PAD 2016, Kravi Hora, 14.9.-16.9.2016

A ring oscillator based PUF proposal on FPGA

Filip Kodytek
1% class, full-time study
Supervisor: Rébert Lérencz

CTU in Prague, Faculty of Information Technology
Théakurova 9, 16000, Prague, Czech Republic
kodytfil@fit.cvut.cz

Abstract—This contribution deals with design of Physical
Unclonable Function (PUF) on FPGA. The goal was to propose
a cheap, efficient and secure device identification or even a
cryptographic key generation based on PUFs. Therefore, a design
of a ring oscillator (RO) based PUF producing more output
bits from each RO pair is presented. The design was tested on
Digilent Basys 2 FPGA boards (Xilinx Spartan3E-100 CP132)
and statistically evaluated. We also discuss its properties and
analyse the proposed PUF at varying temperature and voltage.
Based on the results of the experiments, we propose suitable
modifications of the PUF design in order to improve the quality
of its output.

Keywords—Hardware security, physical unclonable function,
field-programmable gate array, ring oscillator

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are used to im-
plement digital circuits of various functionality. Just like
other implementation platforms, FPGAs require security and
resilience to attacks [9]. For many security protocols, a secret
key needs to be stored on FPGA. However, safe storages of
keys are usually complicated and expensive to achieve and the
nonvolatile memory, in which the keys can be stored, tends to
be vulnerable to invasive attacks, because the key is stored in
a digital form.

Physical Unclonable Functions (PUFs) offer a solution to
this issue. Rather than to store the secret keys in memory, they
can be generated using PUFs when they are needed. PUF is
a function based on physical properties, which are unique for
each device. These unique physical properties can be used to
distinguish various devices from each other. Therefore, PUFs
can be used for identification purposes and for cryptographic
key generation.

Two major groups of PUFs, which are suitable for FPGAs
according to their sources of randomness are delay-based and
memory-based PUFs. A very common PUF design is based
on SRAM and uses it as a source of randomness, since many
electronic devices have embedded SRAM [2]. This PUF is
based on the content of SRAM after power-up. However
some FPGAs initialize their memory after power-up, so all
randomness is lost. That led to proposals of other memory-
based PUFs such as Butterfly PUF [6], Latch PUF [10] and
Flip-flop PUF [8].

Delay-based PUFs exploit the random variations in delays
of logic gates and interconnects. One of the first delay-

based PUFs is Arbiter PUF [7]. Another examples are Ring
Oscillator PUF (ROPUF) [1], [11] and Glitch PUF [12].

In this work we present a ring oscillator based PUF suitable
for FPGAs which showed good results in terms of good
statistical properties, simplicity and efficiency. One of the
advantages of the proposed PUF design is the fact that it is
easy to implement, area efficient, and additionally it does not
require all ROs to be mutually symmetric, in contrast with the
classical approach [1] where all ROs are mutually symmetric
and the PUF output is derived from the comparison of RO
frequencies of various RO pairs. However, as it is shown in
experimental results in Chapter IV, when the symmetric ROs
are used in our design, it enhances stability of the proposed
PUF design when the physical conditions are varying.

This paper is organized as follows. Section II provides a
brief description of the ROPUF, that was proposed in [4]. The
performance metrics that are used to evaluate the PUF are
described in Section III. Section IV presents the results of
experiments. The last Section V concludes the paper.

II. THE PROPOSED ROPUF

In this section we give a brief description of the proposed
ROPUF architecture. More detailed description of the main
concept of this ROPUF is provided in our previous work [3],
[4]. In the first part of this section, we explain the main
principle of this ROPUF. Then, the proposed ROPUF circuit
is described and ultimately, some modifications of the ROPUF
design are presented.

