
“Local Rank Differences” Image Feature
Implemented on GPU

Lukáš Polok, Adam Herout, Pavel Zemčík, Michal Hradiš, Roman Juránek,
Radovan Jošth

Graph@FIT
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, 612 66 Brno, Czech Republic
xpolok00@stud.fit.vutbr.cz

{herout, zemcik, ihradis, ijuranek, ijosth}@fit.vutbr.cz

Abstract. A currently popular trend in object detection and pattern recognition
is usage of statistical classifiers, namely AdaBoost and its modifications. The
speed performance of these classifiers largely depends on the low level image
features they are using: both on the amount of information the feature provides
and the executional time of its evaluation. Local Rank Differences is an image
feature that is alternative to commonly used haar wavelets. It is suitable for
implementation in programmable (FPGA) or specialized (ASIC) hardware, but
– as this paper shows – it performs very well on graphics hardware (GPU) as
well. The paper discusses the LRD features and their properties, describes an
experimental implementation of LRD in graphics hardware, presents its
empirical performance measures compared to alternative approaches and
suggests several notes on practical usage of LRD and proposes directions for
future work.

1 Introduction

Statistical classifiers can very well be used for object detection or pattern recognition
in raster images. Current algorithms even exhibit real-time performance in detecting
complex patterns, such as human faces [10], while achieving precision of detection
which is sufficient for practical applications. Recent work of Šochman and Matas [9]
even suggests that any existing detector can be efficiently emulated by a sequential
classifier which is optimal in terms of computational complexity for desired detection
precision. In their approach, human effort is invested into designing a set of suitable
features which are then automatically combined by the WaldBoost [8] algorithm into
an ensemble. This approach may significantly reduce the development time of
detectors and it may even lead to more computationally efficient detectors – Šochman
and Matas report successfully emulating the Kadir-Brady saliency detector [2], while
achieving 70× faster detection times over the original implementation.

In practical applications, the speed of the object detector or other image classifier is
crucial. Real-time performance is required in many applications such as surveillance,
even when processing several input streams. Use of specialized hardware in image

2 Lukáš Polok, Adam Herout, Pavel Zemčík, Michal Hradiš, Roman Juránek, Radovan Jošth

processing and computer vision is nothing new (e.g. [7], [4]). Recent advances in
development of graphics processors attract many researchers and engineers to the idea
of using GPU’s not for their primary purpose – rendering 3D graphics scenes.
Different approaches to so-called GPGPU (General-Purpose computation on GPUs)
[1] exist and also the field of image processing and computer vision has seen several
successful uses of these techniques (e.g. [7], [4]).

Statistical classifiers are built by using low level weak classifiers or image features
and the properties of the classifier largely depend on the quality and performance of
the low level features. In face detectors and similar classifiers, Haar-like wavelets [3],
[8], [9], [10] are frequently used, since they provide good amount of discriminative
information and they provide excellent performance. Other features are used in
different contexts, such as the Local Binary Patterns [5]. Recently, designed
especially for being implemented directly in programmable or hard-wired hardware,
Local Rank Differences [11] have been presented. These features are described in
more detail in section 3 of this paper. The main strengths of this image feature are
inherent gray-scale transformation invariance, the ability to capture local patterns and
the ability to reflect quantitative changes in lightness of image areas.

The following section 2 of this paper briefly presents the Local Rank Differences
(see [11] for more detail) image feature. In section 3, the notes on implementation of
LRD on a GPU using the Cg high level shading language are given. Section 4
presents the experimental results of the implementation carried out and its comparison
to other approaches. Conclusions and suggestions for future research in the area are
given in section 5.

