“Local Rank Differences” Image Feature
Implemented on GPU

Lukas Polok, Adam Herout, Pavel Z&ik Michal HradiS, Roman Juranek,
Radovan Josth

Graph@FIT
Brno University of Technology, Faculty of Informati@echnology
BoZetchova 2, 612 66 Brno, Czech Republic
xpolok00@stud.fit.vutbr.cz
{herout, zemcik, ihradis, ijuranek, ijosth}@fit.\lutcz

Abstract. A currently popular trend in object detection gradtern recognition

is usage of statistical classifiers, namely AdaBaost its modifications. The
speed performance of these classifiers largely m#gpen the low level image
features they are using: both on the amount ofinéion the feature provides
and the executional time of its evaluation. LocahR®ifferences is an image
feature that is alternative to commonly used haavelets. It is suitable for
implementation in programmable (FPGA) or speciai¢dSIC) hardware, but

— as this paper shows — it performs very well cepbics hardware (GPU) as
well. The paper discusses the LRD features and piveperties, describes an
experimental implementation of LRD in graphics hamdsy presents its
empirical performance measures compared to alieenapproaches and
suggests several notes on practical usage of LRDpespbses directions for
future work.

1 Introduction

Statistical classifiers can very well be used fojeot detection or pattern recognition
in raster images. Current algorithms even exhidi-time performance in detecting
complex patterns, such as human faces [10], whiléesing precision of detection
which is sufficient for practical applications. Ret work of Sochman and Matas [9]
even suggests that any existing detector can licesffly emulated by a sequential
classifier which is optimal in terms of computatbeomplexity for desired detection
precision. In their approach, human effort is irgdsinto designing a set of suitable
features which are then automatically combinedhegyWaldBoost [8] algorithm into
an ensemble. This approach may significantly redtiee development time of
detectors and it may even lead to more computdhjoetiicient detectors — Sochman
and Matas report successfully emulating the Kadaey saliency detector [2], while
achieving 70x faster detection times over the nabimplementation.

In practical applications, the speed of the objetector or other image classifier is
crucial. Real-time performance is required in mapplications such as surveillance,
even when processing several input streams. Uspexdialized hardware in image

2 Lukas Polok, Adam Herout, Pavel Zeniik, Michal Hradis, Roman Juranek, Radovan Josth

processing and computer vision is nothing new (Ej.[4]). Recent advances in
development of graphics processors attract mamarebers and engineers to the idea
of using GPU’s not for their primary purpose — reridg 3D graphics scenes.
Different approaches to so-called GPGPU (Generghdae computation on GPUS)
[1] exist and also the field of image processind aomputer vision has seen several
successful uses of these techniques (e.g. [], [4]

Statistical classifiers are built by using low lewesak classifier®rimage features
and the properties of the classifier largely dependhe quality and performance of
the low level features. In face detectors and sintlassifiers, Haar-like wavelets [3],
[8], [9], [10] are frequently used, since they pgd®/good amount of discriminative
information and they provide excellent performan€gher features are used in
different contexts, such as the Local Binary Pa#tef5]. Recently, designed
especially for being implemented directly in pragraable or hard-wired hardware,
Local Rank Differences [11] have been presenteds@&Heatures are described in
more detail in section 3 of this paper. The mamergths of this image feature are
inherent gray-scale transformation invariance,abiity to capture local patterns and
the ability to reflect quantitative changes in tigdss of image areas.

The following section 2 of this paper briefly pratethe Local Rank Differences
(see [11] for more detail) image feature. In setfo the notes on implementation of
LRD on a GPU using the Cg high level shading lagguare given. Section 4
presents the experimental results of the implentientaarried out and its comparison
to other approaches. Conclusions and suggestiorfsitiore research in the area are
given in section 5.