A. The main principle of the proposed ROPUF

The main motivation of this proposal was the simplicity of
implementation and more efficient use of ROs. In the classical
approach [11], the frequencies of ROs are compared and the
result of this comparison produces one output bit for PUF
In order to achieve unpredictability of the PUF outputs, this
approach requires all ROs to be mutually symmetric so that the
differences in frequencies of ROs are influenced only by the
random variations in delays of logic gates and interconnects.
As also mentioned in [11], the number of pairs of ROs for
this comparison is limited, so that the bits in the PUF outputs
are independent.

In our ROPUF proposal, a different technique than fre-
quency comparison is used to generate PUF output. The PUF
outputs are still obtained based on the selected RO pairs,

29

RO1
RO 2

3 resO

OxEB12

4

il

€ eNT1

OF
CLR

result

O0xEB12

selo

challenge «[sl

m—g
S

x

1_\;\\ -

Fig. 1: The proposed ROPUF circuit.

running

CE

froj
A OXFFFF

(e

CNT1
OF

CLR

but the problem of selecting particular RO pairs is no longer
present. In addition, more bits for the PUF output are gained
from each pair of ROs and this technique also does not require
all ROs to be mutually symmetric. This allows us to produce
longer PUF outputs using less ROs.

The basic building element of the proposed ROPUF is an
ordinary five stage RO composed of 1 NAND gate and 4
inverters. Instead of measuring frequency of each RO using
some reference clock, we choose one pair of ROs and count
the oscillations of each RO simultaneously using two counters.
As soon as one of these counters overflows, the measurement
is stopped and the resulting value in the counter that did
not overflow is used for further processing. This approach is
shown in Fig. 1. There are two sets of ring oscillators and
they are all enabled and running during the measurement.
The overflow detection logic is realised by two RS Flip-flops.
When implementing the logic for detecting overflow of one of
the counters and stopping the other one, the routes between
them may have different delays and before the second counter
is stopped, it can perform some additional steps. But since
these two routes are the same for all RO pairs and for all
FPGAs, it will only increase the resulting value by some
constant offset which is O or 1 in this case.

The proposed method implies that if we knew the exact fre-
quencies of the ROs during measurement, we could determine
the resulting counter value (in case of 16-bit counters) that is
later processed as follows:

fo

Counter value = ==
1

x 216, (1)
where f; is the frequency of the faster RO and f5 is the
frequency of the slower RO.

Since the obtained counter values are represented in binary
code, we can use the appropriately selected part of each binary
number for the PUF output. It can be assumed, that if we repeat
the measurements for one RO pair, the bits that are close to
the least significant bit (LSB) will vary a lot due to instability
of ROs and the environmental changes. On the contrary, the
bits close to the most significant bit (MSB) will be stable and
the environmental changes will have almost no influence on
them. The more we will be close to the MSB, the more stable
the bits will be.

30

PAD 2016, Kravi Hora, 14.9.-16.9.2016

increasing entropy

increasing stability

—1234 S56I8EEI101112 13141516

highly stable
positions

least
—

significant bit

most
significant bit
ideal
positions

very unstable
positions

Fig. 2: The example behaviour of the bits in counter value of
a 16-bit value.

Another requirement in addition to stability that needs to be
met is the entropy of the selected bits. We may assume, that if
we compare the measured values from two equally positioned
RO pairs on two FPGAs, bits close to the MSB will not differ,
while the bits that are approximately in the middle between the
MSB and the LSB will be different. The bits close to the LSB
will be different too, but it is caused mainly by their instability.
Therefore, the ideal positions of the counter value that should
be used for PUF are in the middle of the counter value. The
example of described behaviour of measured counter values is
shown on 16-bit counter value in Fig. 2.

B. Modifications of the proposed ROPUF

In order to eliminate some of the issues present in the
original design, we proposed some modifications of the design
that enhance the properties of the PUF.

