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ABSTRACT : The article deals with the problems of implementation of parallel 
discrete event simulation in which every process represents an object in the 
simulation. The main problem of parallel discrete event simulation is the time 
synchronization of the processes, running on different processors. One approach to 
the solution of this problem, called Virtual Time Concept, or Time Warp, is presented. 
In this article we will describe an approach to implementing Time Warp and some 
techniques that allows to implement Time Warp more efficiently. 
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Introduction 

One of  the major goals of the parallel discrete event simulation is to simulate the 
problems on the network of the processors faster than on a single processor. A number 
of problems is known that may impact the performance of the parallel discrete event 
simulation system. They include: simulation time synchronization, development of 
models which identify parallelism, partitioning of the problems for execution on 
processors, scheduling strategy to select one of many ready to run processes, and how 
the partitioned problem is to be allocated to processors. In this article we will deal 
with the first problem - simulation time synchronization. 

Parallel discrete event simulation 

The major issues in event-driven simulation are the scheduling of events and the 
evaluation of these events. For parallel execution of  the simulation program are often 
used almost the same scheduling and evaluation principles as for sequential 
simulation. The simulation time synchronization in the sequential environment is 
trivial problem because of presence of common memory visible for all processes. The 
synchronization is performed after each advance of simulation time. Since the target 
environment for parallel execution is often loose-coupled multiprocessor architecture 
(e.g. network of Transputers or local area network of computers, see Fig. 1) the loose 
degree of coupling may result in relatively long communication delays. Big effort 



should be made to minimize the overhead of synchronization in order to achieve 
acceptable performance.  
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Fig. 1 Architecture for parallel simulation 

To limit the overhead arising from frequent synchronization, it is desirable to increase 
the interval between synchronization points. One possibility that can be exploited is to 
enforce restrictions on which elements can be placed on a given processor, i.e. force 
placement of elements on the processors in such a manner that there is no need for 
synchronization at every time step. In that case the most of the synchronization is 
performed locally inside the processor an the number of synchronization points for 
interprocessor synchronization is reduced. 

At these synchronization points the synchronization messages are exchanged among 
the processors (see Fig. 2). The synchronization is performed by one of the two 
approaches known as conservative and optimistic respectively (see [Fuj90]). Strict or 
conservative interprocessor synchronization - in which each processor waits for 
messages to arrive from all other processors upon which the given processor is 
dependent before beginning the next phase of computation - may lead to idle periods 
between successive simulation cycles which are longer than necessary. To reduce 
idleness, it is possible to relax the strict synchronization requirement by permitting 
processors to optimistically proceed with evaluation using currently available 
information, then correct any erroneous computation as messages begin arriving.  

Performance studies show that both of the approaches are susceptible to some 
limitations. These studies indicate that conservative method fails when the application 
exhibits poor lookahead - in that case it may perform worse than sequential 
simulation. Accordingly, the optimistic approach becomes exposed to state saving and 
processing overhead especially when the application has an excessive rollbacks to the 
simulation system.   

When the problem size and the number of processors become large, the risk for 
explosive cascading of rollbacks increases. This situations occurs mainly by processes 
that rapidly advance far in future simulation time. Cascading rollbacks dramatically 
decrease performance and prohibit the simulation to scale.  

In following sections we will discus one approach to optimistic interprocessor 
synchronization for parallel simulation, called virtual time approach. 



Virtual time 

Virtual time [Jef85] and its implementation Time Warp is a method for organizing 
distributed systems by imposing on them  a temporal coordinate system more 
computationally meaningful than real time, and defining all user-visible notions of 
synchronization and timing in terms of it. The Time Warp implements virtual time. 
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Fig. 2 Basic problem of parallel simulation 

Most distributed systems (including all those based on locks, semaphores, monitors 
etc.) use some kind of block-resume mechanism to keep process synchronized. In 
contrast, the distinguishing feature of Time Warp is that it relies on general 
lookahead-rollback as its fundamental synchronization mechanism. Each process 
executes without regard to whether there are synchronization conflicts with other 
processes. Whenever a conflict is discovered after the fact, the offending process is 
rolled back to the time just before the conflict, no matter how far back that is, and then 
executed forward again along a revised path. Both the detection of synchronization 
conflicts and the rollback mechanism for resolving them are transparent to the user. 

Local control mechanism 

Although in the whole system is a single global virtual time, there is no global virtual 
time variable in the implementation. Instead, each process has its own local virtual 
clock variable that contains local virtual time (LVT) . The local virtual time of a 
process does not change during an event at that process; it changes only between 
events, and then only to the value in the timestamp of the next message in the input 
queue. At any moment some local virtual clocks will be ahead of others, but this fact 
is invisible to the processes themselves because they can read only their own virtual 
clock. Whenever a message is sent, its virtual send time is copied from the sender’s 
virtual clock.  

