANSLATOR: Helpful SQLJ options / Debugging options: - | i nermap and - P- debug /
Programming SQLJ applets

SECTION 5 THE REST OF THE STORY — ADVANCING THE FEATURES: SQLJ-JDBC interoperability / Using connection
context instances / Using execution contexts / Using typed connections / Using Oracle Objects / SQLJ in JSetver /
Portability / Petformance / Iterator Subclassing

FEEDBACK AND ACKNOWLEDGEMENTS

Oracle SQLJ is supported through Oracle’s World Wide Support. Call 911 in the Bug Database to reach SQLJ — yes, the
product number is 911! Please direct other questions, corrections, praise, scathing critique, postcards, solutions to exercises,
suggestions, encouragement, and so on to the author of this pamphlet at er ohwedd@is. or acl e. com

Thank you Brian Becker, Brian Wright, and Ellen Barnes for comments on an earlier draft! Thanks Adrian, Pierre, and Jeremy
for the encouragement!

Page 2

SQLJ: Tricks, Tips, and Gems

1 SKELETON OF A SQLJ PROGRAM

SOLJ COMMAND LINE / ONLINE CHECKING OF SQLJ PROGRAMS / SQLIEXCEPTIONS IN SQLJ / CONNECTING TO THE
DATABASE AT RUNTIME / STARTING A TCP/IP LISTENER ON UNIX

In this section we look at the essential components that every SQLJ program needs — in other words, the skeleton. Before
getting the skeleton out of the closet, some preliminary remarks.

11 INEED TO TELL YOU

Let’s start out by looking at how you translate, compile, and run your SQLJ program. Make sure that it lives in a file with the
extension *.sql j (instead of *.j ava). Then translate and compile your files in one step.

sqlj MyFile.sqlj MyOQherFile.sqlj MyJavaFile.java
Yes, this even compiles your Java files in the same fell swoop. This should —if everything goes all right— create *.cl ass files
(and some *.ser files), and you can then issue

java MyFile
provided, of course, that MyFi | € has a method
public static void main(String[] args) { ... }

Even though you are familiar with .cl ass files —the result of Java compilation— you will be curious about these .ser files
that the SQLJ translator produces. We also call them (serzalized) profiles. They are serialized Java objects that contain all the
information about the static SQL statements in your .Sl j source files, such as the SQL code, the types and names of the
host vatiables that occut in the SQL statement, and what kind of SQL statement this is (a commit/rollback, a query, a DML
statement, and so on).

Warning: Make sure that all the Java classes referenced by your program are either passed as a .Sql j or .j ava source file on
the SQLJ command line or can be accessed through your CLASSPATH.

Ref When you invoke SQl j , a number of things go on “under the covers”. To get the full story, see SOLJ Developer’s Guide and Reference, Chapter 1,
Section “Basic Translation Steps and Runtime Processing”, and Chapter 9, Section “Internal Translator Options”.
Ref To learn more about profiles, see SOLJ Developer’s Guide and Reference, Chapter 10, Section “More About Profiles”.

Exercise 1: (**) What problem arises (and under what circumstances) when the preceding Warning is not followed? What difference in behavior do you
notice when you give the option - checksour ce=f al se (Note: This option sets the same behavior that SQLJ version 8.1.5 has.)

1.2 WANT T0 CHECK IT OUT? - GET ONLINE!

Without a database, the SQLJ translator can perform only offline checking of your SQL code. If you want to get your database
involved, that is, you want SQLJ to perform online checking, then you must tell the translator how to connect to it. Specifically,
you must supply a user name (corresponding to the database schema you want to connect to) and a password.

sqlj -user=scott/tiger MyFile.sqlj
Of course, you also want to be able to say which database you’d like to talk to and how — that is, with which protocol.
Because SQLJ uses JDBC underneath, this is accomplished by a JDBC URL. By default, SQL]J uses the OCI8 JDBC URL.
This is the string "j dbc: oracl e: oci 8: @ - see Section “1.4 Getting Connected”. However, you can also specify your
own URL. For example, you can request the Oracle OCI7 driver (if available) as follows.

sqlj -user=scott/tiger@dbc:oracle:oci7:@ MFile.sqlj
And there is a special shorthand notation if you use Oracle’s thin JDBC driver.

sqlj -user=scott/tiger@ry_host:1521:ny_oracle_sid MFile.sqlj
Finally, you can use “shorthand” on the command line and write - U instead of - user =, as follows.

sqlj -u scott/tiger MyFile.sqlj

Warning: The translator will try to check your SQLJ programs against the database if, and only if, you specify the - user
option (ot - U shorthand).

Ref The - user and - U flags are two of the 46 or so option flags that SQLJ accepts. To see a synopsis of all options, referzo SOLJ Developer’s Guide
and Reference, Chapter 8, Table 8-1 “SQLJ Translator Options”. Ot issueSql j - hel p to get an introduction to the most important ones. See
also Section “4.1 The Translator Is Talking Back™.

Once you have gained some familiarity with SQLJ, you might want to try the exercises below to learn more about how the
SQLJ translator reports etrors, both offline and online (see also SOLJ Developer’s Guide and Reference, Chapter 9, Section
“Internal Translator Operations” for more details).

Page 3

SQLJ: Tricks, Tips, and Gems

Exercise 1: (*) When run offline, SQLJ checks the legality of Java types used in SQL statements, and some (rather supetficial) syntax. Show some errors
caught by the translator offline.

Exercise 2: (*) When run online, SQLJ additionally checks the shape of SELECTS, type compatibility between SQL and Java, and asks the database to
parse SQL DML statements. Show some errors caught by the translator online, but not offline.

Exercise 3: (*) Show some errors caught only at runtime, but not at translation time.

Exercise 4: (*) In the examples above, the password was given on the command line. Usually, you want to avoid doing this.
(a) What happens if you omit the password in the - US€I option?
(b) You can use the Sql j . properti es file for storing command line options used for Sl j invocation. Investigate the format of this
file, and store the password information in it. What happens if an option is given in both the command line and thesql j . properti es
filer

1.3 ERRORS WANT T0 BE CAUGHT

One of the first lines in your SQLJ program will be
i mport java.sql.SQLExcepti on;
Whenever something goes wrong while running your SQLJ program, your SQLJ statements and any methods in the SQLJ
runtime API throw a SQLExcept i on. Either declare that your program throws a SQLExcept i on, or put
try { ... } catch (SQ.Exception exn) { ... }
blocks in your program.
Ref For more details on SQLEXCcept i ons in SQLJ, see SOLJ Developer’s Guide and Reference, Chapter 4, Section “Exception-Handling Basics”.

Exercise 1: (*) Create the following filet est . sql j :
public class test {
public static void main(String[] args) {
#sqgl { ROLLBACK };
b}

What do you see when you run sql j test. sql j ? Why? How can you fix this? After fixing and translating, runj ava t est. What
happens? Why? Now read Section “1.4 Getting Connected” and fix this problem.

Exercise 2: (**¥) A SQLEXcept i on can originate from the database, from JDBC, ot from SQLJ itself. Can you write a SQLJ program that creates all
three kinds of errors at runtimer? Hznz: you might want to translate this program offline, and you also want to read up on SQLJ-JDBC
interoperability — see Section “5.1 A Dynamic Program”.

1.4 GETTING CONNECTED

What good is a SQL program without a database connection? Another important import line is the following.

i mport oracle.sqlj.runtinme. Oacle;
The first thing you must do before executing a SQLJ statement is to connect to the database. (Note: Not true in the server —
the stored procedure or function that is implemented by a SQLJ method runs in a database session that already has a
connection going for itl)

O acl e. connect ("j dbc: oracl e:oci 8: @, "scott", "tiger");
Your user name —equivalent to the database schema you are connecting to—is " scot t " and your password "t i ger" . The
first argument to connect () is the JDBC URL. If you want to connect to a different database, just place the database alias
from your SORACLE_HOME/ wor k/ t nsnarres. or a after the “@. The following are connect strings for Oracle JDBC.

jdbc:oracle:oci 7: @ For an OCI7 connection
jdbc:oracl e:oci 8: @ For an OCI8 connection
j dbc: or acl e: t hi n: @ostname: port: oracle-sid For a thin JDBC connection
j dbc:oracl e: kprb For the session in the setvet.

Table 1 - List of Oracle [DBC URLL.

The following is a sample thin JDBC URL: "j dbc: or acl e: t hi n: @ ocal host: 1521: orcl "

The connect () method also has a twin: Or acl e. cl ose() — always invoke this method to close your connection!

Ref Refer to the JDBC documentation for specifics — [DBC Developer’s Guide and Reference, Chapter 3, “First Steps in JDBC”.

