

Virtual time for parallel simulation
Petr Hanáèek

Department of Computer Science and Engineering,
Faculty of Electrical Engineering and Computer Science

Technical University of Brno
Božetìchova 2, 612 66 Brno

e-mail: hanacek@dcse.fee.vutbr.cz

ABSTRACT: The article deals with the problems of parallel discrete event
simulation in which every process represents an object in the simulation. The main
problem of parallel simulation discrete event simulation is the time synchronization of
the processes, running on different processors. One approach to the solution of this
problem, called Virtual Time Concept, or Time Warp, is presented. The Linda
programming language is considered as a tool for description of parallel running
processes. The Linda programming language (or system) works in a distributed
environment. The distributed environment is thought of as a set of processors which
run in parallel and which do not share a common memory. The processors
communicate only via communication links.

Keywords: parallel simulation, distributed computing, event-driven simulation,
demand-driven simulation, Linda language.

Introduction

One of the major goals of the parallel discrete event simulation is to simulate the
problems on the network of the processors faster than on a single processor. A number
of problems is known that may impact the performance of the parallel discrete event
simulation system. They include: simulation time synchronization, development of
models which identify parallelism, partitioning of the problems for execution on
processors, scheduling strategy to select one of many ready to run processes, and how
the partitioned problem is to be allocated to processors. In this article we will deal
with the first problem - simulation time synchronization.

Parallel discrete event simulation

The major issues in event-driven simulation are the scheduling of events and the
evaluation of these events. For parallel execution of the simulation program are often
used the almost same scheduling and evaluation principles as for sequential
simulation. The simulation time synchronization in the sequential environment is
trivial problem because of presence common memory visible for all processes. The

synchronization is performed after each advance of simulation time. Since the target
environment for parallel execution is often loose-coupled multiprocessor architecture
(e.g. network of Transputers or local area network of computers) the loose degree of
coupling may result in relatively long communication delays. Big effort should be
made to minimize the overhead of synchronization in order to achieve acceptable
performance.

To limit the overhead arising from frequent synchronization, it is desirable to increase
the interval between synchronization points. One possibility that can be exploited is to
enforce restrictions on which elements can be placed on a given processor, i.e. force
placement of elements on the processors in such a manner that there is no need for
synchronization at every time step. In that case the most of the synchronization is
performed locally inside the processor an the number of synchronization points for
interprocessor synchronization is reduced.

At these synchronization points the synchronization messages are exchanged among
the processors. The synchronization is performed by one of the two approaches known
as conservative and optimistic respectively (see [Fuj90]). Strict or conservative
interprocessor synchronization - in which each processor waits for messages to arrive
from all other processors upon which the given processor is dependent before
beginning the next phase of computation - may lead to idle periods between
successive simulation cycles which are longer than necessary. To reduce idleness, it is
possible to relax the strict synchronization requirement by permitting processors to
optimistically proceed with evaluation using currently available information, then
correct any erroneous computation as messages begin arriving.

Performance studies show that both of the approaches are susceptible to some
limitations. These studies indicate that conservative method fails when the application
exhibits poor lookahead - in that case it may perform worse than sequential
simulation. Accordingly, the optimistic approach becomes exposed to state saving and
processing overhead especially when the application has an excessive rollbacks to the
simulation system.

When the problem size and the number of processors become large, the risk for
explosive cascading of rollbacks increases. This situations occurs mainly by processes
that rapidly advance far in future simulation time. Cascading rollbacks dramatically
decrease performance and prohibit the simulation to scale.

In following sections we will discus one approach to optimistic interprocessor
synchronization for parallel simulation, called virtual time approach.

Virtual time

Virtual time [Jef85] and its implementation Time Warp is a method for organizing
distributed systems by imposing on them a temporal coordinate system more
computationally meaningful than real time, and defining all user-visible notions of
synchronization an timing in terms of it. The Time Warp implements virtual time.

