
Intel® AVX-512 Instructions and Their
Use in the Implementation of Math
Functions
Marius Cornea, Intel Corporation

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel SIMD ISA Evolution

P4
(Prescott,
2004)

MMX

SSE

SSE2

SSE3

Core
(Merom,
2006)

MMX

SSE

SSE2

SSE3

SSSE3

PIII
(Katmai,
1999)

MMX

SSE

P4
(Willamette,
2000)

MMX

SSE

SSE2

PII
(Klamath,
1997)

MMX

Core
(Penryn,
2007)

MMX

SSE

SSE2

SSE3

SSSE3

Core
(Nehalem,
2008)

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1 SSE4.1

SSE4.2

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

AVX

AVX2

AVX512F

AVX

AVX2

AVX512F

AVX512
DQ/BW/VL

AVX AVX

AVX2

Core
(Sky Lake)

Core
(Haswell,
2013)

Xeon Phi™
(Knights
Landing)

Core
(Sandy
Bridge,
2011)

64b
SIMD

128b
SIMD

256b
SIMD

512b
SIMD

Intel Restricted Secret

2

SIMD extensions on top of x86/x87
AVX512
ER/CD

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New Features Supporting Math Functions
in AVX512F, AVX512DQ, and AVX512ER
Static Rounding and Exception Suppression Controls

Reciprocal/Reciprocal Square Root Approximations, 14-Bit: VRCP14, VRSQRT14

Reciprocal/Reciprocal Square Root Approximations, 28-Bit: VRCP28, VRSQRT28

Exponential Approximations: VEXP2

New Permute Instructions: VPERM, VPERMI2

Instructions to Extract Exponent, Mantissa Fields: VGETEXP, VGETMANT

Instruction to Scale FP values by Power of 2: VSCALEF

Instruction to Round to Given Number of Fraction Bits: VRNDSCALE

Instruction to Extract Reduced Argument: VREDUCE

Instruction to Test FP Input Type: VFPCLASS

Instruction to Fix Up Special FP Values: VFIXUPIMM

Range Restriction Calculation Instruction: VRANGE

 3

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Where To Use These New Instructions?
Newton-Raphson Iterations for inverse, division, and square root (they are
self-correcting , and have a fast convergence rate)

 Start with an initial approximation of the inverse r (or inverse of the square
root)

 Iterate using FMA (might need extended precision or extra exponent bits or
range reduction to avoid potential underflow/overflow/loss of precision):

 e = (1 – x × r)rn

 r' = (r + e × r)rn

 Stop when the error requirement is met

Table Driven Algorithms
 From the input argument x, deduce variable y belonging to a much smaller

domain, such that f(x) can easily be calculated from f(y)

 For example, to compute exponential functions, decompose

 x = x’ + (x-x’) = round(x’) + (x’ – round(x’)) + (x-x’)

 where x’ is x rounded to a given number of fraction bits and

 y = (x-x’)

 Calculate f(y) with a low-degree polynomial

 Reconstruct f(x) from f(y); this may involve a table look-up

4

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Static Rounding and
Exception Suppression Controls
Static (per instruction) rounding: a rounding attribute in the EVEX
instruction prefix can override the MXCSR rounding mode

Static rounding also implies exception suppression (SAE) – they are
linked together in the instruction encoding; behavior: as if all FP
exceptions are disabled, and no status flags are set

Static rounding enables better accuracy control in intermediate steps

 E.g. the RN mode is used in intermediate steps for SW division and SW square root
for extra precision; the default MXCSR rounding mode is used in the last step

 The LSB matters e.g. in range reduction for trigonometric functions and other
cases

The SAE mode is useful when correct IEEE FP status flag settings are
needed

 Special cases can execute silently in the main path

 The precision flag can be set correctly in SW sequences such as division, square
root

5

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New Reciprocal/Reciprocal Square Root
Approximation Instructions
VRCP14PS/PD, VRSQRT14PS/PD

 14-bit accuracy – e.g. eliminates one NR iteration for double precision (DP)
calculations

 DP instruction is available - no more conversions needed between SP and DP

512-bit SW division and square root implementations can have
up to 2X better throughput than the HW instructions (but HW
instructions have better latency)