2 Local Rank Differences

Let us consider a scalar image R→),(yxI . On such image, a sampling function can

be defined (Z∈jivunmyx ,,,,,,,)

() ()()∑∑
−

=

−

=
+−++−+=

1

0

1

0

1,1
1

),(
m

i

n

j

mn
xy jvnyiumxI

mn
vuS . (1)

This sampling function is parameterized by the sampling block dimensions m, n,
and by the origin of the sampling (x,y), which is a pixel in the image. Note that this
function “subsamples” the image by a multiple of pixels in each direction. Note
please also that this function can be defined in other manners, namely not by summing
rectangular blocks of the image but by convolving them with a suitable wavelet filter
kernel, etc. Based on this sampling function a rectangular mask can be defined:

=

),(),2(),1(

)2,()2,2()2,1(

)1,()1,2()1,1(

hwShShS

wSSS

wSSS

M

mn
xy

mn
xy

mn
xy

mn
xy

mn
xy

mn
xy

mn
xy

mn
xy

mn
xy

mnwh
xy

L

MOMM

L

L

. (2)

“Local Rank Differences” Image Feature Implemented on GPU 3

The mask is parameterized by sampling block dimensions m, n and sampling origin
(x,y), just as the used sampling function S. Along with these parameters, the mask has
its dimensions w, h as well. Experiments (see [11]) show that in the context of
AdaBoost and WaldBoost object detection, the masks of dimensions 3×3 (w=3, h=3)
are sufficient. For different classifiers and applications, different sampling block sizes
are necessary. For face detectors operating on image windows with resolution of
24×24 pixels, sampling sizes of 1×1 (m=1, n=1 etc.), 2×2, 2×4, 4×2 are sufficient.

For each position in the mask, its rank can be defined:

∑∑
= =

<=
w

i

h

j

mn
xy

mn
xymnwh

xy
otherwise

vuSjiSif
vuR

1 1 ,0

),(),(,1
),(, (3)

id est, the rank is the order of the given member of the mask in the sorted progression
of all the mask members. Note that this value is independent on the local energy in the
image, which is an important property useful for the behavior of the Local Rank
Differences image feature, which is defined as:

),(),(),,,(lkRvuRlkvuLRD mnwh
xy

mnwh
xy

mnwh
xy −= (4)

The notation can be slightly facilitated by vectorizing the matrix M by stacking its
rows (it is just a convention that row rather than column stacking is used):

[]),()1,2()1,1(hwSSSV mn
xy

mn
xy

mn
xy

mnwh
xy L= . (5)

The rank of a member of the vector then is (note that for clarity,)(iV mnwh
xy denotes

the ith member of the vector):

∑
×

=

<=
hw

i

mnwh
xy

mnwh
xymnwh

xy
otherwise

aViVif
aR

1 ,0

)()(,1
)(. (6)

The Local Rank Difference of two positions a, b within the vector obviously is:

)()(),(bRaRbaLRD mnwh
xy

mnwh
xy

mnwh
xy −= . (7)

Empirical experiments carried out so far show that one w×h dimension used in a
classifier is sufficient (currently we are using 3×3 mask dimension only), i.e. for the
purpose of constructing a classifier, no need exists to mix several combinations of
mask dimensions, which simplifies the training and evaluation process. Weak LRD
classifiers available to the statistical classifier therefore offer varying position x, y
within the window of interest and varying size m, n of the sampling block used.

2.1 The Role of Local Rank Differences in the Object-Detecting Classifier

Fig. 1 shows the simplified flow for evaluating a single LRD classifier. It begins
with the detection window (e.g. 31×31 pixels) being classified where rectangular

4 Lukáš Polok, Adam Herout, Pavel Zemčík, Michal Hradiš, Roman Juránek, Radovan Jošth

mask 33mn
xyM is positioned (considering e.g. 3×3 masks). Each field of the mask spans

across several pixels which need to be convolved (see the equation 8 below).

α-8

…

α-2

α-1

α0

α1

α2

α3

 …

α8

A

B

Rank(A) – Rank(B)

convolve

use as index evaluate ranks

detection window

3x3 grid

table with alphas

Fig. 1. Use of Local Rank Differences in the classifier

Next, the ranks are evaluated and finally the rank difference is used as index into
the alpha table, selecting the weak classifier’s result.

2.2 Input Image Pre-Processing

For increasing the performance of the LRD evaluation, the function mn
xyS defined on

the input image can be pre-calculated. As stated above, low number of combinations
of m×n is sufficient for learning an object classifier – experiments show that 1×1,
2×2, 2×4 and 4×2 combinations are enough. The input image I can be convolved with

=

=

= ×××

whwh

whwh
hhh hw

11

11

 ,
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
 ,

4
1

4
1

4
1

4
1

2422

L

MOM

L

(8)

and the resulting images at given location (x,y) can contain the values of the sampling
function. Such pre-processing of the input images can be done efficiently and the
LRD evaluation then only consists of 9 lookups (for the case of 3×3 LRD mask) into
appropriate pre-processed image and then evaluation of ranks for two members of the
mask. The evaluation then can be done in parallel on platforms supporting vector
operations; both GPU and FPGA are strong in such kind of parallelism.