2 Local Rank Differences

Let us consider a scalar imagéx,y) - R. On such image, sampling functiorcan
be defined & y,m,n,u,v,i, j0Z)

m-1n-1

B == > > 1 (ermlu-1) i,y +nlv-1)+). @

i=0 j=0

This sampling function is parameterized by the damgpblock dimensionsn, n
and by the origin of the sampling,y), which is a pixel in the image. Note that this
function “subsamples” the image by a multiple okghs in each direction. Note
please also that this function can be defined ewoinanners, namely not Bumming
rectangular blocks of the image but by convolvingni with a suitable wavelet filter
kernel, etc. Based on this sampling function aamegtilarmaskcan be defined:

Sy @) Sy - Syi(wl)
g S50 D S0 @

SErah) SpT@h) o SEnwh)

“Local Rank Differences” Image Feature Implemented a GPU 3

The mask is parameterized by sampling block dinogrssn, nand sampling origin
(x,y), just as the used sampling functi@®nAlong with these parameters, the mask has
its dimensionsw, h as well. Experiments (see [11]) show that in tloatext of
AdaBoost and WaldBoost object detection, the masiimensions 3x3w=3, h=3)
are sufficient. For different classifiers and apations, different sampling block sizes
are necessary. For face detectors operating oneimagdows with resolution of
24x24 pixels, sampling sizes of 1xh£1, n=1etc.), 2x2, 2x4, 4x2 are sufficient.

For each position in the mask, itk can be defined:

L i mneog mn
_ f S (i, j)< (u,v)
Rmnwh u,v) = Li \y v , .

Y izzl“jzz‘i<0,otherwise ©)

id est, the rank is the order of the given memli¢h@ mask in the sorted progression
of all the mask members. Note that this value dependent on the local energy in the
image, which is an important property useful foe thehavior of the Local Rank
Differences image feature, which is defined as:

LRD™"(u,v.k,1) = RE™"(u,v) - RE™(k, 1) 4

The notation can be slightly facilitated by vectonrg the matrix M by stacking its
rows (it is just a convention that row rather tleaftumn stacking is used):

vomh=[sman ST o SI(w b)) 5)

The rank of a member of the vector then is (no for clarity, er;”Wh(i) denotes

the f" member of the vector):

1, if anwh i <anwh
0, otherW|se
The Local Rank Difference of two positioasb within the vector obviously is:
LRDQ;“Wh(a, b) - R)r:;nwh(a) Rmnwh()) (7)

Empirical experiments carried out so far show tha¢ wxh dimension used in a
classifier is sufficient (currently we are using3x3mask dimension only), i.e. for the
purpose of constructing a classifier, no need sxistmix several combinations of
mask dimensions, which simplifies the training aluation process. Weak LRD
classifiers available to the statistical classifieerefore offer varying positior, y
within the window of interest and varying siae nof the sampling block used.

2.1 The Role of Local Rank Differences in the Obpt-Detecting Classifier

Fig. 1 shows the simplified flow for evaluating iagle LRD classifier. It begins
with the detection window (e.g. 31x31 pixels) beiclgssified where rectangular

4 Lukas Polok, Adam Herout, Pavel Zentik, Michal Hradi$, Roman Juranek, Radovan Josth

mask M Q)‘,m is positioned (considering e.g. 3x3 masks). E&dt bf the mask spans
across several pixels which need to be convolved {fse equation 8 below).

table with alphas

detection window

A.g

a2

3x3 grid convolve B oy
A o

ay

az

evaluate rankg use as inde| oz

v

[Rank(a)- Rank(B) ds

Fig. 1. Use of Local Rank Differences in the classifier

Next, the ranks are evaluated and finally the rdifference is used as index into
the alpha table, selecting the weak classifierssilte

2.2 Input Image Pre-Processing

For increasing the performance of the LRD evalugttbefunction SQ)‘,” defined on
the input image can be pre-calculated. As statedegdow number of combinations
of mxn is sufficient for learning an object classifierexperiments show that 1x1,
2x2, 2x4 and 4x2 combinations are enough. The iimpagel can be convolved with

weellf P neelff 2 %) [Hn = Hn
AR R R R

and the resulting images at given locatigg)(can contain the values of the sampling
function. Such pre-processing of the input imagas be done efficiently and the
LRD evaluation then only consists of 9 lookups (ffoe case of 3x3 LRD mask) into
appropriate pre-processed image and then evaluaticanks for two members of the
mask. The evaluation then can be done in paratieplatforms supporting vector
operations; both GPU and FPGA are strong in suati &f parallelism.

