
Configurable Reprogramming Scheme for Over-the-
Air Updates in Networked Embedded Systems 

Ondrej Kachman 

2nd year, full-time study 
Supervisor: Ladislav Hluchý, Consultant: Marcel Baláž 

 
Institute of Informatics, Slovak Academy of Sciences 

Dúbravská cesta 9, Bratislava, Slovak Republic 
ondrej.kachman@savba.sk 

 
 

Abstract—Networked embedded systems are nowadays used 
in various applications and the number of devices used in such 
systems grows by millions each year. Physically inaccessible, 
resource constrained low-power devices sometimes require 
remote over-the-air reprogramming. For the last 20 years, many 
reprogramming schemes have been developed and built upon. 
These schemes are required to be fast and energy effective. The 
amount of operations executed on the target devices should be 
minimal, delta files shared on the network should be very small. 
This paper analyzes existing solutions and proposes a new, 
configurable reprogramming scheme, that can provide more 
control over the process of the device reprogramming. 

Keywords—networked embedded system, over-the air update, 
reprogramming, low-power device 

I. INTRODUCTION 

Recent advances in the internet-of-things technologies 
enabled fast development of various systems of collaborating 
computational devices, also called networked embedded 
systems. Wireless sensor networks (WSNs) are the first 
example of such systems. WSNs are used to collect various 
data from their environment and mostly consist of low-power 
devices. These systems evolved into cyber-physical systems 
(CPS) in the last 10 years. These systems collect and process 
data, then take actions based on the results of processed 
information. CPS structure usually includes small low-power 
devices as sensors and actuators, various networking devices 
for networking and powerful computers for data processing 
[1]. 

A. Low-power devices and their reprogramming 

This paper is focused on the low-power devices often 
found in the described systems. These devices create an 
interface between physical and cyber world. The amount of 
the low-power devices in CPS or WSNs may vary, but it can 
often reach hundreds. Some of the devices may not be 
physically accessible after their deployment. These devices are 
battery powered and communicate through wireless network 
interface. They are expected to run for months or years after 
their deployment. Firmware of the devices developed under 
the test conditions may malfunction in the real environment. 

In that case, reconfiguration is required [2]. If simple 
reconfiguration of some parameters does not help, firmware 
requires reprogramming. To prevent the waste of energy, 
update data shared on the network and the number of 
operations executed on the target devices must be minimal. 
This is the main reason for the development of energy 
efficient reprogramming schemes for low-power devices. 

B. Related work 

The fist solutions developed in early 2000’s were loading 
the full firmware image onto the target device, then using 
bootloader to replace the old firmware version. Incremental 
reprogramming, loading many firmware versions one after 
another, resulted in rapid battery depletion. This triggered the 
development of block based reprogramming schemes. These 
schemes found updated blocks of the firmware, then sent these 
blocks to the target devices reducing amount of the data 
shared on the network and also the number of written memory 
cells. Latest reprogramming schemes use byte based 
differencing, providing the best results. 

1) Remote incremental linking [3]: In 2005, remote 
incremental linking scheme was proposed. This scheme 
introduced slop regions – a free space in the program memory 
between the firmware functions. This approach enabled 
functions to grow and shrink in their slop regions, reducing the 
shifts and relocation changes in the firmware, making it 
possible to generate smaller delta files. 

2) Zephyr [4]: Another roprogramming scheme proposed 
function indirection table to reduce the impact of function 
shifts on the delta generation. This approach created a table 
that pointed to all functions and the firmware would call 
functions through this table. However, this table only handled 
call instructions and not relative calls and jumps. Jumping 
to and from the table also resulted in worse execution time of 
a firmware. 

3) Hermes [5]: Built over Zephyr, this scheme allocates 
fixed addresses for variables, further ruducing the delta files 
size. This approach scans through the source files before the 
compiler is invoked and puts initialized and uninitialized 
variables into assigned structures, preserving their order when 

 77

PAD 2016, Kraví Hora, 14.9.-16.9.2016



the compiler generates .bss (for uninitialized variables) and 
.data (for initialized variables) sections. 

4) R3 reprogramming scheme [6]: This approach is 
focused on the relocatable code and object files. The object 
files for many low-power platforms have standard executable 
and linkable format (ELF). The files generated by compiler 
have relocatable format. Reference instructions in .text 
sections need their addresses resolved by linker. R3 sets these 
relocatable entries to zero, generates small metadata for a 
loader located on the target device, that resolves relocations 
during boot. Authors demonstrated improvement in delta size 
over existing solutions. 