Short RCP/RSQRT approximations can be used also in many
transcendental function implementations

 E.g. in logarithm and inverse trigonometric function implementations

VRCP28PS/PD, VRSQRT28PS/PD

VEXP2PS/PD

6

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Evolution of Reciprocal Approximations

Trans11
(RCPPS,RSQRTPS)

14-Bit
(RCP14PD, RSQRT14PS,…)

28-Bit
(RCP28PD, RSQRT28PS,…)

AVX512F

AVX512ER

• Relative error: 2-11

• SP only

• Does not handle denormals
• Does not report exceptions

• Relative error: 2-14

• SP and DP

• Handles denormals
• Does not report exceptions
• Saves one NR iteration

• Relative error: 2-28 (*)

• SP and DP

• Does not handle denormals
• Reports exceptions
• Saves two NR iterations

(*) The Binary32 format precision is of only 24 bits (less than 28). After rounding, the final error
ends up in the range of ~ 2-23.4xxxx , very close to being IEEE correctly-rounded

7

11-Bit
(RCPPS,RSQRTPS) SSE

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New Permute Instructions
Permute instructions can be used in place of vector gather, e.g. for small
lookup tables

VPERMI2PS/PD, VPERMT2PS/PD

 VPERMI2PS zmm1, zmm2, zmm3

 Permute single-precision FP values from two tables in zmm3 and zmm2 using the indices
in zmm1 and store the result in zmm1

 VPERMT2PS zmm1, zmm2, zmm3 (overwrites one table)

 Permute single-precision FP values from two tables in zmm3 and zmm1 using indices in
zmm2 and store the result in zmm1

 Useful for 32-element lookup (SP), or 16-element lookup (DP)

 VPERMPS/PD

 VPERMPS zmm1, zmm2, zmm3

 Permute single-precision floating-point values in zmm3 using indices in zmm2 and store
the result in zmm1

 Useful for16-element lookup (SP), 8-element lookup (DP)

Compared to designs using vector gather for table lookup,
implementations using smaller lookup tables (permutes) and somewhat
longer polynomials can achieve ~2X better throughput

8

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Extract Exponent, Mantissa Fields

VGETEXPPS/PD dst, src

 VGETEXPPD zmm1, zmm2{sae}

 Convert the exponent of the packed double-precision floating-point
values in the source operand to DP FP results representing the unbiased
integer exponents, and store the results in the destination

 dst = floor(log2(|src|)

VGETMANTPS/PD dst, src, imm8

 src mantissa is normalized to one of 4 possible ranges: [1,2), [1/2,2), [1/2,1),
or [3/4,3/2); the range is specified by imm8[1:0]

 imm8[3:2] is used to control the output sign (same sign, or positive), and
optionally to trigger the Invalid exception if src<0 (useful e.g. for log, sqrt)

Facilitates efficient, branch-free implementations, because
denormals and other special arguments are processed on the
main path, at no extra cost

9

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example: Logarithm Function

 If x = 2N × mx, where mx is the mantissa (significand), then

log2(x) = N + log2(mx) = N + log2(1+r)

log(x) = N × log(2.0) + log(mx) = N × log(2.0) + log(1+r)

N and mx are computed using VGETEXP and VGETMANT, with

r = mx - 1

log2(1+r) can be approximated with a piecewise polynomial
(without a constant term)

10

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Scale by a Power of 2
VSCALEFPS/PD dst, src1, src2

 VSCALEFPS zmm1, zmm2, zmm3

 Scale the packed single/double precision floating-point values in zmm2
(src1) using floating-point values from zmm3 (src2)

 dst = src1 × 2floor(src2)

 Accepts all FP operands and covers special cases (Inf, NaN), eliminating the
need for other fix-up steps

Can be used e.g. to improve the exp function throughput: no
need to extract the exponent k separately and to form 2K

 Replace the final scaling in the exp implementation with VSCALEF

 Facilitates branch-free implementations (for up to 1 ulp accuracy level,
including gradual underflow results)

 No effect on exp latency

VSCALEF can also be used e.g. in a branch-free implementation
of cbrt, or in SW division and square root