2.3 Local Rank Differences Compared to Haar Wavelets

Comparing LRD with Haar wavelets is only natural as both of these types of features
were first intended to be used in detection classifiers. There are two fundamental
aspects in respect to the detection classifier which must be addressed. The first aspect
is the computational complexity of evaluating the features and the second aspect is the
amount of discriminative information the features provide.

Haar wavelets can be computed very rapidly on general purpose CPUs by using the
integral image representation [10] which can be created in a single pass through the
original image. The simple Haar wavelets of any size can be computed using only six
accesses into the integral image, six additions and two bit-shifts. When scanning the

“Local Rank Differences” Image Feature Implemented on GPU 5

image in multiple scales, this gives the possibility to scale the classifier instead of
down-sampling the image. The Haar wavelets are usually normalized by the size of
the feature and the standard deviation of pixel values in the classified sub-window.
Computation of the standard deviation requires additional integral image of squared
pixel values and uses square root.

While the Haar wavelets can be computed relatively efficiently on general purpose
CPUs, it may not be the same on other platforms. On FPGAs, the six random accesses
into memory would significantly limit performance (only single feature evaluated per
every six clock cycles) and the high bit-precision needed for representing the integral
images would make the design highly demanding. On the other hand, the nine values
needed to compute LRD with grid size 3×3 can be obtained on FPGAs with only
single memory access [11] (when preprocessed as shown in Section 2.2) and on GPUs
with three or six accesses (see Section 3 for details).

Some detection classifiers evaluate on average very low number of features (even
less than 2). In such cases, computing the normalizing standard deviation poses
significant computational overhead. Further, the square root which is needed can not
be easily computed on FPGAs. The LRD inherently provide normalized results,
whose normalization is in fact equivalent to local histogram equalization.

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600

D
e

te
ct

io
n

 r
a

te

False positives

Haar
LRD 1x1 1x2 2x1 2x2

Fig. 2. ROC of two WaldBoost classifiers on a frontal face detection task. Length of the
classifiers is 500 and they differ only in type of features which they use (Haar features, LRD).

The detection performance of classifiers with the LRD has been evaluated on the
frontal face detection task and it has been compared to the performance of classifiers
with the standard Haar wavelets. The results suggest that the two types of features
provide similar classification precision. This fact can be clearly seen in Figure 2
which presents receiver operating characteristic (ROC) of two WaldBoost [8]
classifiers. One of the classifiers uses the same Haar wavelets as in [10] and the other
uses the LRD with block sizes of the sampling function (see Equation 2) restricted to
1×1, 1×2, 2×1 and 2×2 . The classifiers were trained using 5000 hand annotated faces
normalized to 24×24 pixels and the non-face samples were randomly sampled from a
pool of 250 million sub-windows from more than 3000 non-face images. The results
were measured on a set of 89 group photos which contain 1618 faces and total 142
million scanned positions (scale factor 1.2, displacement 2/24). Although the set of
LRD features is very limited in this experiment, the detection performance it provides
is similar to the full set of Haar wavelets. This is probably due to the localized
normalization of the results of the LRD which provides information about local image
patterns that goes beyond simple difference of intensity of image patches.

6 Lukáš Polok, Adam Herout, Pavel Zemčík, Michal Hradiš, Roman Juránek, Radovan Jošth

3 LRD Implementation on GPU

As shown in section 2.2, the sampling function for a given sampling block size used
by the LRD can be pre-processed by convolving the original input image by a simple
convolution matrix. On GPU, built-in texture sub-sampling can be used to achieve
this pre-processing efficiently. This is done using very simple fragment shaders and
the whole convolution calculation usually takes less than 10% of frame time and was
not further optimized.