5) Q-diff scheme [7]: This scheme is also focused on the 
object files. It also takes advantage of slop regions and 
improves the technique with possibility of placing a function 
and its slop region into a different part of the memory. This 
scheme changes layout of .bss and .data sections, requiring 
changes to instructions with indirect addressing of variables. 
To prevent changes to relative jumps, Q-diff adds new code 
blocks to the end of the memory, then points call 
instructions to those blocks. This may add more execution 
time to the firmware. Solution claims to be platform 
independent, however, authors do not address the problem of 
platform specific relocation types and how they identify 
relative or fixed reference instructions. One of the main 
benefits of Q-diff is that the update process does not require 
external memory and reboot to finish successfuly. 

II. DEFINITION OF A PROBLEM 

Previous chapter provides some insight into some of the 
most relevant reprogramming schemes for constrained low-
power devices. This chapter sums up the state-of-the art and 
describes, what can be done to improve the existing solutions. 

A. Compilers, linkers and object files summary 

Most of the analyzed literature avoids direct changes to 
compilers or linkers. This is very important, as the 
manufacturers of the devices usually provide compiler and 
linker for their platforms that is able to generate the most 
optimized code. There are approaches that altered registers 
allocated during compilation, but they worsened firmware 
execution time after every update. 

The best solution is to work with the object files. These 
files have standard ELF format and can be examined in their 
relocatable form, before linking, or in their executable form, 
after linking. By examining the relocatable files, linking 
process can be managed better. 

B. Platform independency summary 

Even solutions that claim to be platform independent 
cannot be fully independent. The authors of such solutions 
may have focused on the same family of devices only, or 
avoided explanation of their definition of platform 
independent. 

Every microcontroller family uses different relocation 
types. In order to be able to work with relocations, we must 
obtain the definitions of relocation types for chosen platforms. 

Every relocation type is calculated differently, some 
relocations have the same value at every memory position 
(call instructions, load from and store to RAM), some 
may change their value at different address (rjmp and rcall 
instructions). 

Furthermore, if the software alters the source code directly 
in the object files, it must include the complete instruction set 
of a chosen platform, making it even more platform specific. 
This is the case of Q-diff approach, that changes indirect 
instructions. To sum up, no solution can be fully platform 
independent. 

C. Memory fragmentation summary 

Slop regions fragment program memory. Different 
approaches argue that it is a waste of space and inefficient use 
of program space. There are also some speculations, that 
fragmented memory consumes more energy. 

If the linker is configured to provide slop regions to 
functions, it places them to the different parts of the program 
memory, resolves relocations correctly and generates 
executable file. No additional instructions are generated and 
the code is optimized by the compiler in the previous stage. As 
the most low-power devices currently use NAND flash 
memory for their firmware, the access time is the same. The 
point of slop regions is to use the program space to the full 
potential and enable to generate smaller deltas. It is not a 
waste of space nor inefficient. 

We carried out some experiments and evaluated energy 
consumption of a fragmented firmware. These experiments 
and their results are described in the following chapter. 

D. Proposed solution 

We propose configurable reprogramming scheme. Various 
methods have their own advantages and for different 
reprogramming strategies, different solutions may perform 
better. If there are not many incremental updates, there is no 
need to make unnecessary changes to function or variable 
placements. Requirements for our scheme: 

 Enable memory fragmentation and defragmentation. 
Fragmented memory with slop regions is better for 
frequent incremental updates with small deltas. 
Defragmented memory is the default state and has 
slightly better energy consumption. 

 Do not alter the source code. The source code is 
optimized for the best performance by the compiler, 
added instructions cause worse execution time. The 
reprogramming scheme also does not need to include 
processor specific instruction sets. 

 Take advantage of the relocatable entries. These can be 
read from the object files before linking. Their final 
address can be found out from the executable file. 
These entries can be used for memory fragmentation 
and can be stored on the target device, consuming 
memory but enabling small deltas, or they can be sent 
to the device saving memory but using larger deltas. 

 Enable updates that do not require external memory of 
a device. Apply the update on-the-fly and do not reboot 

 78

PAD 2016, Kraví Hora, 14.9.-16.9.2016



the device. Only clear the stack and registers if 
necessary. 

 The solution must enable differencing algorithms to 
generate as small delta files as possible to prevent 
network congestion and overall waste of energy on the 
network communication. 

III. USING RELOCATABLE CODE FOR MEMORY FRAGMENTATION 

This chapter describes, how will our solution use 
relocatable entries in object files to fragment and defragment 
program memory. First, we perform and experiment, that 
measures energy consumption of a chosen device with 
defragmented and fragmented memory. Then, we describe 
how relocations are resolved and which relocations have to be 
altered in a function when it is shifted. 