Most distributed systems (including all those based on locks, semaphores, monitors
etc.) use some kind of block-resume mechanism to keep process synchronized. In

contrast, the distinguishing feature of Time Warp is that it relies on general
lookahead-rollback as its fundamental synchronization mechanism. Each process
executes without regard to whether there are synchronization conflicts with other
processes. Whenever a conflict is discovered after the fact, the offending process is
rolled back to the time just before the conflict, no matter how far back that is, and then
executed forward again along a revised path. Both the detection of synchronization
conflicts and the rollback mechanism for resolving them are transparent to the user.

Reducing the memory usage

The huge memory usage is one of the problems of the optimistic approach. Some
schemes were developed that reduce the memory usage. We will present three
examples of reducing of the memory usage [Sam89]:

1. Incremental State Save. When state size is large and only a small portion of the
state is modified by an event, only the change is recorded rather than making a copy of
the entire state. This reduces both space usage an copying time. However when a
rollback occurs, some time must be spent to recover an old state from a series of
recorded changes.

2. Infrequent State Save. State saving frequency can be reduced to suit the memory
available in the system. This, however, has a certain performance penalty as some
correct computations must be executed that would not be required if state were saved
more frequently. Also, there is a tradeoff because infrequent state saving precludes
fossil collection of some past events.

3. Limited Optimism. Different variations of the optimistic approach have been
developed that limit the degree to which processes can advance ahead of others. Some
of these bound all the processes within a time window, and some try to control the
spread of erroneous computation as quickly as possible. These schemes were
suggested primarily or reduce rollbacks, but they implicitly reduce memory usage by
limiting the number of future objects.

How to describe a processes

As a possibility how to describe a process in simulated system, we propose to use a
Linda language. Linda is a language that was developed at Yale University and it is
copyrighted by Scientific Computing Associates, Inc. Linda, however, lacks common
features of usual programming languages. Linda does not define such things as
variables, statements, and a syntax of programming structures. All of these common
features are provided by some language that is called a base language. The Linda
system is obtained by adding the small number of Linda operators to any of the
sequential languages such as Pascal or C. Linda operators are used for the creation of
processes running in parallel, for communication purposes, and for a synchronization
of processes. The number of Linda operators is small, and they are quite simple. So, it
is easy to understand them and use them. Linda is based on an associative memory
model. An elementary memory unit is called a tuple. The tuple is an ordered collection
of fields (called elements), and it is similar to a record in the relational database
theory. Each element of the tuple has a type associated with it. The type is one of the

valid types allowed in the base language. Linda defines three types of elements.
Constants are thought of in the same meaning as constants in the base language.
Actuals are names of variables that are used as input parameters of Linda operators.
Formals are names of variables preceded by a question mark. Formals are used as
output parameters of Linda operators.

The tuple space is a collection of tuples. The tuple space can contain theoretically
unlimited number of copies of the same tuple. The tuple space is a global shared
object, and each process has access to it.

Following rules are given for matching two tuples:

• To be a candidate for matching, the number of fields in the tuple and the their
types must be the same.

• Actuals match actuals, constants match constants, and actuals match constants if
they are of the same type and if they have the same value.

• Actuals match formals and constants match formals if they are of the same type (a
formal has no value).

Linda operators

Linda defines only six operators: out(tuple), rd(tuple), in(tuple), inp(tuple),
eval(list_of_arguments).

• out(tuple) - this operator is used for putting the tuple into the tuple space. The
process that performed the operation is not blocked. For example, the operation
out('count', 2) will put the tuple ('count', 2) into the tuple space.

• rd(tuple) - the operator rd is used for reading values of elements from the tuple
(placed in the tuple-space) that matches the argument. The process that executes
this operation is blocked until the matched tuple is found. For example, the
operation rd('count', ?x) will match the tuple generated in the previous example
from the tuple space. After finishing the operation the variable x will contain the
value 2.

• in(tuple) - this operator is similar to the rd() operator with one exception; the
matched tuple is removed from the tuple space.