The first improvement of our PUF design is the application
of Gray code on the obtained counter values. One of the issues
of selecting a block of bits from each counter value is that
all of the selected bits may change in the next measurement
since they are represented in binary code and they are a part
of a counter value. So even if the final value is increased or
decreased just by one, all of the bits can be influenced by
this change. The first step to solving this issue involves the
application of Gray code to the obtained counter values. The
reason for using Gray code is the fact that two successive
values differ in only one bit, so this can eliminate the partial
overflow and increase the overall stability of the selected bits
and even increase the number of extractable bits from each
counter value. For more details see [3], [5].

The next improvement is related to the issue of the influence
of various physical conditions on the behaviour of the PUF.
Since the PUF design is based on ROs, the physical conditions
will have a significant impact on the frequencies of ROs,
however, our goal is to make the differential measurement
(frequency ratio) more robust against such effects. Therefore,
we present a possible solution to this problem using symmetric
ROs. More detailed description of both of the modifications
is provided in [3], [5].

III. PERFORMANCE METRICS

To evaluate the quality of PUF, we need some metrics
in order to evaluate its statistical properties. In our previous
work [4], we discussed how to select good positions of the
counter values for the PUF based on their statistical properties,
such as stability and entropy. After selecting the suitable
positions, the PUF outputs made of these positions need
to be evaluated by some additional parameters to validate
the selection of positions. In this section we describe the

TABLE I: The results of statistics carried out for responses
composed from various bit selections for 150 RO pairs.

150 pairs of ring oscillators

positions 6-8 7-8 79 7-10 89
w [-] 3 2 3 4 2

HDjpiro [%] | 144 2116 281 421 421

HDjpier [%] | 43.05 4881 4923 4945 49.88

evaluation method, which we used to determine the qualities
of the PUF outputs. We review two common parameters that
are used to evaluate the properties of PUFs, namely Intra-

Hamming distance (HD;nrq) and Inter-Hamming distance
(HDinter)-

A. Intra-Hamming distance

To evaluate the mutual similarity of the PUF outputs, we
use Intra-Hamming distance as a metric. HD;,,;,, is estimated
as:

m k
S S HD(R, i) < 100 [, @)
i=1 j=1

HDintr(L =
m

where m is the number of FPGAs, R, is the reference output
of the i-th PUF, which the other outputs are compared to,
and k is the number of compared outputs from each PUF. As
R,,, we can use either any output from the given PUF or
the mean output of several outputs (this may result in lower
HD;,¢rq). There are several influences that affect the value
of HD;y1rq such as changes in voltage or temperature which
cause HD;,r, to be of higher value.

B. Inter-Hamming distance

Another important metric that is used to evaluate the PUF
quality is the uniqueness of the generated outputs among
different FPGAs. We can determine the uniqueness of the
generated outputs by calculating the Inter-Hamming distance,
which is defined as:

1 m—1
HDin er = Tmy
SGP>

where m is the number of FPGAs and R,, is the reference
output of the i-th PUF which is the mean output made of all
outputs from the given PUF.

HD(R,,,R,,) x 100 [%], (3)
+1

IV. EXPERIMENTAL RESULTS

In this section we present the results of performed measure-
ments on Digilent Basys 2 FPGA boards (Xilinx Spartan3E-
100 CP132). At first, the results for PUF with symmetric ROs
that uses different selections of positions from counter values
with applied Gray code are presented.

A. Evaluation of ROPUF with symmetric ROs

Table I presents the results of statistical evaluation of the
PUF outputs for symmetric ROs measured 1000 times for 150
RO pairs and with Gray code applied to the selected parts
of the counter values. The results indicate, that the proposed

31

PAD 2016, Kravi Hora, 14.9.-16.9.2016

HDintra(%)
[,

50

Asymmetric
FPGA 1

Manufacturer’'s recommended
range of Veaint

30
20

10

e

N\ /
1200

Symmetric FPGA 2

1150 1250

Voltage(mV)

1650 1i00
Fig. 3: Comparison of the behaviour of the proposed PUF
when using mutually symmetric and asymmetric ROs for
positions 7-8. The reference output for calculating HD ;41 1S
the mean output from the PUF outputs measured at nominal
voltage 1.2V. Yellow area represents the manufacturer’s rec-

ommended range of FPGA’s main power supply voltage Vcin,
which is from 1.14V to 1.26V.

