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Abstract. A currently popular trend in object detection and pattern recognition 
is usage of statistical classifiers, namely AdaBoost and its modifications. The 
speed performance of these classifiers largely depends on the low level image 
features they are using: both on the amount of information the feature provides 
and the executional time of its evaluation. Local Rank Differences is an image 
feature that is alternative to commonly used haar wavelets. It is suitable for 
implementation in programmable (FPGA) or specialized (ASIC) hardware, but 
– as this paper shows – it performs very well on graphics hardware (GPU) as 
well. The paper discusses the LRD features and their properties, describes an 
experimental implementation of LRD in graphics hardware, presents its 
empirical performance measures compared to alternative approaches and 
suggests several notes on practical usage of LRD and proposes directions for 
future work. 

1   Introduction 

Statistical classifiers can very well be used for object detection or pattern recognition 
in raster images. Current algorithms even exhibit real-time performance in detecting 
complex patterns, such as human faces [10], while achieving precision of detection 
which is sufficient for practical applications. Recent work of Šochman and Matas [9] 
even suggests that any existing detector can be efficiently emulated by a sequential 
classifier which is optimal in terms of computational complexity for desired detection 
precision. In their approach, human effort is invested into designing a set of suitable 
features which are then automatically combined by the WaldBoost [8] algorithm into 
an ensemble. This approach may significantly reduce the development time of 
detectors and it may even lead to more computationally efficient detectors – Šochman 
and Matas report successfully emulating the Kadir-Brady saliency detector [2], while 
achieving 70× faster detection times over the original implementation.  

In practical applications, the speed of the object detector or other image classifier is 
crucial. Real-time performance is required in many applications such as surveillance, 
even when processing several input streams. Use of specialized hardware in image 
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processing and computer vision is nothing new (e.g. [7], [4]). Recent advances in 
development of graphics processors attract many researchers and engineers to the idea 
of using GPU’s not for their primary purpose – rendering 3D graphics scenes. 
Different approaches to so-called GPGPU (General-Purpose computation on GPUs) 
[1] exist and also the field of image processing and computer vision has seen several 
successful uses of these techniques  (e.g. [7], [4]). 

Statistical classifiers are built by using low level weak classifiers or image features 
and the properties of the classifier largely depend on the quality and performance of 
the low level features. In face detectors and similar classifiers, Haar-like wavelets [3], 
[8], [9], [10] are frequently used, since they provide good amount of discriminative 
information and they provide excellent performance. Other features are used in 
different contexts, such as the Local Binary Patterns [5]. Recently, designed 
especially for being implemented directly in programmable or hard-wired hardware, 
Local Rank Differences [11] have been presented. These features are described in 
more detail in section 3 of this paper. The main strengths of this image feature are 
inherent gray-scale transformation invariance, the ability to capture local patterns and 
the ability to reflect quantitative changes in lightness of image areas. 

The following section 2 of this paper briefly presents the Local Rank Differences 
(see [11] for more detail) image feature. In section 3, the notes on implementation of 
LRD on a GPU using the Cg high level shading language are given. Section 4 
presents the experimental results of the implementation carried out and its comparison 
to other approaches. Conclusions and suggestions for future research in the area are 
given in section 5. 

2   Local Rank Differences 

Let us consider a scalar image R→),( yxI . On such image, a sampling function can 

be defined ( Z∈jivunmyx ,,,,,,, ) 
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This sampling function is parameterized by the sampling block dimensions m, n, 
and by the origin of the sampling (x,y), which is a pixel in the image. Note that this 
function “subsamples” the image by a multiple of pixels in each direction. Note 
please also that this function can be defined in other manners, namely not by summing 
rectangular blocks of the image but by convolving them with a suitable wavelet filter 
kernel, etc. Based on this sampling function a rectangular mask can be defined: 
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The mask is parameterized by sampling block dimensions m, n and sampling origin 
(x,y), just as the used sampling function S. Along with these parameters, the mask has 
its dimensions w, h as well. Experiments (see [11]) show that in the context of 
AdaBoost and WaldBoost object detection, the masks of dimensions 3×3 (w=3, h=3) 
are sufficient. For different classifiers and applications, different sampling block sizes 
are necessary. For face detectors operating on image windows with resolution of 
24×24 pixels, sampling sizes of 1×1 (m=1, n=1 etc.), 2×2, 2×4, 4×2 are sufficient. 

