
High Performance Computing on Low Power
Devices

Vojtech Nikl
2nd year, full-time study

Supervisor Jiri Jaros

Brno University of Technology, Faculty of Information Technology
Bozetechova 2, Brno, Czech Republic

inikl@fit.vutbr.cz

Abstract—Nowadays, the power efficiency of modern proces-
sors is becoming more and more important apart from the overall
performance itself. Many programming tasks and problems do
not scale very well with higher number of cores due to being
memory or communication bound, therefore, it is often not
beneficial to use faster chips to achieve better runtimes. In this
case, employing slower low-power processors or accelerators may
be more efficient, and possibly get the same results using much
less energy. The dynamic runtime adjustments applied to the
system based on the properties of a given algorithm, such as
frequency and voltage scaling or switching off unneeded parts,
may further enhance power efficiency. This paper describes the
benefits of using low power chips for building an HPC cluster,
the group of algorithms where this approach can be useful,
possible system adjustments towards better power efficiency,
results achieved so far, and future plans.

Keywords—HPC, parallelism, low power, processor architec-
ture, supercomputers, k-Wave, MPI, OpenMP, performance eval-
uation, numerical methods, clocking

I. INTRODUCTION AND MOTIVATION

Even though computer processors have come a long way in
terms of performance, there are still many tasks and problems
which require large amounts of computing power to be suc-
cessfully solved. For some time, hardware engineers haven’t
been purely focusing on raw performance, but the energy
consumption has also become a very important factor. The use
of low power processors can be much more efficient for certain
kinds of algorithms, mainly for memory and communication
bound problems. Unfortunately, this is where algorithms’
scalability come into play. Underclocking processsor cores or
switching them off during these computationally non-intensive
phases may bring further energy benefits.

Today’s supercomputers are usually based on the x86 ar-
chitecture, specifically the Intel Sandy Bridge or newer. One
of many examples is the Anselm cluster1, located in Ostrava,
Czech Republic. It consists of 209 2×8-core Intel Xeon E5-
2665 2.6 GHz nodes, each with atleast 64 GB of RAM. Each
node requires approximately 230 W of power under full load,
while providing about 400 GFlop/s of theoretical performance
in 64-bit double precision. Most of that energy is dissipated

1https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview

into heat and therefore requires a very intensive and expensive
cooling system. Some systems chose a little bit different
approach towards higher power effectiveness. One of them
is the Fermi cluster2, located at the CINECA consortium,
Bologna, Italy. This cluster, on the other hand, consists of
10,240 nodes, each integrating 16-core IBM PowerA2 1.6GHz
processor. While the overall performance per node is about
half of the Anselm one’s, the peak power consumption is 4
times lower. This results in almost twice as good performance
per Watt ratio. The Green 500 list3 provides a ranking of
the most energy-efficient supercomputers in the world and
Fermi is close to the top at the 59th place, having over
2 GFlop/s per Watt. The most efficient supercomputer has
about 7 GFlop/s per Watt (January 2016). Current estimates
indicate that processor efficiencies will have to evolve from the
current 5 GFlop/s per Watt to 50 GFlop/s per Watt for exascale
machines to be viable [1], mainly because a realistic power
budget for an exascale system is 20 MW.

The Mont-Blanc project4 [2][3] is aiming to design a new
type of computer architecture capable of setting future global
HPC standards, built from energy-efficient solutions used in
embedded and mobile devices. The project is run by the
Barcelona Supercomputing Center5 and is funded mainly by
the European Commision. The main focuses of development
are the OmpSs parallel programming model to automatically
exploit multiple cluster nodes, transparent application check
pointing for fault tolerance, support for ARMv8 64-bit pro-
cessors, and the initial design of the Mont-Blanc Exascale
architecture. The main goal is to design a new high-end HPC
platform that is able to deliver a new level of performance/en-
ergy ratio when executing real applications that should provide
exascale performance using 15 to 30 times less energy.

Unfortunately, the approach of using ARM based kits has a
few downsides. Since the low power processors are generally
less powerful, it is necessary to employ much more of them

2CINECA consortium, IT, http://www.hpc.cineca.it/content/ibm-fermi-user-
guide

3http://www.green500.org/
4https://www.montblanc-project.eu/
5https://www.bsc.es/

 81

PAD 2016, Kraví Hora, 14.9.-16.9.2016



to reach the same level of the overall system performance,
however algorithms may have troubles scaling that high.