A. Energy consumption of a fragmented memory 

We perform an experiment on an ATmega32u4 
microcontroller with 32KB of NAND flash program memory. 
We base this experiment on the energy consumption 
estimation model for NAND flash memories [8]. The model 
suggests that the energy consumed during activation of a 
memory cell depends on how far from the previously activated 
region the cell is. The memory regions are created by 2k bytes 
and activation of each region consumes Ek energy. Formal 
representation: 

  


),(

0

jiN

k kEji  (1) 

i and j represent memory address. Term N(i,j) represents the 
largest changed region – 2N(i,j) bytes. 

  )(log),( 2 jijiN   (2) 

The energy Ek varies. The most energy is consumed by 
activation of a different page. Activation of cells within the 
same page does not consume as much energy. 

The test firmwares consisted of two or five jumps between 
the different pages of memory. The microcontroller was 
powered by a stable source with the voltage of 5V. We 
observed current consumption of each test scenario. The 
results of experiments are in the Table 1. 

TABLE I. AVERAGE CURRENT CONSUMPTION FOR FRAGMENTED MEMORY 

Firmware 
Max. 

activated 
regions 

Average 
current 
(mA) 

Description 

1 2 28,61 
Loop on a single 

page 

2 7 29,80 
Loop on a two 

consecutive pages 

3 11 30,06 
Loop on a two shifted 

consecutive pages 

4 14 30,20 2 pages, 16KB jump 

5 15 30,28 2 pages, 32KB jump 

6 14 30,27 
5 jumps throughout 

the whole 32KB 

We observe the increase in the current when we need to 
activate more regions for jumps. The worst case scenario is 
5% worse than the best case scenario. For expected lifetime of 
5 years, this could prolong the device’s battery life by 3 
months. However, it is not possible to keep the whole 
firmware on a single page. Second scenario, with 2 
consecutive pages, saves only 1,4% - 2 weeks out of 5 years. 
This is more realistic. This means that fragmented memory 
does require more energy, but not unacceptably more. 
Temporary fragmentation of a memory should not deplete the 
battery too fast and it can help to generate smaller delta files 
and save energy on a network communication. 

B. Shifting functions in the program memory 

This is currently in a development stage and has not been 
tested yet. For each function that is shifted, we must change 
relative instructions within this function and also all relative 
instructions pointing to this function. Fig. 1. illustrates a 
simple scenario with a shift of a function_2. Two relative 
jumps must be changed in the firmware in order for it to work 
correctly, a relative call to itself does not have to be changed. 

To find the relocations and their values, we must explore 
both relocatable and executable object files: 

 For every relocatable file, list all the .text sections 
with relocatable entries and store their offsets, sizes and 
types. 

 Resolve the final addresses of .text sections from the 
executable file. These addresses are assigned during 
linking. 

 Using the offsets of relocatable entries, find all final 
values of the generated relocations. 

Now, when the function is to be shifted, we know exactly 
which relocations must be altered. Note, that we do not add 
any additional instructions to the code, only alter the existing 
relative instructions (and possibly some calls to the shifted 
function). 

Currently, the tool that extracts all relocatable entries from 
the object files is complete. It requires platform specific 
relocation types to determine which relocations are relative. 
We have yet to program an update agent responsible for 
function shifts on the target devices. 

 

Fig. 1. Changes to some relocatable entries after a function shift 

 79

PAD 2016, Kraví Hora, 14.9.-16.9.2016



IV. GENERATING DELTA FILES 

The proposed technique will grant the programmers full 
control over the layout of a firmware. It will also be possible 
to store the table with relocations on the device. Providing 
single functions or whole modules with slop regions aims to 
generate small deltas for frequent, incremental updates. 
Differencing algorithms compare firmware images and encode 
data shifts as COPY operations and new data as ADD 
operations. 

We developed a differencing algorithm that can update a 
device without use of an external memory, does not require 
reboot and does not use RAM memory, it only requires 4 
generic purpose registers [9]. The algorithm is called Delta 
Generator and performed better than R3diff [6] (up to 19%) in 
6 out of 7 firmware change cases. 

Table 2 shows the sizes of the delta files generated by two 
differencing algorithms – R3diff and Delta Generator. R3diff 
sets all relocations to zero, Delta Generator uses slop regions. 
Column ‘Changed’ shows the amount of bytes that changed 
between the old and the new firmware. Once we improve our 
scheme to fully handle relocations and function shifts, delta 
files of Delta Generator should be even smaller. 