Ref There are many more ways to establish a connection in SQLJ than the particular Or acl e. connect () method shown here. For more
information, refer to SOLJ Developer’s Guide and Reference, Chapter 4, Section “Connection Considerations” and —for advanced users— Chapter 7,
Section “Connection Contexts”.

Page 4

SQLJ: Tricks, Tips, and Gems

Warning: The Or acl e. connect () method sets the single, static connection for your program. If your program uses
multiple connections, or you program an applet or a multithreaded application, you must use explicit connections,
which are explained in Section “5.2 Being Well Connected — Explicitly”.

Warning: Or acl e. connect () has —by default— auto-commit turned off. You must issue a SQL COMMIT statement to
make any changes permanent. The JDBC connection mechanism Dr i ver Manager . get Connecti on() turns
—by default— auto-commit on.

Exercise 1: (*) Try to connect with the following JDBC URLs and obsetve what happens. Explain.
j dbc: notoracl e: oci 8: @
jdbc:oracle:oci:@

Exercise 2: (*) What happens when you connect a second time using the Or acl e. connect () method? Is a new connection established, or do you

continue to be connected with the original connection? Write 2Sql j program to find out!

Exercise 3: (*) Look at the SQLJ demos in [Oracle Homel]/ sql j / denp/ . Instead of hard-coding connection parameters in the SQLJ program, these
are loaded from a connect . properti es file. Rewrite your examples to use this feature.

Exercise 4: (***) You can use the same Or acl e. connect () and O acl e. cl 0se() code both, on the client and in the JServer VM. Explain how
this is possible.

1.5 IS ANYBODY LISTENING?

If you want to connect to your database with the thin JDBC dtiver, then your database listener must listen on a TCP/IP port.
If you belong to the GUI-challenged group of Unix users, you can achieve this by editing your
$ORACLE_HOVE/ wor k/ | i st ener . or a file, adding an additional line to:
LI STENER = (ADDRESS LI ST=
(ADDRESS=(PROTCCOL=i pc) (KEY=oracle-sid)))
as follows:
LI STENER = (ADDRESS LI ST=
(ADDRESS=(PROTOCOL=i pc) (KEY=oracle-sid))
(ADDRESS=(PROTOCOL=t cp) (HOST=hostname) (PORT=por?)))
Now you must stop and then re-start your listener to pick up the new settings:
I snrctl stop; Isnrctl start

Exercise 1: (*) Get your database listener to listen to a TCP/IP port. Write a SQLJ program that connects to this port using the thin dtiver and run it.
What error is reported if there is no listener on the specified TCP/IP port?

Page 5

SQLJ: Tricks, Tips, and Gems

2 THE MEAT OF A SQL]J PROGRAM

SQL STATEMENTS IN SQL] / HOST EXPRESSIONS / STORED FUNCTION CALLS / STORED PROCEDURE CALLS AND
ARGUMENT MODES / S 'OL] ITERATOR CONCEPT / NAMED ITERATORS / POSITIONAL ITERATORS

When you want to embed SQL in Java, you will inevitably use SQLJ stazements and —in most cases— SQLJ éterators. This
chapter explains the basic concepts of both.

2.1 SQLJ 1s EMBEDDED SQL

So how do we issue “COMMIT” to get the changes in our transaction committed, or —for that matter— how do we write
other SQL statements? It's straightforward.

#sql { UPDATE enp SET sal = 3000 WHERE enane = 'SCOTT };

#sql { COWM T };
You can put any SQL statement (including DDL, DML, PL/SQL declarations and blocks) between the cutly braces, and it
will get sent to the database as is - SQL comments and all!

e

Warning: Every SQLJ statement must be terminated with a semicolon

Ref See also SOLJ Developer’s Guide and Reference, Chapter 3, Section “Overview of SQLJ Executable Statements”.

@ >

Exercise 1: (*) What happens if you omit the semicolon *; ” at the end of the SQL]J statement (after the closing curly brace)?

@ >

What happens if you put a semicolon *; ” at the end of the SQL statement (just before the closing cutly brace)?
Exercise 2: (**) Write a DDL statement, a DML statement, a PL/SQL block, and a PL/SQL declaration in SQLJ. Sprinkle some SQL comments in.

2.2 COOLER THAN HOST VARIABLES: HOST EXPRESSIONS

SQL statements that cannot retrieve values from or send values to the database are not tetribly programmable. That's where
host variables come in. They are Java vatiables prefixed with “: ”, placed inside the SQL statement, that can retrieve and/ot
send data values.

String nane
Doubl e rai se
Doubl e sal ary;

" SCOrT";
new Doubl e(1. 08) ;

#sql { UPDATE enp SET sal = sal * :raise WHERE enane = :nane };
#sql { SELECT sal INTO :salary FROM enp WHERE enane = :nane };

But SQLJ is more flexible than that — you can use Java expressions instead of host variables. Just make sure that the host
expression is enclosed between “: (” and ©) 7.

String[] enps = new String|

] { "Scott", "MIler", "King" };
doubl e[] rai ses = new doubl e[]

tt", [ler",
{ 8.0, 4.0, 0.0 };

for (int i=0; i<enps.length; i++)
#sql { UPDATE enp SET sal = sal * : (1.0 + raises[i] / 100.0)
VWHERE enanme = : (enps[i].toUpperCase()) };

int j=0; double[] s = new doubl e[enps.|ength];
whil e (j<enps.|ength)
#sqgl { SELECT sal INTO :(s[j]) FROM enp
WHERE enane = :(enps[] ++].toUpperCase()) }; }

Warning: All host expressions are evaluated once, and only once, from left to right (including side-effects) before any values
are sent to the database.

Ref See also SQLJ Developer’s Guide and Reference, Chapter 3, Section “Evaluation of Java Expressions at Runtime”.
Ref An application with host expressions is [Oracle Home}/ sql j / deno/ Expr Deno. sql j .

Exercise 1: (*) You can use host expressions where values are expected. Write a SQLJ statement with a host expression in an illegal place. Translate and
run it. What happens?

Exercise 2: (*) A host expression in an INTO list must be able to receive a data value. Write a host expression that is not legal in an INTO list. What
happens when you compile and run your program?

Exercise 3: (**) Come up with more SQLJ statements that demonstrate that SQLJ evaluates host expressions from left to right.

Exercise 4: (*) Show that you can use SQL comments in SQL text (between { and }), and that you can use Java comments inside of Java host
expressions in SQLJ statements.

Page 6

SQLJ: Tricks, Tips, and Gems

2.3 LET'S GET RESULTS — FUNCTIONS FIRST

We already saw how results can be received from a SQL statement when we used the SELECT-INTO statement. More often,
results from a SQL opetation are received by a SQLJ assignment statement. Let's look at a call to the (built-in) SQL function
SYSDATE().

j ava. sql . Dat e t oday;
#sql today = { VALUES(SYSDATE()) };
System out. println("The database thi nks t hat today is "+today);

The VALUES(...) syntax is SQLJ-specific syntax for calling a stored function. Such functions might also take arguments,
such as in the following code snippet.

String inl0Days;
#sql inl0Days = { VALUES(DELTA DATE(:today, 10)) };

Note that we can receive a SQL DATE value in different formats in Java — in our examples, as aj ava. sql . Dat e and as a
java.lang. String.

Exercise 1: (**) Write the PL/SQL function DELTA_DATE that takes a DATE and an INTEGER and returns a new DATE that is INTEGER many
days in the future. Now run the SQLJ program above.
Can you create the PL/SQL function in the SQLJ program itself?

2.4 ARE WE OUT-MODED YET? — GETTING INTO PROCEDURES
In our discussion above, we glossed over the fact that host variables (host expressions) are used in different modes.
* IN - The value of the expression is sent to the database.

* OUT - The expression denotes a location and receives a value from the database.

e INOUT - All of the above.

By default, host-expressions have the mode IN, with the exception of host-expressions in INTO-lists, which have the mode
OUT. In all other cases, you have to explicitly prefix the host expression with the mode. For example:

int x;
int y = 10;
#sql { BEAN:QUT x :=:y + :y; END};

Oooops. There is one more exception (but this is the last one, I promise): in the SE'T statement, which is part of the SQL]J
language, the left-hand side of the assignment is implicitly OUT. Thus the following is functionally identical to our BEGIN ...
END block above.

#sql { SET :x = :y + :y };
Stored Procedures (and Oracle Stored Functions) can have parameters with all three modes. The SQLJ syntax for calling
stored procedures is illustrated in the following code fragment.

int x = 10;
int vy;
int z = 20;

#sql { CALL MyProc(:x, :QUT vy, :INOUT z) };

Warning: You must add OUT or INOUT modes to all host expressions in stored function and procedure arguments that do
not have the mode IN. Otherwise, you will not see any values returned from the database in these positions.

