Virtual time for parallel simulation

Petr Hanaéek
Department of Computer Science and Engineering,
Faculty of Electrical Engineering and Computer Scee
Technical University of Brno
Bozetichova 2, 612 66 Brno
e-mail: hanacek@dcse.fee.vutbr.cz

ABSTRACT: The article deals with the problems of parallel discrete event
simulation in which every process represents an object in the simulation. The main
problem of parallel simulation discrete event simulation is the time synchronization of
the processes, running on different processors. One approach to the solution of this
problem, called Virtual Time Concept, or Time Warp, is presented. The Linda
programming language is considered as a tool for description of parallel running
processes. The Linda programming language (or system) works in a distributed
environment. The distributed environment is thought of as a set of processors which
run in parallel and which do not share a common memory. The processors
communicate only via communication links.

Keywords. parallel simulation, distributed computing, ewveniven simulation,
demand-driven simulation, Linda language.

Introduction

One of the major goals of the parallel discreten¢\simulation is to simulate the
problems on the network of the processors fasger tim a single processor. A number
of problems is known that may impact the perforneaotthe parallel discrete event
simulation system. They include: simulation timen@yonization, development of
models which identify parallelism, partitioning tfhe problems for execution on
processors, scheduling strategy to select one of/meady to run processes, and how
the partitioned problem is to be allocated to pssoes. In this article we will deal
with the first problem - simulation time synchroaiion.

Parallel discrete event simulation

The major issues in event-driven simulation are ghkeduling of events and the
evaluation of these events. For parallel executionhe simulation program are often
used the almost same scheduling and evaluationcipis as for sequential
simulation. The simulation time synchronization the sequential environment is
trivial problem because of presence common memiple for all processes. The

synchronization is performed after each advancsirotilation time. Since the target
environment for parallel execution is often loosequled multiprocessor architecture
(e.g. network of Transputers or local area netwairkomputers) the loose degree of
coupling may result in relatively long communicatidelays. Big effort should be

made to minimize the overhead of synchronizatioroider to achieve acceptable
performance.

To limit the overhead arising from frequent synchzation, it is desirable to increase
the interval between synchronization points. Ongsjimlity that can be exploited is to
enforce restrictions on which elements can be glagea given processor, i.e. force
placement of elements on the processors in suchraen that there is no need for
synchronization at every time step. In that cagerttost of the synchronization is
performed locally inside the processor an the nunabesynchronization points for

interprocessor synchronization is reduced.

At these synchronization points the synchronizatissages are exchanged among
the processors. The synchronization is performeaneyof the two approaches known
as conservative and optimistic respectively (seg9[#). Strict or conservative
interprocessor synchronization - in which each gssor waits for messages to arrive
from all other processors upon which the given essor is dependertiefore
beginning the next phase of computation - may léadidle periods between
successive simulation cycles which are longer tieaessary. To reduce idleness, it is
possible to relax the strict synchronization regpnent by permitting processors to
optimistically proceed with evaluation using currently availabiéormation, then
correct any erroneous computation as messages &ewyimg.

Performance studies show that both of the appr@ache susceptible to some
limitations. These studies indicate that conseveatnethod fails when the application
exhibits poorlookahead - in that case it may perform worse than sequentia
simulation. Accordingly, the optimistic approactcbmes exposed to state saving and
processing overhead especially when the applicdta@nan excessive rollbacks to the
simulation system.

When the problem size and the number of procedseceme large, the risk for

explosive cascading of rollbacks increases. Thigm8ons occurs mainly by processes
that rapidly advance far in future simulation tin@gascading rollbacks dramatically
decrease performance and prohibit the simulatictade.

In following sections we will discus one approaah dptimistic interprocessor
synchronization for parallel simulation, calkadtual time approach.

Virtual time

Virtual time [Jef85] and its implementation Time ¥as a method for organizing
distributed systems by imposing on them a tempomdrdinate system more
computationally meaningful than real time, and wiefy all user-visible notions of
synchronization an timing in terms of it. The TiM&rp implements virtual time.