ROPUF with symmetric ROs still works correctly and enables
us to reliably distinguish different FPGAs. However, the
results of HD);,4,, for symmetric ROs are slightly worse than
for asymmetric ROs (Table 2 in [4]).

B. Influence of supply voltage

The next measurement concerns the influence of voltage on
the behaviour of the proposed ROPUF design. The measure-
ments were performed on 2 Digilent Basys 2 FPGA boards
containing Xilinx Spartan3E-100 CP132. The main power
supply for the FPGA’s internal logic is Vy and its nominal
voltage is 1.2V. The maximum ratings for V., are -0.5V and
1.32V, with manufacturer’s recommended range from 1.14V to
1.26V. The circuit remains the same and the results presented
in Fig. 3 relate to 1000 measurements for 150 RO pairs and
show how the PUF outputs are different from nominal voltage,
which is 1.2V. The range of tested voltages is from 1.018V
to 1.286V and the selected positions of counter values for the
PUF outputs are 7-8.

It can be seen in Fig. 3 that the influence of voltage is
significant in case of asymmetric ROs. This is caused by the
change of ratios of two frequencies of ROs in each pair. If we
want the PUF outputs to remain stable with varying voltage,
the ratios of the frequencies for each pair have to be the same
at any voltage level. We can expect that the frequencies of
ROs will change in a similar way when the ROs are mutually
symmetric. Therefore, we placed the RO gates so that all ROs
are mutually symmetric.

Fig. 3 presents the comparison of the behaviour of the
proposed ROPUF when using mutually symmetric and asym-
metric ROs for positions 7-8. The results for HD;,,, are
not ideal, but they demonstrate the improvement when using
symmetric ROs compared to asymmetric ROs and show the

PAD 2016, Kravi Hora, 14.9.-16.9.2016

TABLE 1II: Evaluation of HD,,:, for 150 asymmetric/symmetric RO pairs and selected positions 7-8 and different

temperatures.
Asymmetric ROs
FPGA 1 FPGA 2 FPGA 3
Temperature [°C] | HD;pirq [%] | Temperature [°C] | HD;pirq [%] | Temperature [°C] | H Dipira [%]
36.7 — 41.2 2.67 384 — 423 2.67 377 — 41.8 1.0
36.7 — 51.8 7.67 38.4 — 50.1 6.67 37.7 — 50.9 5.0
36.7 — 60.4 9.33 38.4 — 60.3 9.33 377 — 61.3 7.0
36.7 — 71.1 11.33 38.4 — 69.9 12.67 37.7 — 70.1 12.0
Symmetric ROs
FPGA 1 FPGA 2 FPGA 3
Temperature [°C] | HD;ptrq [%] | Temperature [°C] | H Djptrq [%] | Temperature [°C] | HDjpiro [%]
33.0 —» 424 2.67 344 — 409 1.67 345 — 41.1 3.67
33.0 — 50.5 3.67 344 — 50.5 3.0 345 — 514 6.0
33.0 — 60.6 3.67 344 — 60.8 4.67 34.5 — 60.6 7.0
33.0 — 71.0 4.67 344 — 70.2 5.33 345 — 704 7.33

way for further investigation of the influence of the placement
of ROs on the stability of the PUF outputs.

C. Influence of temperature

This subsection examines the influence of change of tem-
perature on the proposed ROPUF. The statistical properties
of PUF using both symmetric and asymmetric ROs will be
compared. For the purpose of our experiment, we performed
measurements at different temperatures. For these measure-
ments, FPGA was preheated to a preset temperature (e.g.
40 °C) with ROs enabled. Each of the measurements was
carried out when the temperature measured on the package
of the FPGA stabilized at the given value. We used 3 Digilent
Basys 2 FPGA boards for this experiment.