• rdp(tuple), inp(tuple) - these operators are the predicate versions of the rd() and
in() operators. They are non-blocking operators. They return True if the matched
tuple is found in the tuple space, otherwise they return False.

• eval(list_of_arguments) - this operator allows to create processes executed in
parallel. An argument can be an element or a closure. Closure is a pair consisting
of the values of all free variables defined within a function along with the text
(code) of the function body. Linda evaluates all closures in parallel and the result is
placed into the tuple space. For example eval('result', load(a), load(b)) will evaluate
two functions load in parallel and the tuple ('result', value1, value2) will be placed

into the tuple space. The value1 is the result of the function call load(a), and the
value2 is the result of the function call load(b).

Typical simulation process in Linda language

Using of the Linda language for the simulation purposes will be shown in two
examples. The model that we use consists of five blocks. Each block has several
inputs and one output. The connection of blocks is shown on the following picture:

Fig. 1 An example of simulated objects

We will show program in Linda language which describes the B1 block. This block
has three inputs A, B, C and one output Q. Value of the Q output is dependent on the
input values and the model-time. In the case of continuous simulation we will use two
types of tuples. The first one is keeping the current model-time, the second one is
keeping the value of output of each element.

 Tuple ("Time", Step, Time);
 Tuple ("Value", "ElementName", Value);

void B1 () {
 for (;;) {
 rd ("Time", Step++, ?Time); // Reading model time
 in ("Value", "B2", ?A); // Reading input A
 in ("Value", "B3", ?B); // Reading input B
 in ("Value", "I1", ?C); // Reading input C
 Q =function (A, B, C, Time); // Calculating output
 out ("Value", "B1", X); // Sending output value
 out ("Value", "B1", X); // twice - fan-out is 2
 }
 }

Fig. 2 An example of object process

The program which describes the B1 element is an endless loop. The body of the loop
in each cycle reads the model time, reads the input values of the element, calculates
the output value and sends it to the tuple space.

Conclusion

The previous examples are very simple, but they show how to solve some simulation
problems using the Linda language and Time Warp approach. Using this language is
not only another approach to the already solved problems. It allows to speed up
simulation many times because allows user-transparent division of the computational
load between many processors in the distributed computing environment.

References
[Fuj90] Fujimoto, R.: Parallel Discrete-Event Simulation, Comm. of ACM vol. 33,

No. 10, 30-53
[Jag91] Jagannathan, S.: Optimizing Analysis for First-Class Tuple-Spaces, in

Advances in Languages and Compilers for Parallel Processing, Pitman
Publishing, London 1991, ISBN 0953-7767

[She91] Shekhar, K., H, Srikant, Y., N.: Linda Sub System on Transputers, in
Transputing 91, IOS Press 1991

 [Han92] Hanáèek P., Pøikryl P.: The Linda System in a Distributed Environment --
the Experimental Implementation, SOFSEM'92, Ždiar, Magura, 22.11. -
4.12.1992, 4 strany

[Car91] Carriero N., Gelernter D.: Tuple Analysis and Partial Evaluation Strategies
in the Linda Precompiler, in Advances in Languages and Compilers for
Parallel Processing, Pitman Publishing, London 1991, ISBN 0953-7767

[Han93] Hanáèek P.: Parallel Simulation Using the Linda Language, MOSIS'93,
Olomouc 1.6.-4.6. 1993

[Sam89] Das, S. R., Fujimoto, R. M.: A Performance of the Cancelback Protocol for
Time Warp, NSF grant CCR-8902362, 1989

[Jef85] Jefferson, D. R.: Virtual Time, ACM Transactions on Programming
Languages and Systems, 7(3):404-425, July 1985

[Jef90] Jefferson, D. R.: Virtual Time II: The Cancelback protocol for storage
management in distributed simulation, Proc. 9th Annual ACM Symposium
on Principles of Distributed Computation, pages 75-90, August 1990