For each position in the mask, its rank can be defined: 
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id est, the rank is the order of the given member of the mask in the sorted progression 
of all the mask members. Note that this value is independent on the local energy in the 
image, which is an important property useful for the behavior of the Local Rank 
Differences image feature, which is defined as: 
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The notation can be slightly facilitated by vectorizing the matrix M by stacking its 
rows (it is just a convention that row rather than column stacking is used): 
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The rank of a member of the vector then is (note that for clarity, )(iV mnwh
xy  denotes 

the ith member of the vector): 
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The Local Rank Difference of two positions a, b within the vector obviously is: 
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Empirical experiments carried out so far show that one w×h dimension used in a 
classifier is sufficient (currently we are using 3×3 mask dimension only), i.e. for the 
purpose of constructing a classifier, no need exists to mix several combinations of 
mask dimensions, which simplifies the training and evaluation process. Weak LRD 
classifiers available to the statistical classifier therefore offer varying position x, y 
within the window of interest and varying size m, n of the sampling block used. 

2.1   The Role of Local Rank Differences in the Object-Detecting Classifier 

Fig. 1 shows the simplified flow for evaluating a single LRD classifier. It begins 
with the detection window (e.g. 31×31 pixels) being classified where rectangular 
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mask 33mn
xyM  is positioned (considering e.g. 3×3 masks). Each field of the mask spans 

across several pixels which need to be convolved (see the equation 8 below). 
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Fig. 1. Use of Local Rank Differences in the classifier 
 

Next, the ranks are evaluated and finally the rank difference is used as index into 
the alpha table, selecting the weak classifier’s result. 

2.2   Input Image Pre-Processing 

For increasing the performance of the LRD evaluation, the function mn
xyS  defined on 

the input image can be pre-calculated. As stated above, low number of combinations 
of m×n is sufficient for learning an object classifier – experiments show that 1×1, 
2×2, 2×4 and 4×2 combinations are enough. The input image I can be convolved with 
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and the resulting images at given location (x,y) can contain the values of the sampling 
function. Such pre-processing of the input images can be done efficiently and the 
LRD evaluation then only consists of 9 lookups (for the case of 3×3 LRD mask) into 
appropriate pre-processed image and then evaluation of ranks for two members of the 
mask. The evaluation then can be done in parallel on platforms supporting vector 
operations; both GPU and FPGA are strong in such kind of parallelism. 

2.3   Local Rank Differences Compared to Haar Wavelets 

Comparing LRD with Haar wavelets is only natural as both of these types of features 
were first intended to be used in detection classifiers. There are two fundamental 
aspects in respect to the detection classifier which must be addressed. The first aspect 
is the computational complexity of evaluating the features and the second aspect is the 
amount of discriminative information the features provide. 

Haar wavelets can be computed very rapidly on general purpose CPUs by using the 
integral image representation [10] which can be created in a single pass through the 
original image. The simple Haar wavelets of any size can be computed using only six 
accesses into the integral image, six additions and two bit-shifts. When scanning the 
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image in multiple scales, this gives the possibility to scale the classifier instead of 
down-sampling the image. The Haar wavelets are usually normalized by the size of 
the feature and the standard deviation of pixel values in the classified sub-window. 
Computation of the standard deviation requires additional integral image of squared 
pixel values and uses square root.  

While the Haar wavelets can be computed relatively efficiently on general purpose 
CPUs, it may not be the same on other platforms. On FPGAs, the six random accesses 
into memory would significantly limit performance (only single feature evaluated per 
every six clock cycles) and the high bit-precision needed for representing the integral 
images would make the design highly demanding. On the other hand, the nine values 
needed to compute LRD with grid size 3×3 can be obtained on FPGAs with only 
single memory access [11] (when preprocessed as shown in Section 2.2) and on GPUs 
with three or six accesses (see Section 3 for details). 

Some detection classifiers evaluate on average very low number of features (even 
less than 2). In such cases, computing the normalizing standard deviation poses 
significant computational overhead. Further, the square root which is needed can not 
be easily computed on FPGAs. The LRD inherently provide normalized results, 
whose normalization is in fact equivalent to local histogram equalization. 