Warning: You must add OUT or INOUT modes to all host expressions in PL/SQL blocks that do not have the mode IN.
Otherwise, you will not see any values returned from the database from the PL/SQL block.

Ref See also SQLJ Developer’s Guide and Reference, Chapter 3, Section “Stored Procedure and Function Calls”. The SET statement is described in the same
chapter in the Section “Assignment Statement (SET)”.

Exercise 1: (*) Write a stored procedure MyProc. Call it using the SQLJ program fragment above.

Exercise 2: (**) Write a stored function MyFunc that takes all three kinds of arguments, as well. Show that the assignment of the result takes place after
the assignments of the out parameters. Show that out parameters are a%slgned from left to right.

#sqgl ... = { VALUES(MyFunc(:..., :QUT ..., :INQUT .) };

Exercise 3: Show that all Java host expressions (including OUT or INOUT expressions that evaluate to assignable locations — so called “lvalues”) are
evaluated before the SQL statement is executed.

Exercise 4: (*) Omit the OUT and INOUT markers in your program. What happens? How can you catch this problem at translation time, rather than
when you run your program?

Page 7

SQLJ: Tricks, Tips, and Gems

Exercise 5: (**) Now write a PL/SQL block that takes IN, as well as OUT or INOUT arguments. Omit the OUT and INOUT markers in your program.
What happens? Can you catch this problem at translation time, rather than when you run your program? Remember that PL/SQL blocks
have one of the following forms.

#sql { BEG N ... PL/SQL statements... END };
#sql { DECLARE ... PL/SQL declarations... BEG N ... PL/SQL statements... END };

Exercise 6: (**) What are the advantages to require that the modes of host variables must be specified syntactically in the SQLJ language? Hinz: how
could SQLJ determine the modes if they are not known? What consequence does this have for translating SQL]J programs?

2.5 LOOK MA: RESULT SETS ARE TYPED ... AND ARE CALLED ITERATORS!

When you execute a query in JDBC, it will return a j ava. sql . Resul t Set . You then retrieve the rows in the result set
through a processing loop. The next () method on the Resul t Set returns t r ue if another row is available. In this case, the
row is retrieved, and the individual columns can be accessed through get XxXX(colunn_number) calls, where XXXX represents
the Java type, with which you want to retrieve the column, such as Stri ng, I nt (fori nt), Doubl e (for doubl e), ...

SQLJ does not have the “amorphous” result sets of JDBC. SQLJ query results are always strongly typed — each column in
the result has a particular Java type. To differentiate these “typed result sets” from the JDBC notion of Resul t Set and from
the SQL notion of cursor, we call them #zerators. SQLJ provides two flavors of iterators.

* Positional iterators are the “plain vanilla” variety. They are characterized by the Java types of the columns. You use a
FETCH statement to retrieve the columns of a row from an iterator. This will look familiar, if you are used to other
languages with embedded SQL.

* The named iterators have the “mocha flavor”. You specify both the column types in Java, as well as the column name. This
name also serves as the name of the accessor function, with which you retrieve the column value. This kind of iterator is
most “Javazsh”, and JDBC programmers will immediately feel familiar with it.

Enough talk — you want to see code? Hold on!
2.6 WHAT'S IN A NAME?

So, how do you get your iterator with all of these names and types? You declare it, of course!

#sql iterator Nanedlter (String enane, Double sal);
This line creates a Java class declaration for the Named| t er class — right where you wrote it. This class has next () and
cl ose() methods — just like the j ava. sql . Resul t Set . Instead of the get XxXX(column_name) accessors, however, your
Naredl t er class sports two fully customized, tailor-made, individualized accessor methods known as St ri ng ename()
and Doubl e sal (). A minor detail: you will have most success with this declaration if you put it where Java class
declarations are permitted.

Let’s declare ourselves a Nanedl t er .
Nanedl ter n;
And —better yet— populate it with the result from a query.
#sql n = { SELECT enane, sal FROM enp };
How do you use this iterator? Whaddayaknow, I told you all about these methods that you find in Narred| t er .

while (n.next()) {
Systemout. println(n.ename()+" would like to make "+ (n.sal ()*2));

n.cl ose();
Open questions. You should now have a gazillion questions about named iterators, such as: Where do you declare an iterator
typer Does the order in the SELECT list matter? How do you match SQL and Java names? What about case sensitive and
case insensitive names? Can you say “SELECT * FROM EMP”? and so on. Not to worry — you will discover the answers to
all these questions from the exercises below!

Warning: If you want to declare an iterator locally (as an inner class), we recommend that you declare it as follows.
#sqgl public static iterator IteratorName(...);

Warning: You must always close() your iterators once you are done using them, or you will run out of cursors to connect
to the database with. This is even more important if your Java code runs in the server: Mercilessly, the JavaVM in
the JServer (unlike on the client) will not reclaim and close open cursors when your stored program terminates.

Page 8

SQLJ: Tricks, Tips, and Gems

Ref SQOLJ Developer’s Guide and Reference, Chapter 3, Section “Multi-Row Query Results— SQLJ Iterators” and Section “Overview of SQL]J Declarations”
describe iterators.
Ref The demo [Oracle Home]/ sql j / deno/ Nanedl t er. sql j contains named iterators.

Exercise 1:

Exercise 2:

Exercise 3:

Exercise 4:

Exercise 5:

(**) Where do you declare an iterator typerActually, you can declare an iterator type (or, equivalently, an iterator class) wherever you can
declate a Java class.
(a) Show that you can declare iterators in different locations (top-level, nested, and so on).
(b) Show that you can use modifiers (for example publ i ¢, st ati c, ...) on iterator declarations, the same way you use them in class
declarations.
(c) You want to declare an iterator as:
#sql public iterator PubEnp(String enane);

Whete do you have to place this iterator declaration? Why?
(d) Why did we give the recommendation to declare nested iterator classes as publ i ¢ st at i c? What happens if you omit St at i ¢?
What happens if you omit publ i ¢? What if you tty to return this iterator as a column of another iterator ot as a parameter of a stored
procedure or function?

(*) Does the order in the SELECT list matter? Write a SQLJ program using the example above, and run it. Now reverse the order of the
columns. Which behavior do you expect? Run the modified program and test your hypothesis.

(*) Can you use the query SELECT * FROM EMP? Change the example to use this form of SELECT. What behavior do you expect? Run
the program and verify your guess.
Is it a good idea to use a wildcard in SELECT statements in a SQLJ program? If yes, why? If no, why not?

(*) How do you match SQL and Java names? They always match in a case insensitive manner!
(a) Show that the case does not matter by changing the case of the column names in the iterator declaration.
(b) How can you populate 2 Nanmedl t er variable from a query, such as:
SELECT *BILL, 5000.0 FROM dual

(Hint: change the query, use aliases)
(c) Show that the case does not matter, by changing the case of the column names in the SELECT statement. Also show that this is the case
with case-sensitive column names.
(d) Which restrictions do you expect on column names in iterator declarations themselves? Show that SQLJ issues an error when these
restrictions are violated.
(e) Which restrictions do you expect on column names in SELECT statements? When can SQLJ check these restrictions? Show that SQLJ
can issue an error when these restrictions ate violated.

(***) Tt is rather peculiar that SQLJ always separates the declaration and the population of the iterator object.
Nanedl ter n;
#sql n = { SELECT enane, sal FROM enp };
Perhaps, one might prefer to combine declaration and population in a single statement, such as:
#sql Nanedlter n = { SELECT enane, sal FROM enp };
Considering that a SQLJ statement expands into a block of statements, why does SQLJ not support this syntax — what disadvantages would
this syntax haver

2.7 GET INTO POSITION!

Declarations for positional iterators are even easier than those for named iterators.

#sql iterator Poslter (String, Double);
In the processing loop for the positional iterator, you issue FETCH statements to retrieve the next row of data into host
variables. After a FETCH, the endFet ch() call returns t r ue if the FETCH was successful, and f al se if there was no row
left that could be fetched. Positional iterators require neither the next () method nor the accessors that we encountered on
the SQLJ named iterator. All of this is best demonstrated by rewriting our earlier example to now use a positional iterator.

String name
Doubl e sal ary

nul | ;
nul | ;

Poslter p;
#sql p = { SELECT enane, sal FROM enp };

while (true) {

}
p.

#sql { FETCH :p INTO : nane, :salary };
if (p.endFetch()) break;
Systemout.println(nane + " would like to nake " + (salary * 2));

close();

Warning:

Even though it might look unusual, you should always employ the following template when using positional
iterators.

Page 9

SQLJ: Tricks, Tips, and Gems

while (true) {

#sql { FETCH :p };
if (p.endFetch()) break;
..... process fetched data......

