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ABSTRACT: The article deals with the problems of parallel discrete event 
simulation in which every process represents an object in the simulation. The main 
problem of parallel simulation discrete event simulation is the time synchronization of 
the processes, running on different processors. One approach to the solution of this 
problem, called Virtual Time Concept, or Time Warp, is presented. The Linda 
programming language is considered as a tool for description of parallel running 
processes. The Linda programming language (or system) works in a distributed 
environment. The distributed environment is thought of as a set of processors which 
run in parallel and which do not share a common memory. The processors 
communicate only via communication links. 

Keywords: parallel simulation, distributed computing, event-driven simulation, 
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Introduction 

One of  the major goals of the parallel discrete event simulation is to simulate the 
problems on the network of the processors faster than on a single processor. A number 
of problems is known that may impact the performance of the parallel discrete event 
simulation system. They include: simulation time synchronization, development of 
models which identify parallelism, partitioning of the problems for execution on 
processors, scheduling strategy to select one of many ready to run processes, and how 
the partitioned problem is to be allocated to processors. In this article we will deal 
with the first problem - simulation time synchronization. 

Parallel discrete event simulation 

The major issues in event-driven simulation are the scheduling of events and the 
evaluation of these events. For parallel execution of  the simulation program are often 
used the almost same scheduling and evaluation principles as for sequential 
simulation. The simulation time synchronization in the sequential environment is 
trivial problem because of presence common memory visible for all processes. The 



synchronization is performed after each advance of simulation time. Since the target 
environment for parallel execution is often loose-coupled multiprocessor architecture 
(e.g. network of Transputers or local area network of computers) the loose degree of 
coupling may result in relatively long communication delays. Big effort should be 
made to minimize the overhead of synchronization in order to achieve acceptable 
performance.  

To limit the overhead arising from frequent synchronization, it is desirable to increase 
the interval between synchronization points. One possibility that can be exploited is to 
enforce restrictions on which elements can be placed on a given processor, i.e. force 
placement of elements on the processors in such a manner that there is no need for 
synchronization at every time step. In that case the most of the synchronization is 
performed locally inside the processor an the number of synchronization points for 
interprocessor synchronization is reduced. 

At these synchronization points the synchronization messages are exchanged among 
the processors. The synchronization is performed by one of the two approaches known 
as conservative and optimistic respectively (see [Fuj90]).  Strict or conservative 
interprocessor synchronization - in which each processor waits for messages to arrive 
from all other processors upon which the given processor is dependent before 
beginning the next phase of computation - may lead to idle periods between 
successive simulation cycles which are longer than necessary. To reduce idleness, it is 
possible to relax the strict synchronization requirement by permitting processors to 
optimistically proceed with evaluation using currently available information, then 
correct any erroneous computation as messages begin arriving.  

Performance studies show that both of the approaches are susceptible to some 
limitations. These studies indicate that conservative method fails when the application 
exhibits poor lookahead - in that case it may perform worse than sequential 
simulation. Accordingly, the optimistic approach becomes exposed to state saving and 
processing overhead especially when the application has an excessive rollbacks to the 
simulation system.   

When the problem size and the number of processors become large, the risk for 
explosive cascading of rollbacks increases. This situations occurs mainly by processes 
that rapidly advance far in future simulation time. Cascading rollbacks dramatically 
decrease performance and prohibit the simulation to scale.  

In following sections we will discus one approach to optimistic interprocessor 
synchronization for parallel simulation, called virtual time approach. 

Virtual time 

Virtual time [Jef85] and its implementation Time Warp is a method for organizing 
distributed systems by imposing on them  a temporal coordinate system more 
computationally meaningful than real time, and defining all user-visible notions of 
synchronization an timing in terms of it. The Time Warp implements virtual time. 

Most distributed systems (including all those based on locks, semaphores, monitors 
etc.) use some kind of block-resume mechanism to keep process synchronized. In 



contrast, the distinguishing feature of Time Warp is that it relies on general 
lookahead-rollback as its fundamental synchronization mechanism. Each process 
executes without regard to whether there are synchronization conflicts with other 
processes. Whenever a conflict is discovered after the fact, the offending process is 
rolled back to the time just before the conflict, no matter how far back that is, and then 
executed forward again along a revised path. Both the detection of synchronization 
conflicts and the rollback mechanism for resolving them are transparent to the user. 

Reducing the memory usage 

The huge memory usage is one of the problems of the optimistic approach. Some 
schemes were developed that reduce the memory usage. We will present three 
examples of reducing of the memory usage [Sam89]: 

1. Incremental State Save. When state size is large and only a small portion of the 
state is modified by an event, only the change is recorded rather than making a copy of 
the entire state. This reduces both space usage an copying time. However when a 
rollback occurs, some time must be spent to recover an old state from a series of 
recorded changes. 

2. Infrequent State Save. State saving frequency can be reduced to suit the memory 
available in the system. This, however, has a certain performance penalty as some 
correct computations must be executed that would not be required if state were saved 
more frequently. Also, there is a tradeoff  because infrequent state saving precludes 
fossil collection of some past events.  