 0.95

 1

 0  200  400  600  800  1000  1200  1400  1600

D
e

te
ct

io
n

 r
a

te

False positives

Haar
LRD 1x1 1x2 2x1 2x2

 

Fig. 2. ROC of two WaldBoost classifiers on a frontal face detection task. Length of the 
classifiers is 500 and they differ only in type of features which they use (Haar features, LRD). 

The detection performance of classifiers with the LRD has been evaluated on the 
frontal face detection task and it has been compared to the performance of classifiers 
with the standard Haar wavelets. The results suggest that the two types of features 
provide similar classification precision. This fact can be clearly seen in Figure 2 
which presents receiver operating characteristic (ROC) of two WaldBoost [8] 
classifiers. One of the classifiers uses the same Haar wavelets as in [10] and the other 
uses the LRD with block sizes of the sampling function (see Equation 2) restricted to 
1×1, 1×2, 2×1 and 2×2 . The classifiers were trained using 5000 hand annotated faces 
normalized to 24×24 pixels and the non-face samples were randomly sampled from a 
pool of 250 million sub-windows from more than 3000 non-face images. The results 
were measured on a set of 89 group photos which contain 1618 faces and total 142 
million scanned positions (scale factor 1.2, displacement 2/24). Although the set of 
LRD features is very limited in this experiment, the detection performance it provides 
is similar to the full set of Haar wavelets. This is probably due to the localized 
normalization of the results of the LRD which provides information about local image 
patterns that goes beyond simple difference of intensity of image patches. 
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3   LRD Implementation on GPU 

As shown in section 2.2, the sampling function for a given sampling block size used 
by the LRD can be pre-processed by convolving the original input image by a simple 
convolution matrix. On GPU, built-in texture sub-sampling can be used to achieve 
this pre-processing efficiently. This is done using very simple fragment shaders and 
the whole convolution calculation usually takes less than 10% of frame time and was 
not further optimized. 

The step that uses the pre-calculated images is the evaluation of the LRD weak 
classifiers. Early analysis of the algorithm revealed that its bottleneck would be 
texture sampling. Therefore, the main goal was to minimize the number of texture 
samples per pixel and to improve texture sampling coherency in order to achieve the 
best performance. A trick was used to do this – interleaving the convolution image 
into different layers of a 3D texture. The dimensions of the texture are: 

mnd
n

h
h

m

w
w t

i
t

i
t ===  (9) 

Where wi, hi are the input image’s dimensions, m, n are the sampling block’s 
dimensions and wt, ht, dt is the texture size. The texture organization is illustrated in 
Fig. 3. Such way of storing image data ensures the texture samples needed to evaluate 
single LRD classifiers are tightly connected to each other. 

To read the 3×3 LRD mask in a naive way, nine texture samples are needed; 
however, most of today’s hardware is not capable of loading nine samples without 
stalling the pipeline. To avoid this limitation, the (8-bit grayscale) pixels of the 
convolution texture are packed by four into RGBA vectors stored in the texture 
memory. Then it takes three or six texture samples, depending on the modulo 4 
position, to read all the nine pixels of the mask (in contrast to the nine reads without 
the use of 3D texture). 

Fig. 3. (from left to right) Original image, interleaved convolution images (for 2x2 kernel) and 
interleaved images stored as a 3D texture 

Pixel unpacking is done in the fragment shader and it needs to choose one of four 
different branches. It could be solved by a simple if statement, but the (expensive) 
branching instruction can be avoided by rasterizing the image in vertical stripes, one 
pixel wide and four pixels apart, using a different shader for each modulo 4 position. 

 
Having read the 3×3 grid, the next step is to evaluate the local ranks. The SIMD 

nature of the GPU can be exploited by keeping the pixels in three 3D vectors. First, 
the pixels on positions a and b are picked. Unfortunately, no index parameter can be 
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used in a shader so the pixels are selected using dot product (which is fairly efficient 
on GPU). The ranks are calculated using the following code: 

 

 

Fig. 4. Calculation of the local rank difference; row0, row1 and row2 are vec3 contain the input 
pixels, A and B are pixel values on positions a and b. The lessThan function compares its 
arguments by component and the result is vec3, containing zeros or ones based on comparison. 
The dot product sums up the Local Rank Difference. This snippet of code evaluates in 
approximately 14 GPU instructions. Finally, alpha is chosen from table (texture). 