Otherwise, many different things can (and wil)) go wrong]

Warning: You must always cl 0se() your iterators once you are done using them, or you will run out of cursors to connect
to the database with. This is particularly important in the JServer environment.

Ref SQOLJ Developer’s Guide and Reference, Chapter 3, Section “Multi-Row Query Results—SQLJ Iterators” and Section “Overview of SQLJ Declarations”
describe iterators.
Ref The demo [Oracle Home]/ sql j / denp/ Posl ter. sql j contains positional iterators.
Exercise 1: (*) Reverse the order of the columns in the SELECT statement: What happens at translate time? when you run the program? Are you
surprised? Explain.

Exercise 2: (*) What do you expect to happen when the SELECT list has fewer columns than required or more columns than required by the positional
iterator. Test your hypothesis. Can the SQLJ translator detect this discrepancy? What happens at translate time? at runtimer

Exercise 3: (*) What happens if you move the endFet ch() test after the pri nt | n statement? Why should you test endFet ch() before
processing the FETCH variables?

Exercise 4: (*) What happens if you use the endFet ch() test as the test for the while loop condition (Whi | e (! p. endFet ch())? Are you
surprised? Explain.

Exercise 5: (**) Note that the two FETCH variables name and sal ary were initialized outside of the whi | € loop.
(a) What happens if you do not initialize these variables?
(b) Why does this happen? (You might want to take a peek at the generated Java code.)
(c) What happens to the FETCH variables if the FETCH failed?

Exercise 6: (*) The named iterator declarations use Java types and names, and the positional iterators use only Java types. Does it make sense to mix both
kinds in the same declaration? What do you think? What does the SQLJ translator think?

Page 10

SQLJ: Tricks, Tips, and Gems

3 A UNIVERSE OF TYPES: SOME SQL, SOME JAVA

JDBC TYPES AND CORRESPONDING SQL TYPES / NULL HANDLING IN SQL] / SQLJ STREAM TYPES / ORACLE TYPE
EXTENSIONS

So far, we just used a bunch of Java types in our SQLJ program, but we really had no clue which types are permitted and how
they are used. SQLJ includes all of the types in JDBC —this is described in the next section— and then some.

3.1 WHAT TYPE ARE YOU?

A DESCRIPTION OF]DBC—SUPPORTED TYPES AND HOW THEY ARE USED IN SQL]

NUMERIC TYPES. This includes: i nt | | nt eger , | ong, Long, short , Short byt e, Byt e, bool ean, Bool ean, doubl e,
Doubl e, f | oat, Fl oat , and —just so you can see I am not stuttering— j ava. mat h. Bi gDeci mal . So, what’s the deal
with supporting both the primitive type (such as i nt, or doubl e) and the corresponding Java object type (such as | nt eger,

or Doubl e)? SQL NULL always maps to Java nul | — and the reverse. Thus, if you read a NULL value into an | nt eger,
you receive a Java nul | | but if you read it into an i nt, you can get only a SQLEXcept i on.

CHARACTER TYPES. The Java type St ri ng represents these very well, thank you. Note that the Java char and Char act er
types are not supported by SQLJ or by JDBC (besides, they could only hold a single character, anyway). Also useful might be
the character streams sql j . runti me. Ascii Streamand sqlj.runtine. Uni codeSt r eam We will examine them more
closely in Section “3.2 Stumbling On Streams”.

DATE AND TIME TYPES. These include j ava. sql . Ti e, j ava. sql . Ti nest anp, and j ava. sql . Dat e. Yes, that is

j ava. sql . Dat e, and notj ava. uti | . Dat e — don’t confuse the two!

RAw TYPES. Raw data can be represented as byt e[] , aka “byte-array”, or —in stream form— as

sqgl j . runtime. Bi naryStream which we discuss in the next section.

RESULT SETS, CURSORS, AND SO ON. What representation would you expect? j ava. sql . Resul t Set and iterator types?
Yes, right on the button! A little secret here: using these as host variables is not part of the JDBC specification, but permitted
by Oracle.

Did we miss some types here? Yes — let’s digress a bit into JDBC history: Java types for several useful SQL entities, such as
ROWIDs, BFILEs, BLOBs, and structured types are, unfortunately, not in the JDBC 1.2 specification, which is what JDIK
1.1.X uses. However, Java types for these are mentioned in JDBC 2.0, which goes together with JDK 1.2 — go figure!
Anyway, this means that in a JDK 1.1 environment these types must be represented through Oracle-specific extensions that
we talk about in Section “3.3 She Is An Oracle Type”.

SO WHAT ARE THE CORRESPONDING SQL TYPES THAT YOU CAN USE FOR THESE [AVVA TYPES?

NUMERIC TYPES. Use any of the numeric SQL types, such as INTEGER, NUMBER (prec|,scale]), REAL, SMALLINT, and so
forth — these are all some form of NUMBER, anyway. Of course, you also must be sure that your Java type can hold the
values that you expect in the SQL type and the reverse.

CHARACTER TYPES are CHAR, VARCHAR, VARCHAR2, and LONG.
DATE AND TIME TYPE 1s DATE.

RAW TYPES ate RAW and LONG RAW.

RESULTSET/ITERATOR TYPE is REF CURSOR.

Additionally, SQL, as well as SQLJ with its underlying JDBC driver, perform several implicit conversions. For example, you
can retrieve numeric or date values as St ri ng, or you can insert St r i ngs that represent numbers where numeric SQL
values are expected.

Warning: JDBC does not enforce retrieving a SQL NULL as a Java nul | , but SQLJ consistently does. You should be aware
of this difference in behaviot.

Warning: SQLJ (and SQL) perform implicit conversions between SQL and Java types. Although this can be useful, it also
might lead to surprising and unexpected behavior. Do not rely on type-checking alone to ensure the correctness of
your SQL code.

Page 11

SQLJ: Tricks, Tips, and Gems

Ref For more information, see SOLJ Developer’s Guide and Reference, Chapter 5, Section “Supported Types for Host Expressions”, and Chapter 4, Section
“Null Handling”.
Exercise 1: (*) Show that a SQL NULL is retrieved as Java nul | in an “object wrapper” type, such as | nt eger , but results in 2 SQLEXCepti onina
primitive type, such as i Nt . When does the SQLJ translator detect this situation?

Exercise 2: (*) Write an example program where numeric values are read from or written to the database, using various SQL and Java types. Can you
demonstrate loss of precision? In which situations does the SQLJ translator detect potential loss of precision? What JDBC type, if any, can
you use if you want to ensure that you do not lose any precision?

Exercise 3: (*) Write an example program whete SQL character string values are read from or written to the database. Do the various SQL character

types behave differently? Describe your observations.

Exercise 4: (*) Experiment with Java types and SQL types to find out conversions that are petformed implicitly. Can you find SQL-JDBC type
combinations that are illegal (that is, types between which no conversion is performed)?
What does this mean for type checking between SQL and Java types by the SQLJ translator? Take, for example, a positional iterator that
contains a St r i NQ column and an i Nt column. What happens, if you flip the corresponding host variables in the FETCH statement? What
happens if you flip the corresponding columns in the SELECT statement?

Exercise 5: (*) What is the difference between j ava. uti| . Dat e andj ava. sql . Dat e?

Exercise 6: (***) One of the preceding SQL types can be tead only from the database, but not be written to it. What is it? Demonstrate.

3.2 STUMBLING ON STREAMS

The SQLJ specification adds the new stream types sql j . runti me. Bi naryStreamsqlj.runtime. Ascii Stream and
sqlj.runtime. Uni codeSt r eamfor “wrapping” a LONG (or LONG RAW) column in the database. All three stream
types implement a j ava. i 0. | nput St r eam Note that when you retrieve the value of a LONG column, all data that occurs
in the same row prior to that column is lost. This has a number of consequences.

Warning: When you use FETCH and a positional iterator, you can only have a single stream column, and this must be the
last column of the iterator.

Warning: When using a named iterator, you must access the stream columns in sequence. Whenever you access a column
that comes after the stream column, the data in the stream column is lost.

Ref See SQOLJ Developer’s Guide and Reference, Chapter 5, Section “Support for Streams”.

Exercise 1: (*) Write a named iterator with two stream columns. Access the streams columns out of order. What happens? Show that the order in the
SELECT statement must be obeyed, not the order in the iterator declaration.

Exercise 2: (**) What would happen if you permitted more than one stream column in a positional iterator and —consequently— in a FETCH
statement? Why do the restrictions mentioned in the Warning not apply if you use byt €[] instead of streams for retrieving LONGs?