The step that uses the pre-calculated images is the evaluation of the LRD weak
classifiers. Early analysis of the algorithm revealed that its bottleneck would be
texture sampling. Therefore, the main goal was to minimize the number of texture
samples per pixel and to improve texture sampling coherency in order to achieve the
best performance. A trick was used to do this – interleaving the convolution image
into different layers of a 3D texture. The dimensions of the texture are:

mnd
n

h
h

m

w
w t

i
t

i
t === (9)

Where wi, hi are the input image’s dimensions, m, n are the sampling block’s
dimensions and wt, ht, dt is the texture size. The texture organization is illustrated in
Fig. 3. Such way of storing image data ensures the texture samples needed to evaluate
single LRD classifiers are tightly connected to each other.

To read the 3×3 LRD mask in a naive way, nine texture samples are needed;
however, most of today’s hardware is not capable of loading nine samples without
stalling the pipeline. To avoid this limitation, the (8-bit grayscale) pixels of the
convolution texture are packed by four into RGBA vectors stored in the texture
memory. Then it takes three or six texture samples, depending on the modulo 4
position, to read all the nine pixels of the mask (in contrast to the nine reads without
the use of 3D texture).

Fig. 3. (from left to right) Original image, interleaved convolution images (for 2x2 kernel) and
interleaved images stored as a 3D texture

Pixel unpacking is done in the fragment shader and it needs to choose one of four
different branches. It could be solved by a simple if statement, but the (expensive)
branching instruction can be avoided by rasterizing the image in vertical stripes, one
pixel wide and four pixels apart, using a different shader for each modulo 4 position.

Having read the 3×3 grid, the next step is to evaluate the local ranks. The SIMD

nature of the GPU can be exploited by keeping the pixels in three 3D vectors. First,
the pixels on positions a and b are picked. Unfortunately, no index parameter can be

“Local Rank Differences” Image Feature Implemented on GPU 7

used in a shader so the pixels are selected using dot product (which is fairly efficient
on GPU). The ranks are calculated using the following code:

Fig. 4. Calculation of the local rank difference; row0, row1 and row2 are vec3 contain the input
pixels, A and B are pixel values on positions a and b. The lessThan function compares its
arguments by component and the result is vec3, containing zeros or ones based on comparison.
The dot product sums up the Local Rank Difference. This snippet of code evaluates in
approximately 14 GPU instructions. Finally, alpha is chosen from table (texture).

3.1 The AdaBoost/WaldBoost Object Detection Runtime Framework in GPU

One fragment shader evaluates several LRD’s and accumulates them in an
accumulated (see above). After accumulating all the weak classifiers in the learned
AdaBoost classifier, a decision is made based on a threshold. The overall AdaBoost
classifier structure implemented using the shader is in Fig 5.

Fig. 5. AdaBoost/WaldBoost object detection GPU runtime shaders with several classifiers

The WaldBoost [8] pipeline is fairly similar to the one of AdaBoost (described
above), it only needs facilities to terminate the calculation on individual pixels. This
can be done using depth test – the classifier evaluation remains unchanged, but extra
rendering passes are added which compare the intermediate accumulated sum with a
given threshold and modify the depth-buffer accordingly. That means if output is
below the threshold, zero is written into the depth-buffer, otherwise one is written
(using step to avoid branching). The outputs from the classifier are rasterized on
depth 1 so shaders are not executed on positions with zero depth (see Figure 6).

This approach benefits from early depth-test that discards all fragments with the
wrong depth (without evaluation). The limitation is that fragments modifying their
depth must be evaluated so the number of the stopping decisions must be low.
Therefore, training of WaldBoost classifier must include costs of the decisions.

vec3 accum = lessThan(vec3(A), row0);
accum += lessThan(vec3(A), row1);
accum += lessThan(vec3(A), row2);
accum -= lessThan(vec3(B), row0);
accum -= lessThan(vec3(B), row1);
accum -= lessThan(vec3(B), row2);
float rank_difference = dot(vec3(1,1,1), accum);

Shader parameters
(global variables)

main()
(contains result accumulator,
writes to the frame-buffer)