3.1   The AdaBoost/WaldBoost Object Detection Runtime Framework in GPU 

One fragment shader evaluates several LRD’s and accumulates them in an 
accumulated (see above). After accumulating all the weak classifiers in the learned 
AdaBoost classifier, a decision is made based on a threshold. The overall AdaBoost 
classifier structure implemented using the shader is in Fig 5. 

Fig. 5. AdaBoost/WaldBoost object detection GPU runtime shaders with several classifiers 

The WaldBoost [8] pipeline is fairly similar to the one of AdaBoost (described 
above), it only needs facilities to terminate the calculation on individual pixels. This 
can be done using depth test – the classifier evaluation remains unchanged, but extra 
rendering passes are added which compare the intermediate accumulated sum with a 
given threshold and modify the depth-buffer accordingly. That means if output is 
below the threshold, zero is written into the depth-buffer, otherwise one is written 
(using step  to avoid branching). The outputs from the classifier are rasterized on 
depth 1 so shaders are not executed on positions with zero depth (see Figure 6). 

This approach benefits from early depth-test that discards all fragments with the 
wrong depth (without evaluation). The limitation is that fragments modifying their 
depth must be evaluated so the number of the stopping decisions must be low. 
Therefore, training of WaldBoost classifier must include costs of the decisions. 

 

vec3 accum =  lessThan(vec3(A), row0); 
accum      += lessThan(vec3(A), row1); 
accum      += lessThan(vec3(A), row2); 
accum      -= lessThan(vec3(B), row0); 
accum      -= lessThan(vec3(B), row1); 
accum      -= lessThan(vec3(B), row2); 
float rank_difference = dot(vec3(1,1,1), accum); 

 

Shader parameters 
(global variables) 

 
 

main() 
(contains result accumulator, 
writes to the frame-buffer) 

Classifier 0 code 

Classifier 1 code 

Classifier n code 
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Fig. 6. AdaBoost shader code; n_texture_0 is the id of the right texturing unit, v_pixel_00 is the 
pixel size of that texture, n_alphas is the id of the alphas texturing unit, v_alpha_pixel is site for 
alphas texture, v_block_to_slice contains constants required for 3D texture slice from 2D 
texcoords (width/number of layers, convolution kernel width/number of layers, height/number 
of layers*convolution kernel width and slight z-offset to aid the right layer sampling), 
v_selector_a00 and v_selector_b00 are vectors selecting the right column from 3×3 grid) 

4   Performance Evaluation and Analysis 

To evaluate the efficiency of the presented GPU implementation of the LRD, these 
implementations were compared: 

• LRD on GPU (section 3 above) 
• Haar on GPU (section 4.1 below) 
• LRD on CPU (section 4.2 below) 

Evaluation was performed for different resolution of the image, for different sizes of 
the classified window and for different amount of the weak hypotheses calculated for 
each classified window. Note that this evaluation is to determine the evaluation speed 
of the weak classifiers only, not the overall performance of the boosted classifier.  
 
 Win num frame-time [milli sec] time-per-wc [nano sec] 

resol size wc lrdGPU haarGPU lrdMMX  lrdGPU haarGPU lrdMMX  
320x200 16 5 0.244 0.370 17.7 0.872 1.325 55.29 
320x200 16 10 0.527 0.469 25.0 0.942 0.839 46.71 
320x200 16 50 2.524 3.010 82.0 0.902 1.076 40.04 
640x480 16 5 1.173 1.642 101.8 0.810 1.134 58.55 
640x480 16 10 2.232 2.159 149.0 0.771 0.745 51.82 
640x480 16 50 11.066 15.731 493.0 0.764 1.086 44.05 

Table 1. Performance table for LRDonGPU, HAARonGPU and LRDonMMX; the table 
contains the times of sole evaluation of the classifier, since the pre-processing for the Haar 
wavelets (integral image calculation), cannot be easily implemented in the GPU (nv7950) 