Table II displays the values of HD;,:q for 3 FPGAs
for asymmetric and symmetric ROs. The column tempera-
ture presents the temperatures, at which the PUF outputs
are compared. The values of H D, for symmetric and
asymmetric ROs are almost equivalent for small differences
in temperature, but for larger changes of temperature, there is
a visible improvement of the PUF behaviour, when symmetric
ROs are used.

V. CONCLUSION

We proposed a RO based PUF, which is able to provide
more output bits from each pair of ROs and is also not
dependent on the symmetry of ROs, implying that it is easy
to implement. However, as it was shown in Section IV, the
proposed PUF exhibits better behaviour at varying physical
conditions in terms of stability when symmetric ROs are used.

In our future work, we would like to build a statistical model
of ring oscillators and eventually model the whole ROPUF.
This would be useful to evaluate the PUF and also a true
random number generator, which can be based on the same
circuit (also future work). Then we would like to examine the
influence of aging on this ROPUF and further investigate the
influence of supply voltage and temperature together with the

32

placement of ROs. Our goal is to modify the PUF design, so
that it will be resilient to environmental changes as much as
possible. This is one of the conditions in order to generate
cryptographic keys of sufficient length using the proposed
ROPUFE.

REFERENCES

[1] Bossuet, L., Ngo, X. T., Cherif, Z., Fischer, V. A PUF based on a
transient effect ring oscillator and insensitive to locking phenomenon.
In IEEE Transactions on Emerging Topics in Computing, pages 30-36,
March 2014.

Holcomb, D. E., Burleson, W. P., Fu, K. Power-Up SRAM State as
an Identifying Fingerprint and Source of True Random Numbers. /[EEE
Transactions on Computers 58, 9, pages 1198-1210, 2009.

Kodytek, F. Behaviour Analysis and Improvement of the Proposed PUF
on FPGA. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2016.

Kodytek, F., Lérencz, R. A design of ring oscillator based PUF on
FPGA. In IEEE International Symposium on Design and Diagnostics
of Electronic Circuits and Systems - DDECS 2015. Belgrade, RS, April
2015.

Kodytek, F., Lorencz, R., Bucek, J. Improved ring oscillator PUF on
FPGA and its properties. In Microprocessors and Microsystems. 2016.
Kumar, S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P. Extended
abstract: The Butterfly PUF Protecting IP on Every FPGA. In [EEE
International Symposium on Hardware-Oriented Security and Trust -
HOST 2008, pages 67-70. IEEE, Washington, DC, USA, 2008.

Lee, J. W, Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.
A technique to build a secret key in integrated circuits for identification
and authentication applications. In Symposium on VLSI Circuits - VLSIC
2004, pages 176—179, June 2004.

Maes, R., Tuyls, P., Verbauwhede, I. Intrinsic PUFs from Flip-flops
on Reconfigurable Devices. In Benelux Workshop on Information and
System Security - WISSec 2008. Eindhoven, NL, 2008.

Majzoobi, M., Koushanfar, F., Devadas, S. FPGA PUF using Pro-
grammable Delay Lines. In Information Forensics and Security. De-
cember 2010.

Su, Y., Holleman, J., Otis, B. A 1.6pJ/bit 96% Stable Chip-ID Generating
Circuit using Process Variations. In IEEE International Solid-State
Circuits Conference - ISSCC 2007, pages 406-611. IEEE, February
2007.

Suh, G. E., Devadas, S. Physical Unclonable Functions for Device
Authentication and Secret Key Generation. In Design Automation Con-
ference - DAC 2007, pages 9—-14. ACM, New York, NY, USA, 2007.
Suzuki, D., Shimizu, K. The Glitch PUF: A New Delay-PUF Architec-
ture Exploiting Glitch Shapes. In Workshop on Cryptographic Hardware
and Embedded Systems - CHES 2010, pages 366-382. Springer, 2010.

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