Classifier 0 code

Classifier 1 code

Classifier n code

8 Lukáš Polok, Adam Herout, Pavel Zemčík, Michal Hradiš, Roman Juránek, Radovan Jošth

Fig. 6. AdaBoost shader code; n_texture_0 is the id of the right texturing unit, v_pixel_00 is the
pixel size of that texture, n_alphas is the id of the alphas texturing unit, v_alpha_pixel is site for
alphas texture, v_block_to_slice contains constants required for 3D texture slice from 2D
texcoords (width/number of layers, convolution kernel width/number of layers, height/number
of layers*convolution kernel width and slight z-offset to aid the right layer sampling),
v_selector_a00 and v_selector_b00 are vectors selecting the right column from 3×3 grid)

4 Performance Evaluation and Analysis

To evaluate the efficiency of the presented GPU implementation of the LRD, these
implementations were compared:

• LRD on GPU (section 3 above)
• Haar on GPU (section 4.1 below)
• LRD on CPU (section 4.2 below)

Evaluation was performed for different resolution of the image, for different sizes of
the classified window and for different amount of the weak hypotheses calculated for
each classified window. Note that this evaluation is to determine the evaluation speed
of the weak classifiers only, not the overall performance of the boosted classifier.

 Win num frame-time [milli sec] time-per-wc [nano sec]

resol size wc lrdGPU haarGPU lrdMMX lrdGPU haarGPU lrdMMX
320x200 16 5 0.244 0.370 17.7 0.872 1.325 55.29
320x200 16 10 0.527 0.469 25.0 0.942 0.839 46.71
320x200 16 50 2.524 3.010 82.0 0.902 1.076 40.04
640x480 16 5 1.173 1.642 101.8 0.810 1.134 58.55
640x480 16 10 2.232 2.159 149.0 0.771 0.745 51.82
640x480 16 50 11.066 15.731 493.0 0.764 1.086 44.05

Table 1. Performance table for LRDonGPU, HAARonGPU and LRDonMMX; the table
contains the times of sole evaluation of the classifier, since the pre-processing for the Haar
wavelets (integral image calculation), cannot be easily implemented in the GPU (nv7950)

uniform sampler3D n_texture_0;
uniform vec2 v_pixel_00;
uniform sampler2D n_alphas;
uniform vec2 v_alpha_pixel;
uniform vec4 v_block_to_slice_00;
uniform vec3 v_selector_a00, v_selector_b00;

void main()
{
 float f_result = .0; // result accumulator
 {
 // classifier 0
 }
…
 {
 // classifier n
 }
 gl_FragColor.r = f_result; // write output frag ment
}

“Local Rank Differences” Image Feature Implemented on GPU 9

In the following table, a coarse comparison of the performance of the pre-processing
stage is given. Note that it is difficult to compare the pre-processing for the Haar
wavelets with the LRD convolutions, because the integral image calculation is
difficult to implement on the GPU. Note that this is an important advantage of the
LRD over the Haar wavelets, especially when in GPU implementation.

resol LRDonGPU HAARonCPU LRDonCPU
320x200 0.72 1.22 2.52
640x480 1.22 10.29 9.13
800x600 3.51 16.41 13.80
1024x768 3.75 27.94 24.80
1280x1024 4.53 45.16 37.45

Table 2. Evaluation of the pre-processing stage (convolutions for the LRD, integral image for
Haar wavelets). Times are given in milliseconds.

4.1 Implementation of the Haar-like features on the GPU

Only the simplest (two-fold) Haar wavelet features were used in this testing
implementation (though also three-fold features are used in the object detectors,
whose evaluation is slightly slower).

Fig. 7. Evaluation of the Haar-like features in the GPU (Cg)

The Haar wavelets require normalization by the energy in the classified window –
both to evaluate the energy and to evaluate the features themselves, integral images
are used, which is the fastest method available to our knowledge. The calculation of