Each process has a single input queue in which all arriving messages are stored in 
order of increasing virtual receive time. Ideally, the execution of a process is simply a 
cycle in which it receives messages and executes events in increasing virtual time 
order. This ideal execution proceeds as long as no message arrives with a virtual 
receive time less then local virtual time. Whatever the reasons for the late arrival of a 
message with a low timestamp, the semantics of virtual time demands that incoming 



messages be received by each process strictly in timestamp order. The only way to 
accomplish this is for the receiver to roll back to an earlier virtual time, canceling all 
intermediate side effects, and then to execute forward again, this time receiving the 
late message in its proper sequence. 

Because it is impossible to wait for the „next“ message, each process executes 
continuously, processing in increasing virtual time receive order those messages that 
already arrived. All of its execution is provisional, however, because it constantly 
assumes that no message will arrive with a virtual receive time less than the one 
stamped on the message it is now processing.  
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Fig. 3 Basic problem of parallel simulation 

To understand the rollback mechanism, we must describe more of the structure of 
processes and messages. The runtime representation of a process is composed of (see 
also Fig. 3): 

• A local virtual clock LVT. 

• A state, which in general is the entire data space of the process, including its 
execution stack, its own variables, and its program counter. 

• A state queue, containing saved copies of recent states of the process. 

• An input queue, containing all recently arrived messages sorted in order of virtual 
receive time. 

• An output queue, containing copies of the messages the process has recently sent, 
kept in virtual send time order. They are needed in case of rollback, in order to 
„unsend“ them. 



The semantics of rollback is following: 

When a message arrives at the input queue of a process with a timestamp lower than 
the virtual clock time, the recent work of the process is incorrect and must be undone 
by rollback. The first step is recover the state of the process to the state, saved in state 
queue. The second step is undone the effect of incorrect messages sent. This is done 
by sending an antimessage for every incorrect message sent. For every message there 
exists an antimessage that is exactly like it in format and concept except one field, its 
sign. Whenever a message and its antimessage occur in the same queue, they 
immediately annihilate. If  message and antimessage annihilate and message was not 
performed, nothing is done. But if message and antimessage annihilate and message 
was performed, there is need for secondary rollback on another process.  

This antimessage protocol is extremely robust, and works correctly under all possible 
circumstances. There is no possibility of deadlock (simply because there is no 
blocking). There is also no possibility of the „domino effect“ (i.e., a cascading of 
rollbacks far into the past); the worst case is that all processes in the system roll back 
to the same virtual time as the original one did, and then proceed forward again. 

Memory management schemes for Time Warp 

The huge memory usage is one of the problems of the optimistic approach. Some 
schemes were developed that reduce the memory usage. We will present three 
examples of reducing of the memory usage [Sam89]. Time Warp consumes memory 
by storing three types of objects: state vectors in the state queue, messages in input 
queue and messages in output queue. We can classify memory management schemes 
in Time Warp into two types:  

• Schemes that reduce average memory usage but cannot necessarily reclaim 
memory „on demand“, when the system runs out. 

• Schemes that can reclaim memory „on demand“. 

Following are the examples of schemes that reduce average memory usage: 

1. Incremental State Save. When state size is large and only a small portion of the 
state is modified by an event, only the change is recorded rather than making a 
copy of the entire state. This reduces both space usage an copying time. However 
when a rollback occurs, some time must be spent to recover an old state from a 
series of recorded changes. 

2. Infrequent State Save. State saving frequency can be reduced to suit the memory 
available in the system. This, however, has a certain performance penalty as some 
correct computations must be executed that would not be required if state were 
saved more frequently. Also, there is a tradeoff  because infrequent state saving 
precludes fossil collection of some past events.  

3. Limited Optimism. Different variations of the optimistic approach have been 
developed that limit the degree to which processes can advance ahead of others. 
Some of these bound all the processes within a time window, and some try to 



control the spread of erroneous computation as quickly as possible. These schemes 
were suggested primarily to reduce rollbacks, but they implicitly reduce memory 
usage by limiting the number of future objects. 

Schemes that can reclaim memory „on demand“ are quite complicated and their 
description is out of scope of this article. More information about these schemes can 
be found e.g. in literature [Sam89]. 

Conclusion 

The aim of the article was to present some problems with implementation of the Time 
Warp for parallel or distributed simulation. The main problem presented is a local 
control mechanism itself. This mechanism is the heart of the efficient Time Warp 
system. The problems of memory management was presented as well.  
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