®)

2.3 Local Rank Differences Compared to Haar Wavels

Comparing LRD with Haar wavelets is only naturabash of these types of features
were first intended to be used in detection classif There are two fundamental
aspects in respect to the detection classifier kvhiast be addressed. The first aspect
is the computational complexity of evaluating thatfires and the second aspect is the
amount of discriminative information the featuresyide.

Haar wavelets can be computed very rapidly on gemperrpose CPUs by using the
integral image representation [10] which can beate in a single pass through the
original image. The simple Haar wavelets of ang sian be computed using only six
accesses into the integral image, six additionstewadbit-shifts. When scanning the

“Local Rank Differences” Image Feature Implemented a GPU 5

image in multiple scales, this gives the possipitii scale the classifier instead of
down-sampling the image. The Haar wavelets arellysnarmalized by the size of

the feature and the standard deviation of pixelieslin the classified sub-window.
Computation of the standard deviation requires tamdil integral image of squared
pixel values and uses square root.

While the Haar wavelets can be computed relatie#figiently on general purpose
CPUgs, it may not be the same on other platformsEFRPBAS, the six random accesses
into memory would significantly limit performancen(y single feature evaluated per
every six clock cycles) and the high bit-precisi@eded for representing the integral
images would make the design highly demanding.t@rother hand, the nine values
needed to compute LRD with grid size 3x3 can beaiobtl on FPGAs with only
single memory access [11] (when preprocessed agnsimoSection 2.2) and on GPUs
with three or six accesses (see Section 3 forldgtai

Some detection classifiers evaluate on average legrynumber of features (even
less than 2). In such cases, computing the norimglistandard deviation poses
significant computational overhead. Further, theasq root which is needed can not
be easily computed on FPGAs. The LRD inherentlyvig® normalized results,
whose normalization is in fact equivalent to loleistogram equalization.

1 T T T T T T T

Detection rate

Haar
LRD 1x1I 1x2 2x1 2x|2 -------

0.95 .
0 200 400 600 800 1000 1200 1400 1600

False positives

Fig. 2. ROC of two WaldBoost classifiers on a frontal faatedtion task. Length of the
classifiers is 500 and they differ only in typefedtures which they use (Haar features, LRD).

The detection performance of classifiers with tieDLhas been evaluated on the
frontal face detection task and it has been contprehe performance of classifiers
with the standard Haar wavelets. The results sughes the two types of features
provide similar classification precision. This facdn be clearly seen in Figure 2
which presents receiver operating characteristiOqR of two WaldBoost [8]
classifiers. One of the classifiers uses the saasyr Mavelets as in [10] and the other
uses the LRD with block sizes of the sampling fiorc{see Equation 2) restricted to
1x1, 1x2, 2x1 and 2x2 . The classifiers were thimging 5000 hand annotated faces
normalized to 24x24 pixels and the non-face sampkre randomly sampled from a
pool of 250 million sub-windows from more than 30@@n-face images. The results
were measured on a set of 89 group photos whictaitpa618 faces and total 142
million scanned positions (scale factor 1.2, disptaent 2/24). Although the set of
LRD features is very limited in this experimente tihetection performance it provides
is similar to the full set of Haar wavelets. Th probably due to the localized
normalization of the results of the LRD which pres information about local image
patterns that goes beyond simple difference ofisitg of image patches.