11

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example: SW Division

Branch-free implementation of division:

 x = 2VGETEXP(x) * VGETMANT(x, 0), where VGETMANT(x,0)
 normalizes x to [1,2), and transfers the sign of src to dst

 a/b = VSCALEF(VGETMANT(a,0) / VGETMANT(b,0),
 VGETEXP(a) - VGETEXP(b))

where VGETMANT(a,0) / VGETMANT(b,0) can be calculated with a
NR-iteration, without possible overflow, underflow, or loss of
precision in the intermediate steps

Special cases (0, Inf, NAN) are also handled by VSCALEF

12

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Round to a Given Number of Fraction Bits
VRNDSCALEPS/PD dst, src, imm8

 VRNDSCALEPD zmm1, zmm2{sae}, imm8

 Rounds the packed double-precision FP values in zmm2 to a number of
fraction bits specified by the imm8 field. Stores the result in zmm1

 ROUNDSCALE(x) = 2-M*Round_to_INT(x*2M, round_ctrl),

 where round_ctrl = imm8[3:0] & M=imm8[7:4] - an integer M in 0 …15

 round_ctrl = imm8[3:0] are the same as for VROUND:

 bit 3 – Suppress Precision Exception

 bit 2 chooses the rounding control from either MXCSR or imm8

 bits 1,0 are the rounding control override (RN, RD, RU, or RZ)

 dst = 2-M* VROUND(src × 2M, imm8[3:0])

 There is no overflow/underflow

Can help in reducing the latency of some transcendental function
implementations, e.g. in the exp2 argument reduction step

Can also help eliminate a MUL from some sequences

13

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Extract the Reduced Argument
VREDUCEPS/PD dst, src, imm8

 VREDUCEPS zmm1, zmm2{sae}, imm8

 Subtracts the integer part and the leading M fractional bits from
the binary FP source value, where M is an unsigned integer
specified by imm8[7:4]; i.e. it performs a reduction transformation
on the packed single precision floating-point values in zmm2.
Stores the result in zmm1 register

 dst = src – VRNDSCALE(src, imm8) = src – (ROUND(2M*src))*2-M

 ROUND() treats src, 2M, and their product as binary FP numbers
with normalized significand and biased exponents

 If src= 2p*m, where m is the normalized significand and p is the
unbiased exponent, then for RN 0<=|dst|<=2p-M-1, and for other
rounding modes 0<=|dst|<=2p-M

Helps reduce computation latency

Usage examples: exp2, atan

 14

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Test Floating-Point Input Type

VFPCLASSPS/PD mask_dst, src, imm8

 Set mask if input is in the specified combination of these classes:
QNaN, Neg, Denorm, -Inf, +Inf, -0, +0, SNaN

 One imm8 bit is reserved for each input class listed

 Set the imm8 bits for the input classes to be tested

Helps filter out special cases for branching, or for setting
special results (under mask)

 vector masks make it easier to treat special inputs in a branch-free
manner, even without a FIXUP instruction

15

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Fix Up Special Values

VFIXUPIMMPD/PS dst, src, tbl32, imm8

 tbl32 is a 32-bit table storing the desired response for each of 8 possible
input types: QNaN, SNaN, Zero, One, -Inf, +Inf, Negative, Positive (not 0 or 1)

 There are 16 possible responses (including that of leaving the destination
register unmodified)

 The type of the input is checked, and then tbl32 is accessed to determine the
output, based on the input type

 Invalid or Divide-by-Zero exceptions are raised for certain input types, if
specified by the imm8 value

Can be used at the end of a computation, to set special results
according to standard specification (e.g. IEEE, DX10)

16

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Range Calculation

VRANGEPS/PD dst, src1, src2, imm8

 Computes min, max, minabs, or maxabs values according to the IEEE
standard 754-2008

 imm8[1:0] selects one of four functions

 imm8[3:2] used to select desired sign of the result

Can be used e.g. at the beginning of a Fast2Sum algorithm

 (need a > b)

s = (a + b)rn

z = (s − a)rn

t = (b − z)rn

17

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• https://software.intel.com/sites/default/files/managed/0d/53/
319433-022.pdf

• http://www.intel.com/products/processor/manuals/

18

References

https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

19