Another problem may be the amount of system mem-
ory where ARM based kits only offer 1–4 GB, which
can quickly become limiting for extensive simulations.
For communication-intensive algorithms, the mostly equiped
1 Gbit/s network cards are also going to be quite limiting,
although not as much as it might seem due to lower perfor-
mance of the chips. Another important reason to focus more
on power effectiveness is the resource allocation policy of
supercomputing centers. Currently, resources are distributed
among users based on core-hours, however in the future, users
will most likely be billed based on consumed kWhs, which is
going to put much more pressure on algorithm efficiency.

II. POWER CONSUMPTION ANALYSIS

In this section, frequency scaling benchmarks on x86 Intel
Xeon Haswell architecture are presented, as the first step of
understanding algorithm’s power consumption. The purpose
of these tests is to show the theoretical performance impact
on both compute and memory-bound problems, the scaling of
the power consumption of both the processor and memory
modules in relationship to performance, define the power
efficiency of different benchmarks in relation to the frequency
scaling and make a conclusion about suitability of these tests
in regards to low power architectures.

The tested system configuration is summarized in Table I.

TABLE I: System hardware overview.

Server Supermicro 7048GR-TR
Motherboard Supermicro X10DRG-Q

Processor 2×6-core Intel Xeon E5-2620v3
RAM DDR4-2133 64GB (4 channels)
SSD Crucial 250GB

The operating system is Ubuntu 14.04 with 3.19.0-51-
generic kernel version.

The energy measurements were taken using the PAPI
library6 and its RAPL framework [4], which can directly
access the hardware counters of the CPU. PAPI measures
the energy consumption of three main components of each
CPU - package, powerplane and dram. Package measures the
whole socket including the memory controller, powerplane
measures only the cores themselves and dram measures the
corresponding dram module. The powerplane measurements
were not supported on our system (always returned 0 Joules),
so only packages and drams were taken into account.

Our Haswell CPU supports frequencies ranging from 1.2 to
2.4 GHz, excluding Turbo mode. To be able to manually set
a chosen frequency, the Intel driver had to be replaced with
the ACPI driver and the governor was set from balanced to
userspace using the system’s cpupower utility.

All the benchmarks were compiled using the GNU GCC
5.3.1 compiler. The flags used were

gcc -std=c99 -O3 -mavx -ffast-math

6http://icl.cs.utk.edu/papi/

Three main frequencies for all the cores were chosen to be
benchmarked, 1.2, 1.8 and 2.4 GHz. The turbo was turned off.
Voltages for all frequencies were set automatically based on
the default CPU stepping provided by Intel7.

The total energy consumed by each benchmark was calcu-
lated by adding package0, package1, dram0 and dram1 power
consumptions up.

The first set of tests focuses on memory subsystem perfor-
mance, using the lmbench [5] tool. The lmbench memory
bandwidth (see Fig. 1), running one thread per core, shows
that while all levels of CPU cache scale almost linearly with
the cpu frequency, the main memory bandwidth is affected
very little, not more than 5%.

0
100
200
300
400
500
600
700
800
900

1000

B
an

d
w

id
th

 [
G

B
/s

] 

Data size per core [MB] 

Memory read bandwidth 

1.2GHz 1.8GHz 2.4GHz

Fig. 1: Memory read bandwidth benchmark using lmbench.

When combined with the energy measurements, Fig. 2
presents the amount of GBs transfered per Watt during the
memory read bandwidth benchmark. When the data fits into
caches, 25% frequency drop results in 10–30% increased GBs
per Watt ratio, in the main memory the increase is only 4–5%.

0

5

10

15

20

25

G
B

s 
p

e
r 

W
at

t 

Data size per core [MB] 

Memory read power efficiency 

1.2GHz 1.8GHz 2.4GHz

Fig. 2: Amount of data transfered from memory per one Watt.

7http://ark.intel.com/products/83352/Intel-Xeon-Processor-E5-2620-v3-
15M-Cache-2 40-GHz

 82

PAD 2016, Kraví Hora, 14.9.-16.9.2016



TABLE II: Linpack (size 25 000, leading dimension 25 000, 1 KB alingment).

