

Problems of Implementation of Virtual Time
for Parallel Simulation

Ing. Petr Hanáèek
Department of Computer Science and Engineering,

Faculty of Electrical Engineering and Computer Science
Technical University of Brno
Božetìchova 2, 612 66 Brno

e-mail: hanacek@dcse.fee.vutbr.cz

ABSTRACT : The article deals with the problems of implementation of parallel
discrete event simulation in which every process represents an object in the
simulation. The main problem of parallel discrete event simulation is the time
synchronization of the processes, running on different processors. One approach to
the solution of this problem, called Virtual Time Concept, or Time Warp, is presented.
In this article we will describe an approach to implementing Time Warp and some
techniques that allows to implement Time Warp more efficiently.

Keywords: parallel simulation, distributed computing, event-driven simulation,
demand-driven simulation, Linda language.

Introduction

One of the major goals of the parallel discrete event simulation is to simulate the
problems on the network of the processors faster than on a single processor. A number
of problems is known that may impact the performance of the parallel discrete event
simulation system. They include: simulation time synchronization, development of
models which identify parallelism, partitioning of the problems for execution on
processors, scheduling strategy to select one of many ready to run processes, and how
the partitioned problem is to be allocated to processors. In this article we will deal
with the first problem - simulation time synchronization.

Parallel discrete event simulation

The major issues in event-driven simulation are the scheduling of events and the
evaluation of these events. For parallel execution of the simulation program are often
used almost the same scheduling and evaluation principles as for sequential
simulation. The simulation time synchronization in the sequential environment is
trivial problem because of presence of common memory visible for all processes. The
synchronization is performed after each advance of simulation time. Since the target
environment for parallel execution is often loose-coupled multiprocessor architecture
(e.g. network of Transputers or local area network of computers, see Fig. 1) the loose
degree of coupling may result in relatively long communication delays. Big effort

should be made to minimize the overhead of synchronization in order to achieve
acceptable performance.

Processor 1 Processor 2

Processor n

Messages

Fig. 1 Architecture for parallel simulation

To limit the overhead arising from frequent synchronization, it is desirable to increase
the interval between synchronization points. One possibility that can be exploited is to
enforce restrictions on which elements can be placed on a given processor, i.e. force
placement of elements on the processors in such a manner that there is no need for
synchronization at every time step. In that case the most of the synchronization is
performed locally inside the processor an the number of synchronization points for
interprocessor synchronization is reduced.

At these synchronization points the synchronization messages are exchanged among
the processors (see Fig. 2). The synchronization is performed by one of the two
approaches known as conservative and optimistic respectively (see [Fuj90]). Strict or
conservative interprocessor synchronization - in which each processor waits for
messages to arrive from all other processors upon which the given processor is
dependent before beginning the next phase of computation - may lead to idle periods
between successive simulation cycles which are longer than necessary. To reduce
idleness, it is possible to relax the strict synchronization requirement by permitting
processors to optimistically proceed with evaluation using currently available
information, then correct any erroneous computation as messages begin arriving.

Performance studies show that both of the approaches are susceptible to some
limitations. These studies indicate that conservative method fails when the application
exhibits poor lookahead - in that case it may perform worse than sequential
simulation. Accordingly, the optimistic approach becomes exposed to state saving and
processing overhead especially when the application has an excessive rollbacks to the
simulation system.

When the problem size and the number of processors become large, the risk for
explosive cascading of rollbacks increases. This situations occurs mainly by processes
that rapidly advance far in future simulation time. Cascading rollbacks dramatically
decrease performance and prohibit the simulation to scale.

In following sections we will discus one approach to optimistic interprocessor
synchronization for parallel simulation, called virtual time approach.

Virtual time

Virtual time [Jef85] and its implementation Time Warp is a method for organizing
distributed systems by imposing on them a temporal coordinate system more
computationally meaningful than real time, and defining all user-visible notions of
synchronization and timing in terms of it. The Time Warp implements virtual time.

Simulation time ??

Processor 1
is still evaluating

Processor 2 Processor n

Fig. 2 Basic problem of parallel simulation

Most distributed systems (including all those based on locks, semaphores, monitors
etc.) use some kind of block-resume mechanism to keep process synchronized. In
contrast, the distinguishing feature of Time Warp is that it relies on general
lookahead-rollback as its fundamental synchronization mechanism. Each process
executes without regard to whether there are synchronization conflicts with other
processes. Whenever a conflict is discovered after the fact, the offending process is
rolled back to the time just before the conflict, no matter how far back that is, and then
executed forward again along a revised path. Both the detection of synchronization
conflicts and the rollback mechanism for resolving them are transparent to the user.

Local control mechanism

Although in the whole system is a single global virtual time, there is no global virtual
time variable in the implementation. Instead, each process has its own local virtual
clock variable that contains local virtual time (LVT) . The local virtual time of a
process does not change during an event at that process; it changes only between
events, and then only to the value in the timestamp of the next message in the input
queue. At any moment some local virtual clocks will be ahead of others, but this fact
is invisible to the processes themselves because they can read only their own virtual
clock. Whenever a message is sent, its virtual send time is copied from the sender’s
virtual clock.

Each process has a single input queue in which all arriving messages are stored in
order of increasing virtual receive time. Ideally, the execution of a process is simply a
cycle in which it receives messages and executes events in increasing virtual time
order. This ideal execution proceeds as long as no message arrives with a virtual
receive time less then local virtual time. Whatever the reasons for the late arrival of a
message with a low timestamp, the semantics of virtual time demands that incoming

messages be received by each process strictly in timestamp order. The only way to
accomplish this is for the receiver to roll back to an earlier virtual time, canceling all
intermediate side effects, and then to execute forward again, this time receiving the
late message in its proper sequence.