3. Limited Optimism. Different variations of the optimistic approach have been 
developed that limit the degree to which processes can advance ahead of others. Some 
of these bound all the processes within a time window, and some try to control the 
spread of erroneous computation as quickly as possible. These schemes were 
suggested primarily or reduce rollbacks, but they implicitly reduce memory usage by 
limiting the number of future objects. 

How to describe a processes 

As a possibility how to describe a process in simulated system, we propose to use a 
Linda language. Linda is a language that was developed at Yale University and it is 
copyrighted by Scientific Computing Associates, Inc. Linda, however, lacks common 
features of usual programming languages. Linda does not define such things as 
variables, statements, and a syntax of programming structures. All of these common 
features are provided by some language that is called a base language. The Linda 
system is obtained by adding the small number of Linda operators to any of the 
sequential languages such as Pascal or C. Linda operators are used for the creation of 
processes running in parallel, for communication purposes, and for a synchronization 
of processes. The number of Linda operators is small, and they are quite simple. So, it 
is easy to understand them and use them. Linda is based on an associative memory 
model. An elementary memory unit is called a tuple. The tuple is an ordered collection 
of fields (called elements), and it is similar to a record in the relational database 
theory. Each element of the tuple has a type associated with it. The type is one of the 



valid types allowed in the base language. Linda defines three types of elements. 
Constants are thought of in the same meaning as constants in the base language. 
Actuals are names of variables that are used as input parameters of Linda operators. 
Formals are names of variables preceded by a question mark. Formals are used as 
output parameters of Linda operators. 

The tuple space is a collection of tuples. The tuple space can contain theoretically 
unlimited number of copies of the same tuple. The tuple space is a global shared 
object, and each process has access to it. 

Following rules are given for matching two tuples: 

• To be a candidate for matching, the number of fields in  the tuple and the their 
types must be the same. 

• Actuals match actuals, constants match constants, and  actuals match constants if 
they are of the same type and  if they have the same value. 

• Actuals match formals and constants match formals if they  are of the same type (a 
formal has no value). 

Linda operators 

Linda defines only six operators: out(tuple), rd(tuple), in(tuple), inp(tuple), 
eval(list_of_arguments). 

• out(tuple) - this operator is used for putting the tuple into the tuple space. The 
process that performed the operation is not blocked. For example, the operation 
out('count', 2) will put the tuple ('count', 2) into the tuple space. 

• rd(tuple) - the operator rd is used for reading values of elements from the tuple 
(placed in the tuple-space) that matches the argument. The process that executes 
this operation is blocked until the matched tuple is found. For example, the 
operation rd('count', ?x) will match the tuple generated in the previous example 
from the tuple space. After finishing the operation the variable x will contain the 
value 2. 

• in(tuple) - this operator is similar to the rd() operator with one exception; the 
matched tuple is removed from the tuple space. 

• rdp(tuple), inp(tuple) - these operators are the predicate versions of the rd() and 
in() operators. They are non-blocking operators. They return True if the matched 
tuple is found in the tuple space, otherwise they return False. 

• eval(list_of_arguments) - this operator allows to create processes executed in 
parallel. An argument can be an element or a closure. Closure is a pair consisting 
of the values of all free variables defined within a function along with the text 
(code) of the function body. Linda evaluates all closures in parallel and the result is 
placed into the tuple space. For example eval('result', load(a), load(b)) will evaluate 
two functions load in parallel and the tuple ('result', value1, value2) will be placed 



into the tuple space. The value1 is the result of the function call load(a), and the 
value2 is the result of the function call load(b). 

Typical simulation process in Linda language 

Using of the Linda language for the simulation purposes will be shown in two 
examples. The model that we use consists of five blocks. Each block has several 
inputs and one output. The connection of blocks is shown on the following picture: 

 

Fig. 1 An example of simulated objects 

We will show program in Linda language which describes the B1 block. This block 
has three inputs A, B, C and one output Q. Value of the Q output is dependent on the 
input values and the model-time. In the case of continuous simulation we will use two 
types of tuples. The first one is keeping the current model-time, the second one is 
keeping the value of output of each element. 

 Tuple ("Time", Step, Time); 
 Tuple ("Value", "ElementName", Value); 

void B1 () { 
   for (;;) { 
     rd ("Time", Step++, ?Time);   // Reading model time 
     in ("Value", "B2", ?A);       // Reading input A 
     in ("Value", "B3", ?B);       // Reading input B 
     in ("Value", "I1", ?C);       // Reading input C 
     Q =function (A, B, C, Time);  // Calculating output 
     out ("Value", "B1", X);       // Sending output value 
     out ("Value", "B1", X);       // twice - fan-out is 2 
     } 
   } 

Fig. 2 An example of object process 

The program which describes the B1 element is an endless loop. The body of the loop 
in each cycle reads the model time, reads the input values of the element, calculates 
the output value and sends it to the tuple space. 



Conclusion 

The previous examples are very simple, but they show how to solve some simulation 
problems using the Linda language and Time Warp approach. Using this language is 
not only another approach to the already solved problems. It allows to speed up 
simulation many times because allows user-transparent division of the computational 
load between many processors in the distributed computing environment. 
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