Most distributed systems (including all those basadocks, semaphores, monitors
etc.) use some kind dilock-resume mechanism to keep process synchronized. In

contrast, the distinguishing feature of Time Wag that it relies on general
lookahead-rollback as its fundamental synchronization mechanism. Hadtess
executes without regard to whether there are spmcration conflicts with other
processes. Whenever a conflict is discovered #tierfact, the offending process is
rolled back to the time just before the confliat, matter how far back that is, and then
executed forward again along a revised path. Bla¢hdetection of synchronization
conflicts and the rollback mechanism for resolvingm are transparent to the user.

Reducing the memory usage

The huge memory usage is one of the problems obfhienistic approach. Some
schemes were developed that reduce the memory .uddgewill present three
examples of reducing of the memory usage [Sam89]:

1. Incremental State Save. When state size is large and only a small portibthe
state is modified by an event, only the changeésnded rather than making a copy of
the entire state. This reduces both space usagm@ing time. However when a
rollback occurs, some time must be spent to recaveold state from a series of
recorded changes.

2. Infrequent State Save. State saving frequency can be reduced to suiti@ory
available in the system. This, however, has a icepgarformance penalty as some
correct computations must be executed that wouldeaequired if state were saved
more frequently. Also, there is a tradeoff becaun$equent state saving precludes
fossil collection of some past events.

3. Limited Optimism. Different variations of the optimistic approaclavke been
developed that limit the degree to which processesadvance ahead of others. Some
of these bound all the processes within a time awdand some try to control the
spread of erroneous computation as quickly as plessiThese schemes were
suggested primarily or reduce rollbacks, but thaplicitly reduce memory usage by
limiting the number of future objects.

How to describe a processes

As a possibility how to describe a process in satad system, we propose to use a
Linda language. Linda is a language that was deeelat Yale University and it is
copyrighted by Scientific Computing Associates,. lnimda, however, lacks common
features of usual programming languages. Linda dumsdefine such things as
variables, statements, and a syntax of programmtingtures. All of these common
features are provided by some language that iecal base language. The Linda
system is obtained by adding the small number ofd&ioperators to any of the
sequential languages such as Pascal or C. Lindatope are used for the creation of
processes running in parallel, for communicatiorppees, and for a synchronization
of processes. The number of Linda operators islsarad they are quite simple. So, it
is easy to understand them and use them. Lindasedbon an associative memory
model. An elementary memory unit is calletligle. The tuple is an ordered collection
of fields (called elements), and it is similar torexord in the relational database
theory. Each element of the tuple has a type assativith it. The type is one of the

valid types allowed in the base language. Lindandsfthree types of elements.
Constants are thought of in the same meaning as constantkeinbase language.
Actuals are names of variables that are used as input p#eesnof Linda operators.
Formals are names of variables preceded by a question rRarknals are used as
output parameters of Linda operators.

The tuple space is a collection of tuples. The tuple space can aantheoretically
unlimited number of copies of the same tuple. Tinglet space is a global shared
object, and each process has access to it.

Following rules are given for matching two tuples:

* To be a candidate for matching, the number of $ietd the tuple and the their
types must be the same.

e Actuals match actuals, constants match constantk, actuals match constants if
they are of the same type and if they have theesatue.

» Actuals match formals and constants match fornfdlsely are of the same type (a
formal has no value).

Linda operators

Linda defines only six operators: out(tuple), rg{®, in(tuple), inp(tuple),
eval(list_of arguments).

» out(tuple) - this operator is used for putting the tuple ithe tuple space. The
process that performed the operation is not blocked example, the operation
out(‘count’, 2) will put the tuple (‘count’, 2)anthe tuple space.

* rd(tuple) - the operator rd is used for reading values ofneldgs from the tuple
(placed in the tuple-space) that matches the arguriiée process that executes
this operation is blocked until the matched tupefound. For example, the
operation rd(‘count’, ?x) will match the tuple gerted in the previous example
from the tuple space. After finishing the operattbe variable x will contain the
value 2.

* in(tuple) - this operator is similar to the rd() operator twitne exception; the
matched tuple is removed from the tuple space.