Because it is impossible to wait for the „next“ message, each process executes
continuously, processing in increasing virtual time receive order those messages that
already arrived. All of its execution is provisional, however, because it constantly
assumes that no message will arrive with a virtual receive time less than the one
stamped on the message it is now processing.

Future messagesPast messages

Current message
(current event)

Input queue

Output queueState queue

LVT

State saving

State
update

Behavior

Messages sent
to other processes

Current
state

Fig. 3 Basic problem of parallel simulation

To understand the rollback mechanism, we must describe more of the structure of
processes and messages. The runtime representation of a process is composed of (see
also Fig. 3):

• A local virtual clock LVT.

• A state, which in general is the entire data space of the process, including its
execution stack, its own variables, and its program counter.

• A state queue, containing saved copies of recent states of the process.

• An input queue, containing all recently arrived messages sorted in order of virtual
receive time.

• An output queue, containing copies of the messages the process has recently sent,
kept in virtual send time order. They are needed in case of rollback, in order to
„unsend“ them.

The semantics of rollback is following:

When a message arrives at the input queue of a process with a timestamp lower than
the virtual clock time, the recent work of the process is incorrect and must be undone
by rollback. The first step is recover the state of the process to the state, saved in state
queue. The second step is undone the effect of incorrect messages sent. This is done
by sending an antimessage for every incorrect message sent. For every message there
exists an antimessage that is exactly like it in format and concept except one field, its
sign. Whenever a message and its antimessage occur in the same queue, they
immediately annihilate. If message and antimessage annihilate and message was not
performed, nothing is done. But if message and antimessage annihilate and message
was performed, there is need for secondary rollback on another process.

This antimessage protocol is extremely robust, and works correctly under all possible
circumstances. There is no possibility of deadlock (simply because there is no
blocking). There is also no possibility of the „domino effect“ (i.e., a cascading of
rollbacks far into the past); the worst case is that all processes in the system roll back
to the same virtual time as the original one did, and then proceed forward again.

Memory management schemes for Time Warp

The huge memory usage is one of the problems of the optimistic approach. Some
schemes were developed that reduce the memory usage. We will present three
examples of reducing of the memory usage [Sam89]. Time Warp consumes memory
by storing three types of objects: state vectors in the state queue, messages in input
queue and messages in output queue. We can classify memory management schemes
in Time Warp into two types:

• Schemes that reduce average memory usage but cannot necessarily reclaim
memory „on demand“, when the system runs out.

• Schemes that can reclaim memory „on demand“.

Following are the examples of schemes that reduce average memory usage:

1. Incremental State Save. When state size is large and only a small portion of the
state is modified by an event, only the change is recorded rather than making a
copy of the entire state. This reduces both space usage an copying time. However
when a rollback occurs, some time must be spent to recover an old state from a
series of recorded changes.

2. Infrequent State Save. State saving frequency can be reduced to suit the memory
available in the system. This, however, has a certain performance penalty as some
correct computations must be executed that would not be required if state were
saved more frequently. Also, there is a tradeoff because infrequent state saving
precludes fossil collection of some past events.

3. Limited Optimism. Different variations of the optimistic approach have been
developed that limit the degree to which processes can advance ahead of others.
Some of these bound all the processes within a time window, and some try to

control the spread of erroneous computation as quickly as possible. These schemes
were suggested primarily to reduce rollbacks, but they implicitly reduce memory
usage by limiting the number of future objects.

Schemes that can reclaim memory „on demand“ are quite complicated and their
description is out of scope of this article. More information about these schemes can
be found e.g. in literature [Sam89].

Conclusion

The aim of the article was to present some problems with implementation of the Time
Warp for parallel or distributed simulation. The main problem presented is a local
control mechanism itself. This mechanism is the heart of the efficient Time Warp
system. The problems of memory management was presented as well.

References
[Fuj90] Fujimoto, R.: Parallel Discrete-Event Simulation, Comm. of ACM vol. 33,

No. 10, 30-53
[Jag91] Jagannathan, S.: Optimizing Analysis for First-Class Tuple-Spaces, in

Advances in Languages and Compilers for Parallel Processing, Pitman
Publishing, London 1991, ISBN 0953-7767

[She91] Shekhar, K., H, Srikant, Y., N.: Linda Sub System on Transputers, in
Transputing 91, IOS Press 1991

 [Han92] Hanáèek P., Pøikryl P.: The Linda System in a Distributed Environment --
the Experimental Implementation, SOFSEM'92, Ždiar, Magura, 22.11. -
4.12.1992, 4 strany

[Car91] Carriero N., Gelernter D.: Tuple Analysis and Partial Evaluation Strategies
in the Linda Precompiler, in Advances in Languages and Compilers for
Parallel Processing, Pitman Publishing, London 1991, ISBN 0953-7767

[Han93] Hanáèek P.: Parallel Simulation Using the Linda Language, MOSIS'93,
Olomouc 1.6.-4.6. 1993

[Han96] Hanáèek P.: Virtual Time for Parallel Simulation, MOSIS'96, Zábøeh na
Moravì, 1996

[Sam89] Das, S. R., Fujimoto, R. M.: A Performance of the Cancelback Protocol for
Time Warp, NSF grant CCR-8902362, 1989

[Jef85] Jefferson, D. R.: Virtual Time, ACM Transactions on Programming
Languages and Systems, 7(3):404-425, July 1985

[Jef90] Jefferson, D. R.: Virtual Time II: The Cancelback protocol for storage
management in distributed simulation, Proc. 9th Annual ACM Symposium
on Principles of Distributed Computation, pages 75-90, August 1990