 

uniform sampler3D n_texture_0; 
uniform vec2 v_pixel_00; 
uniform sampler2D n_alphas; 
uniform vec2 v_alpha_pixel; 
uniform vec4 v_block_to_slice_00; 
uniform vec3 v_selector_a00, v_selector_b00; 
 
void main() 
{ 
    float f_result = .0; // result accumulator 
    { 
  // classifier 0 
    } 
… 
    { 
  // classifier n 
    } 
    gl_FragColor.r = f_result; // write output frag ment 
} 
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In the following table, a coarse comparison of the performance of the pre-processing 
stage is given. Note that it is difficult to compare the pre-processing for the Haar 
wavelets with the LRD convolutions, because the integral image calculation is 
difficult to implement on the GPU. Note that this is an important advantage of the 
LRD over the Haar wavelets, especially when in GPU implementation. 
 

resol LRDonGPU HAARonCPU LRDonCPU 
320x200 0.72 1.22  2.52 
640x480 1.22  10.29  9.13 
800x600 3.51 16.41 13.80 
1024x768 3.75 27.94 24.80 
1280x1024 4.53 45.16 37.45 

Table 2. Evaluation of the pre-processing stage (convolutions for the LRD, integral image for 
Haar wavelets). Times are given in milliseconds.  

4.1   Implementation of the Haar-like features on the GPU 

Only the simplest (two-fold) Haar wavelet features were used in this testing 
implementation (though also three-fold features are used in the object detectors, 
whose evaluation is slightly slower). 

 

Fig. 7. Evaluation of the Haar-like features in the GPU (Cg) 
 
The Haar wavelets require normalization by the energy in the classified window – 
both to evaluate the energy and to evaluate the features themselves, integral images 
are used, which is the fastest method available to our knowledge. The calculation of 

float GetHaar(float2 p0, float2 p1, float2 p2, floa t2 p3,  
 float2 p4, float2 p5, uniform samplerRECT IntegTex Id) 
{ 
  return - texRECT(IntegTexId, p0).a + texRECT(Inte gTexId, p1).a * 2.0f 
         - texRECT(IntegTexId, p2).a + texRECT(Inte gTexId, p3).a 
         - texRECT(IntegTexId, p4).a * 2.0f + texRE CT(IntegTexId, p5).a; 
} 
float Horizontal(float2 p0, float2 d, float WIntens ity,  
 uniform samplerRECT IntegTexId, uniform samplerREC T AlphaTexId, float HaarId) 
{ 
  float2 dx1 = float2(d.x,0.0f); float2 dx2 = float 2(d.x+d.x, 0.0f); 
  float2 p3 = p0 + float2( 0.0f, d.y); 
  float haar = GetHaar(p0, p0+dx1, p0+dx2, p3, p3+d x1, p3+dx2, IntegTexId); 
  haar /= d.x*d.y * WIntensity; // Normalization 
  haar = clamp((haar+1.0f)*0.5f * 120.0f, 0.0f, 120 .0f); // quantization 
  return texRECT(AlphaTexId, float2(HaarId, haar)). a; 
} 
sOutPS FragmentProgram(sVS2PS IN, uniform samplerRE CT IntegTexId, 
 uniform samplerRECT IntegSqTexId, uniform samplerR ECT AlphaTexId) 
{ 
    sOutPS OUT; 
    float window_energy = +texRECT(IntegSqTexId, IN .texcoord0).a 
               -texRECT(IntegSqTexId, IN.texcoord0 + float2(WND_W, 0.0f)).a 
               -texRECT(IntegSqTexId, IN.texcoord0 + float2(0.0f, WND_H)).a 
               +texRECT(IntegSqTexId, IN.texcoord0 + float2(WND_W, WND_H)).a; 
    float haarid = 0; float sum = 0; 
    sum += Horizontal(IN.texcoord0+float2( 0.0f,  0 .0f), float2( 8.0f, 8.0f), 
                 window_energy, IntegTexId, AlphaTe xId, haarid); haarid++; 
    sum += Vertical(IN.texcoord0+float2( 3.0f,  3.0 f), float2( 2.0f, 8.0f), 
                 window_energy, IntegTexId, AlphaTe xId, haarid); haarid++; 
    sum += // ... 
    OUT.color.r += sum/haarid; OUT.color.a = 1.0f; return OUT; 
} 
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the integral images constitutes the preparatory phase evaluated in the comparison. 
Please note that (to our knowledge) there is no effective way of calculating the 
integral image in the shading language, so the preparatory phase is implemented in 
the CPU. The shader evaluating the classifiers is illustrated in Figure 7. 