Package0 [W] Package1 [W] Dram0 [W] Dram1 [W] Gflop/s GFlops/W
1.2GHz idle 16.1 16.4 14.0 9.7
1.2GHz burn 37.2 37.0 35.1 29.2 201.2 2.44
1.8GHz idle 17.0 17.0 14.0 9.7
1.8GHz burn 48.6 46.7 36.1 30.1 250.6 2.39
2.4GHz idle 17.1 17.1 14.2 9.8
2.4GHz burn 73.5 57.0 41.6 31.2 299.7 2.07

TABLE III: Power consumption of one k-Wave simulation, 5763, 10 timesteps (12 threads).

Total time [s] Simulation time [s] Total energy [J] Simulation energy [J]
1.2GHz 96.21 44.08 10135 5636
1.8GHz 82.56 38.88 9435 5023
2.4GHz 67.97 32.1 9636 5113

0

5

10

15

20

25

30

35

40

45

50

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

P
o

w
e

r 
co

n
su

m
p

ti
o

n
 [

W
] 

Time [s] 

k-Wave 5763 10 timesteps (low freq) 

package0 package1 dram0 dram1

data load FFT planning preprocessing simulation 

Fig. 3: k-Wave simulation, 5763, 10 timesteps (1.2 GHz, 12
threads)

While previous benchmarks focused on the memory, the
Linpack benchmark [6] focuses on the raw cpu performance.
Linpack solves a set of equations based on factorization with
O(n3) operation complexity.

Table II shows the average power consumption during a
single run (problem size is 25 000, leading dimension is 25 000
and memory alingment is set to 1 KB), overall performance
in GFlop/s and power efficiency in GFlop/s per Watt. The best
efficiency is achieved running on low and middle frequency,
while the top frequency is slightly behind.

As a final practical application, the OpenMP version of k-
Wave [7] was benchmarked. In [8] and [9], the scalability of
Fast Fourier transforms (FFT) and whole k-Wave simulations,
which implement these FFTs, was shown to reach 16 384 and
8 192 cores, respectively, with over 50% efficiency. In table III,
the total time and consumed energy of one k-Wave simulation
of size 5763 with 10 timesteps is measured. Fig. 3 shows the
energy consumption evolution over time of different parts of
the system during the whole simulation. While the frequency
drop from 2.4 GHz to 1.8 GHz slightly improved the overall
power-efficiency, further drop to 1.2 GHz worsened it. This

is mainly because the dram consumption starts to dominate
and the cpu runs too slowly and stalls the simulation. While
previous benchmarks showed higher effectivity with lower
frequencies, k-Wave’s scaling ends when the cpu consumption
drops below the dram consumption.

Overall these tests showed, that lowering the frequency of
the cpu can bring significant improvements in performance-
to-power ratio, mainly for tasks that are memory-bound and
cannot benefit as much from fast CPUs, and are therefore,
more suitable for low power architectures.

III. GOALS OF THE PHD THESIS

Goals
Show that certain classes of extreme-scaling algorithms used
in HPC, mainly

• memory-bound,
• interconnect network-bound and
• I/O-bound

can objectively benefit from the use of low power architectures
and dynamic power consumption optimization techniques
in terms of

• total power consumed during the computation,
• lower cooling requirements, less expensive infrastructure

at the massive deployment,
• total financial expenses,

while other important factors, such as performance,
programming complexity or reliability are affected very
little or not at all, compared to the current HPC clusters.

Achieving the goals
• Runtime algorithm analysis and profiling

Analyze given algorithms and their runtime behaviour
(power consumption, performance, level of utilization
of different parts of the system, network communica-
tion,. . . ) using hardware counters (either available from
the OS or provided by JTAG hardware debuggers for
development kits), profiling tools (Allinea, perf, ARMv7-
A profiler,. . . ), etc. Based on the data obtained, a model
describing the behaviour of a given algorithm and hard-
ware setup is automatically created. The goal is to locate

 83

PAD 2016, Kraví Hora, 14.9.-16.9.2016



performance bottle-necks of specific parts of the system
and find the optimal hardware adjustment. This step will
be performed manually for now, but is planned to be
almost completelly automated based on the tools used
for analysis.