3.3 SHE IS AN ORACLE TYPE

If you are willing to go out with an Oracle Type, we have a whole roster of them for you to choose from. They all live in the
same place: or acl e. sql . You might want to call up JDBC Developer’s Guide and Reference, Chapter 4 “Oracle Extensions” for
these types, rather than going on a blind date. Or, if you are more adventurous, perform a quick background check with
javap oracl e. sqgl. Xxxxx and then give XXXXX a whirl!

oracl e. sql . RON D - represents a database ROWID.

oracl e. sql . CLOB - represents a CLOB, a large character object.

oracl e. sql . BLOB - represents a BLOB, a large binary object.

oracl e. sql . BFI LE - represents a BFILE, a binary file.

oracl e. sql . REF - represents a REF, a reference to a structured object. See Section “5.5 Let’s Get Objective”.
oracl e. sql . ARRAY - represents a VARRAY or a nested table. See Section “5.5 Let’s Get Objective”.

oracl e. sql . STRUCT - represents a user-defined structured object. See Section “5.5 Let’s Get Objective”.

“Wait a minutel” you are now going to say. “All these types (with the exception of ROWID) look rather familiar — I
remember now, these ate JDBC 2.0 types (j ava. sql . O ob/Bl ob/Bf i | e/Ref /Array/Struct).” Right on the money! If
you run SQLJ under JDK 1.2 (with the Oracle JDBC classes ¢l asses12. zi p), you can also use these JDBC types instead of
the Oracle types. In fact, all these Oracle types implement the interface of their corresponding JDBC type.

The next set of types represent efficient “wrappers” that preserve the binary representation of data in the database. These
types are ultra-fast when exchanging information with the database, because they require zilch conversion effort. And they

Page 12

represent

SQLJ: Tricks, Tips, and Gems

the information completely faithfully down to the last original bit. You can use these types the same way you use

their corresponding JDBC cousins. Note that these types are also endowed with conversions methods and constructors

involving
oracl e.
oracl e.
oracl e.
oracl e.

the Java-native types that we talked about eatrlier.

sql . NUMBER - represents all numeric SQL data.

sql . CHAR - represents all character data in SQL.

sql . DATE - represents all date and time data in SQL.
sql . RAW- represents all raw data in SQL.

Ref See SOLJ Developer’s Guide and Reference, Chapter 5, Section “Oracle Type Extensions”.

Exercise 1:

Exercise 2:

Exercise 3:

Exercise 4:

(*) What’s with this or acl e. sql . ROW D? Show that you can retrieve the ROWID in a SELECT statement, and subsequently employ the
oracl e. sql . RON Din the WHERE clause of an INSERT, UPDATE, or DELETE statement.

(*) Think big! Use one or more of the or acl e. sql . BLOB/CLOB/BFI LE types in an example.

(**) Pick one or more of the Or acl e. sql “wrapper” types and compare them with the JDBC “native” types. Can you show efficiency
savings due to skipped conversion? What happens if you want to manipulate values of these types? Describe the tradeoff.
(%) If you are running JDK 1.1, you cannot use the j ava. sql . Bl ob/St r uct and so on types. Why not?

However, in Oracle JDBC you can use Or acl e. j dbc2. Bl ob/St r uct etc. types instead. Note: SQLJ does nof suppott types in
oracl e. j dbc2.) If your application uses Or acl e. j dbc2 types, you must recompile it if you want to run it under JDK 1.2. Why?

Page 13

SQLJ: Tricks, Tips, and Gems

4 YOUR OWN PRIVATE TRANSLATOR
HEIPFUL § QL] OPTIONS / DFEBUGGING OPTIONS: -L.INEMAP AND -P-DEBUG / PROGRAMMING S QL] APPLETS

This chapter describes features of the SQLJ translator itself. However, we will only cover the fun parts here. For the full story
about basic translator features, see SOLJ Developer’s Guide and Reference, Chapter 8, Section “Basic Translator Options”, and if
—by golly— you want the advanced SQLJ translator features, too, you must see the doctor in SQLJ Developer’s Guide and
Reference, Chapter 8, Sections “Advanced Translator Options” and “Translator Support and Options for Alternative
Environments”.

4.1 THE TRANSLATOR IS TALKING BACK

So you are stuck, and you want to get help. Do not fret — the SQLJ translator might just be able to give you the assistance
you need.

sqlj -hel p -gives you a short help message with the main SQL]J command line options. Additionally, whenever you just
say sql j without other arguments, this is interpreted as a cry for help.

sqlj -hel p-1ong - gives a really long message. This is most useful if you want to figure out which command line options
the translator is actually using and where they come from. In this case, you might want to add your original command line as
well. Or you can just check on some obscure translator option.

sqglj -version-long -shows you the SQL]J translator version, as well as the version of your Oracle JDBC driver and
your Java VM. If the JDBC driver has version 0.0, you know that you need to install it and put it in your CLASSPATH!

sqlj -status .. -addthe-status flagto your command line if you want to be entertained during those really long
translations/compiles. The SQLJ translator will make sure that it regularly gets back to you to let you know what it is up to at
the moment.

sqlj -explain ..-add this option to your command line if you get one or more of these {@#$!% (incomprehensible)
error ot warning messages. The SQLJ translator will look up the Cause and/or Action explanation for the message in the
SQLJ manual and print it out, just for you. Isn’t that a nice touch!

sqlj -n ..-add this if you want to see what is actually invoked by the SQL]J wrapper script/wrapper executable. Ot just use
it to amaze yourself that you can use pretty much the same command line options you have grown to know and love in

j avac and in | oadj ava. And you can even see how they look in SQLJ-Translatorese. This option shows what would have
been invoked, but does not run sql j for real — just as make -n does.

Ref For a general overview of SQLJ options, see SOLJ Developer’s Guide and Reference, Chapter 8, Section “Basic Translator Options”.

Exercise 1: (*) Try all the options above. Have fun!

4.2 WHERE IS THE BUG?

We trust you will have noticed that error messages issued by your Java compiler on code that originates from a SQLJ file are
reported on the SQL]J file, and not on the generated Java file. IHowever, when your program throws exceptions at runtime,
line numbers (such as those issued by pri nt St ackTr ace()) are shown in terms of the generated Java files.

You knew, of course, that we’d have a cure for that problem, too. Just add the flag - | i nemap to your command line during
translation. Then the translator will fix up the file names and the line numbers in those class files that were compiled from
original SQL]J files.

If you now pick up Sun’s Java debugger j db to debug your SQLJ program, you’ll see that ... it does not work: j db refuses to

show the SQLJ source. No wonder — they only taught it about .j ava source files! Okay, so we give you another magic
command line, spell: - j dbl i nemap, to be used instead of - | i nemap whenever you must trick that silly little (de)bugger.

If you must trace how your SQLJ program talks with the database, you can install a profile anditor in the SQLJ profile files
(those pesky little .ser files that hold the static SQL part of your SQLJ program and that we first encountered in Section “1.1
I Need To Tell You”). After the usual SQLJ translation and compilation, tracing can be added by issuing the following
command.

sqlj -P-debug *. ser
The above assumes that all the generated .Ser files are in the current directory.

Page 14

SQLJ: Tricks, Tips, and Gems

At the end of the day, SQLJ runtime calls turn into calls to Oracle’s JDBC runtime. You can trace these, too with the
following call to the JDBC API: j ava. sql . Dri ver Manager . set LogSt r ean(Syst em out) .

Ref SOLJ Developer’s Guide and Reference, Chapter 8, Section “Basic Translator Options” - “Reporting and Line Mapping Options” desctibes the
-1 inemap and -j dbl i nemap options.
Ref The profile auditor is explained in SQLJ Developer’s Guide and Reference, Appendix A, Section “AuditorInstaller Customizer for Debugging”.
Exercise 1: (**) Create SQl j programs with various bugs in the (non-SQLJ) Java code. What kinds of bugs are reported by the SQLJ translator? What
kinds of bugs are reported by the Java compiler?

Exercise 2: (*) Show that stack traces in SQLJ programs refer to the generated Java file. Then use the- | i nemap option, and convince yourself that
the stack trace refers to the original SQLJ file.
Debug your SQLJ programs with the j db debugger. Noze: make sure to use - j dbl i nemap, instead of - | i nemap.

Exercise 3: (*) Perform a trace of a SQLJ program with the profile auditor. Now also add JDBC tracing. Do the same for a multithreaded SQL]J
program. Noze: Make sute to use the - P- CshowThr eads=t r ue flag together with the - P- debug Auditor installer.

4.3 APPLETMANIA

Do not walk, but run, to the [Oracle Homel/ sql j / deno/ appl et s directory. View i ndex. ht m in your browser, and then
click on the Appl et . r eadne link, and do everything in it. See yal

Already backr Now read the Appl et Or acl e. r eadme file, and do what it says.