TABLE II. DELTA FILE SIZES GENERATED BY THE DIFFERENCING ALGORITHMS 

Firmware 
change case 

Changed 
(bytes) 

R3diff [6] 
Delta (bytes) 

Delta 
Generator [9] 
Delta (bytes) 

1 2 15 12 
2 2668 966 954 
3 1222 100 106 
4 3054 1522 1448 
5 3150 2051 1986 
6 648 1193 970 
7 3136 2057 1990 

V. AIMS OF THE DISSERTATION THESIS, CONCLUSION 

This chapter lists aims of the dissertation thesis and 
provides short commentary on how they will be accomplished. 
The aims are listed in the following subchapters. 

A. Definition of parameters that influence performance and 
energy consumption of over-the-air firmware updates 

The thesis will provide in-depth analysis of the chosen 
problem. It will list all known challenges in this area along 
with their solutions. Some of these problems have been 
mentioned throughout this paper. 

B. Proposal of an energy consumption estimation model for 
over-the-air updates of low-power devices 

Energy consumption estimation models can help evaluate 
any reprogramming scheme. With the more possible 
configurations of the firmware, these models can help choose 
the most effective update strategy. We published paper that 
describes how these models can help evaluate the energy 
efficiency of the reprogramming schemes – [10]. 

C. Design of a reprogramming scheme for fast and energy 
effective over-the-air updates of low-power devices 

We developed the differencing algorithm that generates 
small delta files. We also developed an update agent for target 
devices that does not use external memory, RAM memory and 
does not require reboot. We are currently working with 
relocatable code to give developers more control over the 
firmware layout, thus make proposed reprogramming scheme 
configurable. 

D. Implementation of a proposed scheme and its evaluation 
on a chosen hardware platforms 

Once the reprogramming scheme is complete, we will 
evaluate it on the ATmega microcontroller family, the 
MSP430 microcontroller family, and one other platform that 
has not been chosen yet. We aim at the low-power devices 
often used as sensors or actuators. 

E. Conclusion 

Our work is showing promise, but the real challenge is 
making our firmware reprogramming scheme more 
configurable. We published 2 papers from the completed 
work. Solution proposed in this paper is yet to be implemented 
on the target platforms and evaluated. This work has been 
supported by Slovak national project VEGA 2/0192/15. 

VI. REFERENCES 

[1]  F.-J. Wu, Y.-F. Kao and Y.-C. Tseng, "From wireless sensor networks 
towards cyber-physical systems," in Pervasive and Mobile Computing, 
vol. 7, Elsevier B.V., 2011, pp. 397-413. 

[2]  J. Shi, J. Wan, H. Yan and H. Suo, "A Survey of Cyber-Physical 
Systems," in International Conference on Wireless Communications 
and Signal Processing (WCSP), Nanjing, 2011.  

[3]  J. Koshy and R. Pandey, "Remote Incremental Linking for Energy-
Efficient Reprogramming fo Sensor Networks," in Proceeedings of the 
Second European Workshop on Wireless Sensor Networks, 2005.  

[4]  R. K. Panta, S. Bagchi and S. P. Midkiff, "Efficient incremental code 
update for sensor networks," ACM Transactions on Sensor Networks 
(TOSN), vol. 7, no. 4, February 2011.  

[5]  R. K. Panta and S. Bagchi, "Hermes: Fast and Energy Efficient 
Incremental Code Updates for Wireless Sensor Networks," in IEEE 
INFOCOM 2009, Rio de Janeiro, 2009.  

[6]  W. Dong, B. Mo, C. Huang, Y. Liu and C. Chen, "R3: Optimizing 
relocatable code for efficient reprogramming in networked embedded 
systems," in IEEE INFOCOM Proceedings, Turin, IEEE, 2013, pp. 315 
- 319. 

[7]  N. B. Shafi, K. Ali and H. S. Hassanein, "No-reboot and Zero-Flash 
Over-the-air Programming for Wireless Sensor Networks," in 9th 
Annual IEEE Communications Society Conference on Sensor, Mesh and 
Ad Hoc Communications and Networks (SECON), Seoul, 2012.  

[8]  J. Pallister, K. Eder, S. J. Hollis and J. Bennett, "A high-level model of 
embedded flash energy consumption," in International Conference on 
Compilers, Architecture and Synthesis for Embedded Systems (CASES), 
Jaypee Greens, 2014.  

[9]  O. Kachman and M. Balaz, "Optimized Differencing Algorithm for 
Firmware Updates of Low-Power Devices," in 19th IEEE International 
Symposium on Design and Diagnostics of Electronic Circuits and 
Systems, Kosice, 2016.  

[10] O. Kachman and M. Balaz, "Effective Over-the-Air Reprogramming for 
Low-Power Devices in Cyber-Physical Systems," in Technological 
Innovation for Cyber-Physical Systems, Lisbon, 2016.  

 

 80

PAD 2016, Kraví Hora, 14.9.-16.9.2016