• Dynamic on-the-fly optimizations
Runtime automated measurements of performance (mem-
ory bandwidth, stall cycles, utilization of cores,. . . ) and
power consumption, making power optimizations based
on a decision model, such as dynamic on/off thread
switching, over or underclocking of specific cores, etc.
These events will trigger the optimal hardware adjust-
ments found in the previous step. This can be described
as an optimization problem and appropriate techniques
(fuzzy logic and neural networks) will be used to find
the optimal settings.

• Network communication optimizations
Automated runtime decisions whether it is beneficial
to switch off or underclock parts of the system dur-
ing intensive MPI communications, based on message
sizes and quantities, considering the latencies of such
operations. This step is can be understood as a part of
the first step, but is highlighted separately, because MPI
communications are by far considered the slowest way of
exchanging data in HPC clusters and low power systems
are more likely to suffer from slow network cards, which
for example on the ARM technology achieve 1–10 Gbps.

Future steps
Algorithm analysis briefly described in this paper runs on

the Intel Haswell architecture. The frequency scaling showed
only small improvements in terms of energy demands. Next
step is to move to ARM based kits, namely nVidia Tegra or
Samsung Odroid. A small cluster, consisting of 4 of these
kits, will be built and run under a linux operating system
and will serve as the main experimental platform for power
consumption analysis.

IV. CONCLUSION

This paper described the motivation behind the suitability
and the use of low power architectures for solving specific
tasks, mainly the ones that are memory and/or communication
bound, instead of the common architectures used today, mainly
for overall power-efficiency and the use as basic building

blocks for future exascale clusters. Power consumption analy-
sis was presented on the Haswell architecture, which showed
roughly 5% energy savings for 30% reduced frequency. Next
step is to move to ARM-based kits, namely Samsung Odroid
and nVidia Tegra.

ACKNOWLEDGMENT

This work was supported by the FIT-S-14-2297 Architec-
tures of Parallel and Embedded Computer Systems project.

REFERENCES

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S.
Williams, K. Yelick, K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Keckler,
D. Klein, P. Kogge, R. S. Williams, and K. Yelick, “Exascale computing
study: Technology challenges in achieving exascale systems peter kogge,
editor & study lead,” 2008.

[2] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and
M. Valero, “Supercomputing with commodity cpus: are mobile socs ready
for hpc?” in High Performance Computing, Networking, Storage and
Analysis (SC), 2013 International Conference for. IEEE, 2013, pp. 1–12.

[3] N. Rajovic, N. Puzovic, L. Vilanova, C. Villavieja, and A. Ramirez,
“The low-power architecture approach towards exascale computing,” in
Proceedings of the Second Workshop on Scalable Algorithms for Large-
scale Systems, ser. ScalA ’11. New York, NY, USA: ACM, 2011, pp.
1–2. [Online]. Available: http://doi.acm.org/10.1145/2133173.2133175

[4] V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terp-
stra, and S. Moore, “Measuring energy and power with papi,” in Parallel
Processing Workshops (ICPPW), 2012 41st International Conference on,
Sept 2012, pp. 262–268.

[5] L. McVoy and C. Staelin, “Lmbench: Portable tools for performance
analysis,” in Proceedings of the 1996 Annual Conference on
USENIX Annual Technical Conference, ser. ATEC ’96. Berkeley,
CA, USA: USENIX Association, 1996, pp. 23–23. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268299.1268322

[6] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:
past, present and future,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803–820, 2003. [Online]. Available:
http://dx.doi.org/10.1002/cpe.728

[7] B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation
and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt., vol. 15,
no. 2, p. 021314, 2010.

[8] V. Nikl and J. Jaros, “Parallelisation of the 3d fast fourier transform
using the hybrid openmp/mpi decomposition,” in Mathematical and
Engineering Methods in Computer Science, ser. LNCS 8934. Springer
International Publishing, 2014, pp. 100–112.

[9] J. Jaros, V. Nikl, and E. B. Treeby, “Large-scale ultrasound simulations
using the hybrid openmp/mpi decomposition,” in Proceedings of the
3rd International Conference on Exascale Applications and Software.

Association for Computing Machinery, 2015, pp. 115–119.

 84

PAD 2016, Kraví Hora, 14.9.-16.9.2016