Congratulations — you are an applet expert! We just summarize the main gotcha’s for you.

Warning: Use the - ser 2cl ass flag to convert serialized profile files .Ser to classfiles — some browsers cannot handle
.ser files.

Warning: Use the - d option to place all .cl ass and .ser files (if any) in a directory hierarchy, which you can then easily
archive later.

Warning: If you do not use the Java plugin when browsing the applet, you must specify the - pr of i | e=f al se flag to the
SQLJ translator, and you cannot use the SET statement or Oracle specific types (including the use of iterators and
result sets as parameter or column types).

Warning: If you do use the Java plugin, make sure that your CLASSPATH is empty before you start your browser.

Warning: We strongly recommend that you use explicit connection contexts on your applet’s SQL statements. See Section
“5.2 Being Well Connected — Explicitly” for details.

Ref You can find the applet demos at [Oracle Home]/ sql j / dermo/ appl et s/

Exercise 1: (*) Oracle-specific types (such as or acl e. sql . Xxxx), and certain SQLJ constructs (such as SET : X = ..) require Oracle customization,
thatis - pr of i | e=t r ue (the default). What happens if you write such a program, but set - pr of i | e=f al se during SQLJ translation?

Exercise 2: (*¥) Show that Netscape 4.X does not like .Ser files.

Page 15

SQLJ: Tricks, Tips, and Gems

5 THE REST OF THE STORY — ADVANCING THE FEATURES

SOLJ-JDBC INTEROPERABILITY / USING CONNECTION CONTEXT INSTANCES / USING EXECUTION CONTEXTS / USING
TYPED CONNECTIONS / USING ORACLE OBJECTS / SQLJ IN [SERVER / PORTABILITY / PERFORMANCE / ITERATOR
SUBCLASSING

This chapter delves into a few of the advanced SQLJ features - but not very deeply. We’ll look at how to mesh dynamic SQL
with SQLJ, at the mysteries of connection contexts and execution contexts, and we offer encouragement for those who want to start
using Oracle Objects with SQLJ as well as for those who want to program with SQLJ in JServer. We consider how to write
portable and performant SQLJ programs. The final SQLJ gem that we introduce in this primer is iterator subclassing.

5.1 A DYNAMIC PROGRAM

SQLJ works just fine and dandy with static SQL. — where you know the shape of SQL statements and queries beforehand,

and only the actual data that is passed to (or from) the database varies. Now imagine that you must write a program that can
make up the WHERE clause of a SELECT on the fly. Guess you’d better forget all about SQLJ, right?

Nope — you can still use SQLJ! SQLJ and JDBC are close-knit buddies: JDBC connections and SQLJ connection contexts
are mutually convertible, and so are java.sql.ResultSets and SQL] iterators. Let’s look at the specifics.

CONNECTING FROM [DBC 170 SOLJ. All connection context constructors and initializers can take an existing JDBC
connection. Example:

j ava. sgl . Connection conn = Driver Manager. get Connecti on(....);
O acl e. connect (conn) ;

Now SQLJ and JDBC share the same session.

Warning: When you set or create a SQLJ connection from a JDBC connection, you will inherit all the properties of the
JDBC connection, including the auto-commit setting. Remember, JDBC auto-commit is off by default, SQLJ auto-
commit is either on by default, or it has to be declared explicitly.

CONNECTING FROM SQOLJ TO [DBC. All SQLJ connection contexts have the get Connect i on() method, which allows you
to retrieve the undetlying JDBC connection. What? You say, you do not know how to get the SQLJ connection context that
you set with Or acl e. connect (....) ? Of course, you don’t! Because I have not yet told you how. Now squint your eyes at
the lines below.

j ava. sgl . Connection conn =
sqlj.runtine.ref. Defaul t Context.getDefaultContext(). getConnection();

As you can tell, the monster expression sql j . runti nme. r ef . Def aul t Cont ext . get Def aul t Cont ext () gives you the
value of the static(!) SQLJ default context.

PASSING RESULT SETS FROM [DBC TO SOLJ. We want to pass off a JDBC result set as a SQLJ iterator. Well, the SQLJ
standards committee, in their wisdom, agreed that it was not sufficient to just construct a SQLJ iterator instance from a JDBC
Resul t Set . You must assign it explicitly with a SQLJ CAST statement.

Sonelterator iter;

java.sqgl . ResultSet rs = stnt.executeQuery();

#sql iter = { CAST :rs };
PASSING ITERATORS FROM SQILJ TO JDBC. This one is a breeze. You just call the iterator’s get Resul t Set () method and —
voila— your JDBC Resul t Set .

Warning: The result set-to-iterator and the iterator-to-result set conversions must be made before the next () method is
called, or a FETCII is performed on the original result set, or —respectively— iterator.

Ref SOLJ Developer’s Guide and Reference, Chapter 7, Section “SQLJ and JDBC Interoperability” describes SQLJ-JDBC interoperability.
Ref An application demonstrating interoperability is at [Oracle Home)/ sql j / denmp/ JDBCl nt er opDeno. sql j .

Exercise 1: (*) Demonstrate that you can convert a JDBC connection to a SQLJ connection and the reverse. Should it be possible to cascade several
conversions, such as JDBC to SQLJ to JDBC to SQLJ? Why, or why not?

Exercise 2: (*) Demonstrate that you can convert a JDBC result set into a SQLJ iterator and the reverse.
Exercise 3: (**) Why is it useful to convert a JDBC result set into a SQLJ iterator? Give an example!

Exercise 4: (**) Can you also come up with a scenario where you would want to be able to convert SQLJ iterators into JDBC result sets?

Page 16

SQLJ: Tricks, Tips, and Gems

Exercise 5: (**) According to the SQLJ specification, the behavior is undefined if you fetch results before you convert between result sets and iterators.
(a) Why was the behavior not prescribed in this case? What actual behavior do you see when you use Oracle SQLJ?
(b) What would you expect if you convert back and forth several times between iterators and result sets? What actual behavior do you see
when you use Oracle SQLJ?

Exercise 6: (*)Another way to write dynamic SQL in SQLJ is to use PL/SQL! By starting a SQLJ statement with BEG N (or with DECLARE) you get
immediate access to the PL/SQL engine and to its EXECUTE IMMEDIATE syntax (just make sure to add the closing END). Demonstrate
writing dynamic SQL statements in this way. Noze: In the demo directoty, you can find a solution Dynamni cDenp. sql j .

5.2 BEING WELL CONNECTED - EXPLICITLY

Up until now you have been brainwashed. We made you believe that there is only a single, static connection in your SQLJ
program, that you set once with Or acl e. connect (....) and then forget about. Though this helps sufferers of carpal tunnel
syndrome (never type an explicit connection!) and makes great copy for SQL]J marketers (“look how short SQLJ programs
are”), this is not the way the world works.

* Ifyou are connecting to more than one schema, or

* if you are running an applet in a browser, or

e if you are connecting to the database in a multithreaded program,
then you should, nay, you #ust use explicit SQLJ connections.

Don’t worry — you’ll learn all about explicit connections in a jiffy. The most bland SQLJ connections are called
sqglj.runtine.ref. Defaul t Cont ext , and we parade them next.
i mport sqlj.runtine.ref. DefaultContext;

Def aul t Cont ext ctxl =
new Def aul t Context ("jdbc:oracle:oci 8 @, "scott", "tiger", false);

Def aul t Cont ext ctx2 = new Def aul t Cont ext (aJdbcConnecti on);

#sql [ctx1l] { UPDATE enp SET sal = sal / 2 };

#sql [ctx2] { UPDATE enp SET sal = sal * 2 };
You see, you can specify explicitly which connection your SQLJ statements are supposed to use — just put the connection
context instance (or an expression evaluating to one) in those square brackets: [contexd] . If you do not do this, your statement
will use the default context, which you have been setting all along with Or acl e. connect () .

Note that the connection context constructor Def aul t Cont ext () supports the same signatures as

java.sql. Driver Manager . get Connecti on() , with an additional bool ean argument at the end that specifies whether
auto-commit is on or off. Additionally, you can create a new context from a JDBC connection or (not shown) from another
SQLJ context — this, of course, inherits both the session, as well as the session’s auto-commit setting from that connection.

Let’s digress once more with a little JDBC/SQLJ background. In JDBC, auto-commit is by default on. This was considered a

rather dorky default setting by the SQLJ proponents (which mostly come from big-database companies). Rather than having a
default setting opposite to JDBC, the auto-commit on the SQLJ context must be specified explicitly. Still not satistied, Oracle
is providing the Or acl e. connect () API that turns auto-commit off by default (although it also supports the extra

bool ean at the end for setting it explicitly).