4.2   Implementation of the LRD on Intel CPU 

The performance of the GPU implementation was compared to an implementation on 
standard Intel CPU using MMX instructions. To simplify feature evaluation as much 
as possible, the convolutions of image are pre-computed and stored in the memory in 
such manner that all the results of the LRD grid can be fetched into the CPU registers 
through two 64-bit loads. This positively affects the evaluation that is performed in 
MMX CPU instructions (introduced by Intel). 

 

 

Fig. 8. Pseudocode of the MMX implementation of the LRD 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Block diagram of the MMX implementation of the LRD 

 

row1 = convolution_{w,h}(x, y) 
row2 = convolution_{w,h}(x. y+1) 
pixelA = (A < 8) ? row1[A] : row2[A-8]; 
pixelB = (B < 8) ? row1[B] : row2[B-8]; 
mm0 = expand(pixelA) 
mm1 = expand(pixelB) 
mm2 = load(row1) 
mm3 = load(row2) 
mm4 = cmp(mm2, mm0) 
mm5 = cmp(mm2, mm1) 
mm6 = cmp(mm3, mm0) 
mm7 = cmp(mm3, mm1) 
mask(mm4, valid0) 
mask(mm5, valid1) 
mask(mm6, valid0) 
mask(mm7, valid1) 
mm4 = add(mm4, mm6) 
mm5 = add(mm5, mm7) 
mm0  = sum_pi8(mm4) 
mm0 += sum_pi8(mm5) 
return mm0 
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A pseudocode of the MMX implementation is shown in Figure 8 and the block 
diagram of the evaluation is shown in Figure 9. The LRD are parameterized by the 
feature’s position (x, y) and the block size (w, h) which determine the convolution 
image to use. First the data from the subsequent rows of the convolved images are 
loaded into registers (row1, row2). The values of the rank pixels are loaded from the 
data (pixelA, pixelB) and expanded to the MMX registers. The registers with the data 
are then compared to the expanded values of pixelA and pixelB and the result of the 
comparison is masked (since we are interested in 3×3 grid only and 4×4 pixels were 
loaded). The comparison’s results are summed – the resulting registers, therefore, 
contain the rank sum of differences of a pixel and vale A and B. Finally, the 8-bit 
values in the resulting registers are summed together which corresponds to the LRD 
response. 

The code, compared to CPU without MMX, is more optimal since the values are 
compared in one step. The slowest step of evaluation is the expansion of 8 bit value to 
the 64 bit MMX register. Since the instruction set lacks a single instruction to do this, 
the expansion must be done by a sequence of shift-left and or instructions. A similar 
problem is the final sum of rank differences - eight 8 bit values in a register must be 
summed together. Again, there is no support in instruction set. 

5   Conclusions and Future Work 

This paper presents an experimental implementation of the Local Rank Differences 
image feature on a GPU and its comparison to other approaches, specifically to the 
Haar-like features on the GPU.  

The LRD features seem very well suitable for pattern recognition by image 
classifiers. They exhibit inherent gray-scale transformation invariance, ability to 
capture local patterns, and the ability to reflect quantitative changes in lightness of 
image areas. The implementation on the GPU is reasonably efficient, and a great 
advantage of the LRD over the common Haar wavelets in the GPU environment is the 
feasibility of the pre-processing stage, which has no obvious efficient solution for the 
Haar wavelets. 

The authors of this paper are currently working on an efficient implementation of 
the whole WaldBoost engine utilizing the LRD features on the GPU. At the moment, 
the partial implementation (see section 3.1) is reasonably fast (1.6 ms looking for face 
in a 256×256 image). However, the authors have several clues how to improve the 
current implementation and increase its speed possibly several times. Also, for the 
purpose of efficient implementation in FPGA, some modifications to the LRD feature 
definition are being prepared that can also have feasible properties on the GPU – by 
rearranging the memory layout. 

Although the implementation of the LRD on CPU, which is used in the comparison 
(section 4) is efficient (by using recent multimedia instructions of the processor), 
better implementations and variation of the LRD will also be looked for on the Intel 
CPU platform. 

In any case, this results of the presented work definitely lead in a conclusion that 
that the Local Rank Differences features present is a vital low level image feature set, 
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which outperforms the commonly used Haar wavelets in several important measures. 
Fast implementations of object detectors and other image classifiers should consider 
the LRD as an important alternative. 
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