float GetHaar(float2 p0, float2 p1, float2 p2, floa t2 p3,
 float2 p4, float2 p5, uniform samplerRECT IntegTex Id)
{
 return - texRECT(IntegTexId, p0).a + texRECT(Inte gTexId, p1).a * 2.0f
 - texRECT(IntegTexId, p2).a + texRECT(Inte gTexId, p3).a
 - texRECT(IntegTexId, p4).a * 2.0f + texRE CT(IntegTexId, p5).a;
}
float Horizontal(float2 p0, float2 d, float WIntens ity,
 uniform samplerRECT IntegTexId, uniform samplerREC T AlphaTexId, float HaarId)
{
 float2 dx1 = float2(d.x,0.0f); float2 dx2 = float 2(d.x+d.x, 0.0f);
 float2 p3 = p0 + float2(0.0f, d.y);
 float haar = GetHaar(p0, p0+dx1, p0+dx2, p3, p3+d x1, p3+dx2, IntegTexId);
 haar /= d.x*d.y * WIntensity; // Normalization
 haar = clamp((haar+1.0f)*0.5f * 120.0f, 0.0f, 120 .0f); // quantization
 return texRECT(AlphaTexId, float2(HaarId, haar)). a;
}
sOutPS FragmentProgram(sVS2PS IN, uniform samplerRE CT IntegTexId,
 uniform samplerRECT IntegSqTexId, uniform samplerR ECT AlphaTexId)
{
 sOutPS OUT;
 float window_energy = +texRECT(IntegSqTexId, IN .texcoord0).a
 -texRECT(IntegSqTexId, IN.texcoord0 + float2(WND_W, 0.0f)).a
 -texRECT(IntegSqTexId, IN.texcoord0 + float2(0.0f, WND_H)).a
 +texRECT(IntegSqTexId, IN.texcoord0 + float2(WND_W, WND_H)).a;
 float haarid = 0; float sum = 0;
 sum += Horizontal(IN.texcoord0+float2(0.0f, 0 .0f), float2(8.0f, 8.0f),
 window_energy, IntegTexId, AlphaTe xId, haarid); haarid++;
 sum += Vertical(IN.texcoord0+float2(3.0f, 3.0 f), float2(2.0f, 8.0f),
 window_energy, IntegTexId, AlphaTe xId, haarid); haarid++;
 sum += // ...
 OUT.color.r += sum/haarid; OUT.color.a = 1.0f; return OUT;
}

10 Lukáš Polok, Adam Herout, Pavel Zemčík, Michal Hradiš, Roman Juránek, Radovan Jošth

the integral images constitutes the preparatory phase evaluated in the comparison.
Please note that (to our knowledge) there is no effective way of calculating the
integral image in the shading language, so the preparatory phase is implemented in
the CPU. The shader evaluating the classifiers is illustrated in Figure 7.

4.2 Implementation of the LRD on Intel CPU

The performance of the GPU implementation was compared to an implementation on
standard Intel CPU using MMX instructions. To simplify feature evaluation as much
as possible, the convolutions of image are pre-computed and stored in the memory in
such manner that all the results of the LRD grid can be fetched into the CPU registers
through two 64-bit loads. This positively affects the evaluation that is performed in
MMX CPU instructions (introduced by Intel).

Fig. 8. Pseudocode of the MMX implementation of the LRD

Fig. 9. Block diagram of the MMX implementation of the LRD

row1 = convolution_{w,h}(x, y)
row2 = convolution_{w,h}(x. y+1)
pixelA = (A < 8) ? row1[A] : row2[A-8];
pixelB = (B < 8) ? row1[B] : row2[B-8];
mm0 = expand(pixelA)
mm1 = expand(pixelB)
mm2 = load(row1)
mm3 = load(row2)
mm4 = cmp(mm2, mm0)
mm5 = cmp(mm2, mm1)
mm6 = cmp(mm3, mm0)
mm7 = cmp(mm3, mm1)
mask(mm4, valid0)
mask(mm5, valid1)
mask(mm6, valid0)
mask(mm7, valid1)
mm4 = add(mm4, mm6)
mm5 = add(mm5, mm7)
mm0 = sum_pi8(mm4)
mm0 += sum_pi8(mm5)
return mm0

“Local Rank Differences” Image Feature Implemented on GPU 11

A pseudocode of the MMX implementation is shown in Figure 8 and the block
diagram of the evaluation is shown in Figure 9. The LRD are parameterized by the
feature’s position (x, y) and the block size (w, h) which determine the convolution
image to use. First the data from the subsequent rows of the convolved images are
loaded into registers (row1, row2). The values of the rank pixels are loaded from the
data (pixelA, pixelB) and expanded to the MMX registers. The registers with the data
are then compared to the expanded values of pixelA and pixelB and the result of the
comparison is masked (since we are interested in 3×3 grid only and 4×4 pixels were
loaded). The comparison’s results are summed – the resulting registers, therefore,
contain the rank sum of differences of a pixel and vale A and B. Finally, the 8-bit
values in the resulting registers are summed together which corresponds to the LRD
response.