Warning: Be a good citizen and do not follow the bad example we have been giving here: Always specify the auto-commit
setting explicitly, whether you are using Or acl e. connect (), new Def aul t Cont ext (), or your own
connection context type. Thanks! We’ll be eternally grateful.

Warning: Always use explicit connection contexts, unless you know that your program owns the world and requires only a
single, static database connection.

Ref See SOLJ Developer’s Guide and Reference, Chapter 4, Section “Connection Considerations”.

Exetcise 1: (*) Turn the preceding code fragment into a complete sample program, and run it. Noze: The Or acl e. connect () API explicitly loads
and registers the Oracle JDBC driver. If you are using SQl j . runt i me. r ef . Def aul t Cont ext , you must perform this task yourself.
Can you also demonstrate the different default settings for auto-commit?

Exercise 2: (*) The Oracle way to obtain an explicit SQLJ connection context (of typeSql j . runti me. r ef . Def aul t Cont ext) is called
Oracle.getConnection(...) . Demonstrate its use.

Page 17

SQLJ: Tricks, Tips, and Gems

Exercise 3: (***) Why is it a bad idea to use a single, static connection context in applets or in multithreaded programs? Can you write a sample program
that demonstrates the problem?

5.3 WRAPPING Ur UPDATES

Whenever we executed a SQLJ statement, we either obtained data through host variables or by assignhment, or we expetrienced
a SQLExcept i on containing some error message. At times we would like to obtain additional information about the SQL
statement, such as the following.

* The statement might result in a warning (not an exception) that we want to inspect.

* We are interested in the number of rows that was changed (or removed) by an UPDATE or DELETE statement.

This information is available on a sql j . runti me. Execut i onCont ext . An example.

i mport oracle.sqlj.runtinme. Oacle;
i mport sqlj.runtine.ref. DefaultContext;
i mport sqlj.runtinme. Executi onContext;

O acl e. connect (aJdbcConnecti on);
Def aul t Cont ext ctx = new Defaul t Context ("jdbc:oracle:oci8 @, "scott", "tiger",
fal se);

#sql { DELETE FROM enp WHERE sal > 5000 };
#sql [ctx] { UPDATE enp SET sal = sal * 2 };

Executi onContext ecl = Default Context. get Def aul t Cont ext (). get Executi onCont ext ();
Systemout. println(ecl.getUpdateCount() + " enployees are laid off.");

Executi onCont ext ec2 = ctx. get Executi onCont ext ();

Systemout. println(ec2.getUpdateCount() + " enployees are rejoicing.");
Ref See SQLJ Developer’s Guide and Reference, Chapter 7, Section “Execution Contexts”.
Ref Also consider the demo [Oracle Home]/ sql j / deno/ Mul ti Thr eadDeno. sql j .

Exercise 1: (*) How long is the update count available on the execution context?
Exercise 2: (*) What value does get Updat eCount () return when a SQLEXcept i 0n occurred during execution of the SQL statement?
Exercise 3: (*) You can create an Execut i onCont ext instance (using the empty constructor), and pass it explicitly to the SQLJ statement, between

the square brackets that usually hold execution contexts. Show that SQLJ will use the explicitly passed execution context, rather than the
execution context that can be accessed from the connection context.

Exercise 4: (**) You can also use Execut i onCont ext s to explicitly set properties for the execution of SQL statements — refer to the SQLJ runtime
documentation. Demonstrate some of the functions, such as set MaxRows (i nt max) — the maximum number of rows fetched in a
SELECT statement, and set Quer y Ti meout (i nt seconds) — the maximum permitted time for executing a query.

Exercise 5: (**) HHow would you have to write a multithreaded application that is only allowed a single static connection context, but where each thread
petforms UPDATES independently?

5.4 WHAT TYPE IS YOUR CONNECTION?

Consider the following scenario: you want to write a SQLJ program that establishes connections to two different database
schemas. In the PILOTS schema you keep personal data, schedules, flight hours, and so on of fighter pilots, and in the JETS
schema you have the technical specs, the repair history, and maintenance schedule of fighter aircraft.! Naturally, the SQLJ
statements that operate on each of these schemas will utilize different tables, views, and different sets of stored procedures
and functions. It would be nice if you could verify the correctness of the SQL statements in your program against both of
these schemas. So far, we explained to you only how to specify a single database connection for online checking.

This is where the notion of typed connection contexts comes in. We create two different context types.

#sql context Pilots;
#sgl context Jets;

At runtime, you must connect to the corresponding schema — unfortunately, SQLJ cannot check that for you.

Pilots pconn = new Pilots("jdbc:oracle:oci8:@,"PILOTS","ACE", fal se);

1 Oracle’s lawyers think it’s a bad idea to use any product in “nuclear ... or otherwise inherently dangerous applications.” Of course, we are
talking about some multi-player Internet game application here, capricer

Page 18

SQLJ: Tricks, Tips, and Gems

Jets jconn = new Jets("jdbc:oracle:oci8 @,"JETS", "STRATOS", f al se);
However, at translate time, SQLJ can determine whether you used a Pi | ot S connection context or a Jet s connection
context in your SQLJ statement.

#sql [pconn] { INSERT INTO pilot VALUES (...) }; /1l Pilots context

#sql [jconn] { UPDATE nmi ntenance SET status = Checkup(...) }; [/ Jets context
Can we tell SQLJ at translate time how to connect to the database for these connection context types? Sure — that’s easy!

sqlj -user@il ots=pilots/ace -user @ets=jets/stratos MyFile.sqlj
Ref See SQLJ Developer’s Guide and Reference, Chapter 7, Section “Connection Contexts”.
Ref The corresponding demo is [Oracle Homel/ sql j / deno/ Mul ti SchemaDeno. sql j .

Exercise 1: (*) What happens if you omit the setting - user @et s=j et s/ str at os?
What happens if you replace - user @et s=j et s/ st r at os with - user =j et s/ strat os?
What happens if you replace both preceding - US€er settings with - user =pi | ot s/ ace?

Exercise 2: (***) Could we achieve the same functionality without introducing connection context types? Why or why not? Explain.

5.5 LET’S GET OBJECTIVE

Now what about those SQL objects, the SQL REFs and VARRAYS/Nested Tables? Yes, SQL]J supports all these features of
Oracle SQL. You can use the “raw” representations (or acl e. sql . STRUCT /REF/ARRAY) for these types — at least for
receiving values from the database.

However, for full functionality, you should use JPublisher wrapper classes for these SQL types. This is a four-step process.
1. Create your SQL type in the database — for example ADDRESS.

2. Use the JPublisher to create a Java wrapper class for the SQL ADDRESS type in the file Addr ess. j ava. For each
attribute ATTR in the SQL type, the Addr ess class will contain set Attr () and get Attr () setter/getter methods.
j pub -sql =Address -user=scott/tiger -url=jdbc:oracle:oci8: @

3. Compile Addr ess. j ava.
javac Address.java
4. Now you can use the Java Address class, as if it were a built-in type that you can receive from the database, or send to the
database. You just compile and run your SQLJ program normally.
sglj MyFile.sqlj
Easy, isn’t it? Of course, there are a whole lot of additional details that we omitted. Get the full picture from the following
sources.

Ref SQLJ Developer’s Guide and Reference, Chapter 6 “Objects and Collections”.

Ref Technical Whitepaper “Using Oracle Objects in SQLJ Programs” at [Oracle Home)/ sql j / doc/ sql j - obj ect s. pdf.
Ref JPublisher Developer’s Guide and Reference.

Ref Demo files in [Oracle Home]/ sql j / demp/ Obj ect s/ and [Oracle Home]/ sql j / deno/ j pub/ .

Exercise 1: (*) Tty out the objects features using the demos provided in the Qbj ect s and j pub directoties.

Exercise 2: (**) Both JPublisher and SQLJ also support the JDBC 2.0j ava. sql . Sql Dat a interface. Transform some of the demos written using
the Cust onDat uminterface to Sql Dat a. What are the limitations of using Sql Dat a? What are the advantages?

Exercise 3: (**) JPublisher provides a strong type association between a (generated) Java class and a SQL type. There are several Java classes, such as
oracl e. sql . STRUCT, REF, and ARRAY (as well as their JDBC 2.0 counterparts:] ava. sqgl . Struct, Ref ,and Ar r ay) that you
can use instead of the JPublisher-generated classes. What limitations would you expect when using these “generic” wrapper classes?
Consider retrieving a value in a SELECT column, passing it as an IN parameters, and recetving it as an OUT parameters.

Now write SQLJ code to discover actual limitations. Why do these exist?