» rdp(tuple), inp(tuple) - these operators are the predicate versions ofdf)eand
in() operators. They are non-blocking operatorseyTteturn True if the matched
tuple is found in the tuple space, otherwise tletyrn False.

» eval(list_of_arguments) - this operator allows to create processes executed
parallel. An argument can be an element or a obo€ilosure is a pair consisting
of the values of all free variables defined witlErfunction along with the text
(code) of the function body. Linda evaluates ajlscires in parallel and the result is
placed into the tuple space. For example eval(ttekmad(a), load(b)) will evaluate
two functions load in parallel and the tuple (‘fésualuel, value2) will be placed

into the tuple space. The valuel is the resulheffunction call load(a), and the
value? is the result of the function call load(b).

Typical simulation process in Linda language

Using of the Linda language for the simulation msgs will be shown in two
examples. The model that we use consists of fieeksl. Each block has several
inputs and one output. The connection of bloclkshmwvn on the following picture:

— B2 I B4 —
A u
B PRl
C
— B3 BS [—
0
11

Fig. 1 An example of smulated objects

We will show program in Linda language which ddsesi the B1 block. This block
has three inputs A, B, C and one output Q. ValuthefQ output is dependent on the
input values and the model-time. In the case oficoous simulation we will use two
types of tuples. The first one is keeping the aurmodel-time, the second one is
keeping the value of output of each element.

Tuple ("Tinme", Step, Tine);

Tupl e ("Value", "ElenmentNanme", Val ue);
void Bl () {
for (;;) {
rd ("Time", Step++, ?Tine); /'l Reading nodel tine
in ("Value", "B2", ?A); /'l Reading input A
in ("Value", "B3", ?B); /'l Reading input B
in ("Value", "I1", ?0; /1 Reading input C
Q =function (A B, C Tine); // Calculating output
out ("Value", "Bl", X); /'l Sending out put val ue
out ("Vvalue", "Bl", X); /] twice - fan-out is 2
}
}

T N N N N N N N NN N N N N N N

Fig. 2 An example of object process

The program which describes the B1 element is diess loop. The body of the loop
in each cycle reads the model time, reads the impluies of the element, calculates
the output value and sends it to the tuple space.

Conclusion

The previous examples are very simple, but theysmow to solve some simulation
problems using the Linda language and Time Warpaggh. Using this language is
not only another approach to the already solvedlpmos. It allows to speed up
simulation many times because allows user-trangpaligision of the computational
load between many processors in the distributedpotimg environment.

References

[Fuj90] Fujimoto, R.: Parallel Discrete-Event Siratibn, Comm. of ACM vol. 33,
No. 10, 30-53

[Jag91] Jagannathan, S.: Optimizing Analysis forstFClass Tuple-Spaces, in
Advances in Languages and Compilers for Parallelcéssing, Pitman
Publishing, London 1991, ISBN 0953-7767

[She91] Shekhar, K., H, Srikant, Y., N.: Linda SBfstem on Transputers, in

Transputing 91, I0S Press 1991

[Han92] Hanééek P., Pgikryl P.: The Linda Systam Distributed Environment --

[Car91]

[Han93]

the Experimental Implementation, SOFSEM'92, ZdMggura, 22.11. -
4.12.1992, 4 strany

Carriero N., Gelernter D.: Tuple AnalysiedaPartial Evaluation Strategies
in the Linda Precompiler, in Advances in Languagad Compilers for
Parallel Processing, Pitman Publishing, London 1889BN 0953-7767
Han&éek P.: Parallel Simulation Using theda Language, MOSIS'93,
Olomouc 1.6.-4.6. 1993

[Sam89] Das, S. R., Fujimoto, R. M.: A Performant¢he Cancelback Protocol for

[Jef85]

[Jefo0]

Time Warp, NSF grant CCR-8902362, 1989

Jefferson, D. R.: Virtual Time, ACM Trantaos on Programming
Languages and Systems, 7(3):404-425, July 1985

Jefferson, D. R.: Virtual Time Il The Cafloack protocol for storage
management in distributed simulation, Proc. 9th velrACM Symposium

on Principles of Distributed Computation, page905August 1990