The code, compared to CPU without MMX, is more optimal since the values are
compared in one step. The slowest step of evaluation is the expansion of 8 bit value to
the 64 bit MMX register. Since the instruction set lacks a single instruction to do this,
the expansion must be done by a sequence of shift-left and or instructions. A similar
problem is the final sum of rank differences - eight 8 bit values in a register must be
summed together. Again, there is no support in instruction set.

5 Conclusions and Future Work

This paper presents an experimental implementation of the Local Rank Differences
image feature on a GPU and its comparison to other approaches, specifically to the
Haar-like features on the GPU.

The LRD features seem very well suitable for pattern recognition by image
classifiers. They exhibit inherent gray-scale transformation invariance, ability to
capture local patterns, and the ability to reflect quantitative changes in lightness of
image areas. The implementation on the GPU is reasonably efficient, and a great
advantage of the LRD over the common Haar wavelets in the GPU environment is the
feasibility of the pre-processing stage, which has no obvious efficient solution for the
Haar wavelets.

The authors of this paper are currently working on an efficient implementation of
the whole WaldBoost engine utilizing the LRD features on the GPU. At the moment,
the partial implementation (see section 3.1) is reasonably fast (1.6 ms looking for face
in a 256×256 image). However, the authors have several clues how to improve the
current implementation and increase its speed possibly several times. Also, for the
purpose of efficient implementation in FPGA, some modifications to the LRD feature
definition are being prepared that can also have feasible properties on the GPU – by
rearranging the memory layout.

Although the implementation of the LRD on CPU, which is used in the comparison
(section 4) is efficient (by using recent multimedia instructions of the processor),
better implementations and variation of the LRD will also be looked for on the Intel
CPU platform.

In any case, this results of the presented work definitely lead in a conclusion that
that the Local Rank Differences features present is a vital low level image feature set,

12 Lukáš Polok, Adam Herout, Pavel Zemčík, Michal Hradiš, Roman Juránek, Radovan Jošth

which outperforms the commonly used Haar wavelets in several important measures.
Fast implementations of object detectors and other image classifiers should consider
the LRD as an important alternative.

Acknowledgements

This work has been supported by the Ministry of Education, Youth and Sports of the
Czech Republic under the research program LC-06008 (Center for Computer
Graphics), by the research project “Security-Oriented Research in Informational
Technology” CEZMŠMT, MSM0021630528, and by Czech Grant Agency, project
GA201/06/1821 “Image Recognition Algorithms”.

References

1. General-Purpose Computation on GPUs, (available as of 14.4:2008 at
http://www.gpgpu.org)

2. Kadir, T., Brady, M.: Saliency, Scale and Image Description. International Journal of
Computer Vision, Volume 45, Number 2 / November 2001.

3. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection,
ICIP02(I: 900-903).

4. Michel, P. et al: GPU-accelerated Real-Time 3D Tracking for Humanoid Locomotion and
Stair Climbing, Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007

5. Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture
classification with local binary patterns. In: Computer Vision, ECCV 2000 Proceedings,
Lecture Notes in Computer Science 1842, Springer (2000) 404-420.

6. Schapire, R., Singer, Y.: Improved boosting algorithms using confidence-rated predictions.
In: Machine Learning, 37(3):297-336, 1999

7. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: GPU-based Video Feature Tracking And
Matching, Technical Report TR 06-012, Department of Computer Science, UNC Chapel
Hill, May 2006

8. Šochman, J., Matas, J.: WaldBoost — Learning for Time Constrained Sequential Detection.
In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR'05) - Volume 2

9. Šochman, J., Matas, J.: Learning A Fast Emulator of a Binary Decision Process. In ACCV
2007.

10. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features.
In: CVPR, 2001

11. Zemčík, P., Hradiš, M., Herout, A.: Local Rank Differences - Novel Features for Image
Processing, In: Proceedings of SCCG 2007, Budmerice, SK, 2007, s. 1-12