5.6 STUFFING SQL]J INTO THE SERVER

No way, José! We do not have space or time to explain this here. If you used the Or acl e. connect () method and a default
context on your SQL statements, you should be in good shape to debug and test your SQLJ program on the client. Then you
“stuff it” into the server using the following steps (naturally, variations on this theme abound) .

1. Compile and j ar your program (client-side) for upload to the server.

2. Load your program into the server with | oadj ava.

3. Publish one or more public static methods of your application as SQL stored procedures or functions.

4. Run your program from SQL, that is from a SQL environment, ot from a SQLJ/JDBC or any other client.

Page 19

SQLJ: Tricks, Tips, and Gems

Here we just pass a few tips along that relate to the client-side compilation Step 1.

Warning: Use the - ser 2cl ass option to convert .ser files into .Cl ass files. This usually makes the JServer much happier!
Use the - d option to designate a root directory under which all the SQLJ-generated .cl ass (and possibly .ser)
files will be placed.

sqlj -ser2class -d mordir *.sqlj *.java
Copy any .properti es files that you require into the appropriate location under rootdir.
Change to rootdir before issuing j ar cvfO myar. jar *, then upload myjarj ar with | oadj ava.

Ref An entire manual Java Stored Procedure Developer’s Guide is devoted to this topic.
Ref SOLJ Developer’s Guide and Reference, Chapter 11 “SQLJ in the Server” discusses SQLJ-specific aspects in depth.
Ref You can find demo files in [Oracle Home]/ sql j / deno/ server/ .

5.7 IsN°T I'T — PORTABLE!

Now that we have introduced all these great Oracle features — how can we get rid of them and put the (Oracle)Genie back in
its bottle? First off, you want to turn on portability warnings, so you get notified about Oracle-specific type usage.
sqlj -warn=portable ...

Note that some types, such as iterators and result sets, are not Oracle specific, per se, but the standard SQLJ driver does not
let you use them as parameters or in iterator columns. You’ll see warnings in these cases, as well. Secondly, you should avoid
the use of Oracle-specific SQL constructs such as PL/SQL — you need some kind of standard SQL grammar in your
SQLChecker component. There is good news and bad news on this. The good news is that we have a demo in [Oracle
Home]|/ sql j / deno/ conponent s with new SQL checkers (Par si ngJdbcChecker and Par si ngOf f 1 i neChecker)
that use an actual SQL grammar to check the syntax of your SQL statements. Even better, you get the source for this
grammar and can modify it to your heart’s content. On the downside, this checker is not part of the Oracle SQLJ product
and, therefore, unsupported.
Ref See SQOLJ Developer’s Guide and Reference, Chapter 8 “Translator Command Line and Options”, Section “Basic Translator Options” - “Reporting and

Line Mapping Options”.
Exercise 1: (*) Go to [Oracle Home|/ sql j / dend/ checker/ conponent s and kick the tires of the parsing checker.
Exercise 2: (*) Write some Oracle-specific code and test the - war n=por t abl e flag and the parsing checker on it.

Exercise 3: (**) There is one set of types that are not Oracle-specific, but you will still see portability warnings about them. Which ones? Why? Hznz: the
SQLJ 8.1.6 runtime is built under JDK 1.1.

Exercise 4: (***) Improve the SQL grammar. (a) Rewrite the grammar. (Yes, it was a quick hack.) (b) Improve error recovery and error messages.
(c) Make it recognize SQL-92 Entry Level only. (d) Make it recognize your favorite flavor of SQL.

5.8 GIVE ME SPEED OR ... MORE SPEED!

You say you want speed, speed, and more speed? It’s coming to you in the 8.1.6 SQLJ release. And you can pick it up with
little or no effort — compared to using JDBC. Buckle up, as we put the pedal to the metal! In the examples below we assume
that your program uses only the default connection context. Otherwise, any required Execut i onCont ext and JDBC
Connect i on objects will have to be obtained from your actual connection context instance.

executed on a given connection. Execution time is cut up to 50% if a statement can be pulled from the cache. If you like to,
you can also set a specific statement cache size during SQLJ translation or profile customization as follows.

sqlj -P-Cstmtcache= cacheSize ...
Now what does a cacheSize of 0 dor Yep, it turns off the cache! Use it to see how your program performed under the previous
versions of SQLJ. Or, more sensibly, set it to a higher value.

SPEED THROUGH BATCHING. SQLJ now also supports batching through the set Bat chi ng() and set Bat chLi mi t ()
methods on the Execut i onCont ext ..

ExecutionContext ec = DefaultContext.getDefaultContext(). getExecutionContext();
ec.setBatching(true);

This turns on batching of INSERT, DELETE, and UPDATE statements in your SQLJ program. If the same DML statement
is executed repeatedly —such as in a loop— the parameter bindings are collected. Finally, when execution moves to a
different SQLJ statement, the collected set of parameters is bound through an array bind and executed as a single statement.

Page 20

SQLJ: Tricks, Tips, and Gems

SPEED THROUGH ROW PREFETCHING. You can also set a row prefetch size for your queties (the default size is 10) to save on
round trips to the database.
O acl eConnection conn = (Oracl eConnection) Defaul t Cont ext. get Context (). get Connection();
conn. set Def aul t RowPr ef et ch(preferchSize) ;
SPEED THROUGH HINTS FOR IVARLABLE-SIZE PARAMETERS. If you use variable-size SQL types, such as CHAR, VARCHAR,
ot RAW as bind parameters in your SQLJ statements, then JDBC has to prepare for the worst case (such as a PL/SQL
function returning 32kB of character data). Often, you know the actual maximum size (in bytes!) of these parameters ahead of
time and can give a hint to the underlying JDBC engine. An example.

#sql s = { /*(10)*/ VALUES(to_uppercase(:t/*(10)*/)) };
The size hint is always given as a comment / * (szze) */ immediately after the host variable (or host expression), or —if this is
the return value for a function— as the first comment in the SQL statement. You still have to tell SQLJ at translation or at
customization time to pick up these hints through the - P- Copt par ans flag.

sqlj - P- Coptparams ...
If you use a specific statement cache size and parameter size hints, you must specify both flags at the same time.

Warning: A fixed, limited number of statement cursors is available to your SQLJ program per JDBC connection - #of pet

SQLJ connection context. The SQLJ statement cache effectively reduces the number of statement cursors available
to JDBC.

Warning: If you turn batching on, also set an upper batch limit with ec. set Bat chLi mi t (s/z¢) to not run out of memory.

Ref See SQOLJ Developer’s Guide and Reference, Appendix A “Performance and Debugging”, Section “Performance Enhancement Features™.
Ref For demos, see [Oracle Home] / denp/ Pr ef et chDeno. sql j and [Oracle Home]/ sql j / deno/ per f or mance/ .

Exercise 1: (*) Run the performance demos. Which of the optimizations appears to offer the most improvement?
Exercise 2: (*) Write a program that will constantly overflow a five-element statement cache. Now demonstrate caching by increasing the cache size.
Exercise 3: (**) Write a program that shows that JDBC and SQLJ use statement handles from the same underlying connection.
Exercise 4: (*) What happens when the execution of a batched statement results in an error? When will you detect this? Demonstrate.
Exercise 5: (*) If you have several different DML statements in a loop, batching will not work. Can you give a workaround for this? Demonstrate.
Exercise 6: (*) Show what happens when the parameter size hints in your SQLJ program are exceeded. Read up on the - P- Copt par ans and

- P- Copt par andef aul t s flags, and demonstrate the use of default parameter hints.

5.9 CLASSY KINDS OF ITERATORS

SQL]J iterator types have some “object flavor” but do not feel like genuine objects. You might wish that you could endow an
iterator with a different character from that which SQLJ generates. Roll your own by subclassing an iterator type and
providing your own (add-on) behaviot! In the following example, we assume that we already have an Enp class.

#sql iterator Iter(String ename, int empno);
class Sublter extends lIter {
Sublter(sqlj.runtime.profile. RTResultSet rs) throws SQLExecption { super(rs); }
Emp getEmp() { return new Emp(ename(), empno()); }

Sublter iter;
#sql iter = { SELECT * FROM EMP };
while (iter.next()) { System.out.printin(iter.getEmp()); }

Note the constructor Subc/ass(sql j . runtime. profil e. RTResul t Set) that plugs into the corresponding superclass.

Exercise 1: (*) Play with the example in [Oracle Home]/ sql j / denmp/ Subcl assl t er Denp. sql j . What are some interesting new behaviors for
iterators? Write more examples.

Exercise 2: (***) Write a program that generates an iterator declaration together with a subclass that exhibits useful behavior, such as retrieving the entire
result set as a collection, providing typed row objects, providing updateable typed row objects, and so on.

YOU HAVE NOW BECOME A SQLJ GURU

You made it. It’s time to get a life and have some fun!

Page 21