6 Lukas Polok, Adam Herout, Pavel Zeniik, Michal Hradis, Roman Juranek, Radovan Josth

3 LRD Implementation on GPU

As shown in section 2.2, the sampling functiondagiven sampling block size used
by the LRD can be pre-processed by convolving tigiral input image by a simple
convolution matrix. On GPU, built-in texture subygaing can be used to achieve
this pre-processing efficiently. This is done usirgy simple fragment shaders and
the whole convolution calculation usually takesl#san 10% of frame time and was
not further optimized.

The step that uses the pre-calculated images ig\thkiation of the LRD weak
classifiers. Early analysis of the algorithm reeealthat its bottleneck would be
texture sampling. Therefore, the main goal was ioimize the number of texture
samples per pixel and to improve texture samplimlgecency in order to achieve the
best performance. A trick was used to do this erieaving the convolution image
into different layers of a 3D texture. The dimemsi@f the texture are:

_W _h -
W=t h="] d, =mn ©
Where w;, h; are the input image’s dimensionsy, n are the sampling block’s
dimensions andv, h; d; is the texture size. The texture organizatiorlistrated in
Fig. 3. Such way of storing image data ensuresetkieire samples needed to evaluate
single LRD classifiers are tightly connected toteather.

To read the 3x3 LRD mask in a naive way, nine textsamples are needed;
however, most of today’s hardware is not capabléoafling nine samples without
stalling the pipeline. To avoid this limitation, &h(8-bit grayscale) pixels of the
convolution texture are packed by four into RGBActees stored in the texture
memory. Then it takes three or six texture samplefpending on the modulo 4
position, to read all the nine pixels of the maiskcpntrast to the nine reads without
the use of 3D texture).

Fig. 3. (from left to right) Original image, interleavedrovolution images (for 2x2 kernel) and
interleaved images stored as a 3D texture

Pixel unpacking is done in the fragment shaderiandeds to choose one of four
different branches. It could be solved by a simplstatement, but the (expensive)
branching instruction can be avoided by rasterizhimage in vertical stripes, one
pixel wide and four pixels apart, using a differehider for each modulo 4 position.

Having read the 3x3 grid, the next step is to eateluhe local ranks. The SIMD
nature of the GPU can be exploited by keeping ikelpin three 3D vectors. First,
the pixels on positiona andb are picked. Unfortunately, no index parameter loan

“Local Rank Differences” Image Feature Implemented a GPU 7

used in a shader so the pixels are selected usingrdduct (which is fairly efficient
on GPU). The ranks are calculated using the folhgwdode:

vec3 accum = lessThan(vec3(A), row0);
accum +=lessThan(vec3(A), rowl);
accum +=lessThan(vec3(A), row2);

accum -=lessThan(vec3(B), row0);
accum -= lessThan(vec3(B), rowl);
accum -=lessThan(vec3(B), row2);

float rank_difference = dot(vec3(1,1,1), accum);

Fig. 4. Calculation of the local rank differenaaw0, rowl androw?2 are vec3 contain the input
pixels, A and B are pixel values on positiorss and b. The lessThanfunction compares its
arguments by component and the result is vec3agung zeros or ones based on comparison.
The dot product sums up the Local Rank Differenceis Tsnippet of code evaluates in
approximately 14 GPU instructions. Finalfphais chosen from table (texture).

3.1 The AdaBoost/WaldBoost Object Detection Runtie Framework in GPU

One fragment shader evaluates several LRD’s andinadates them in an
accumulated (see above). After accumulating allvieek classifiers in the learned
AdaBoost classifier, a decision is made based tweshold. The overall AdaBoost
classifier structure implemented using the shasler Fig 5.

Shader parameters
(global variables)

Classifier 0 code
main() —
(contains result accumulat(Classifier 1 code
'
'

writes to the frame-buffer)

Classifier n code

Fig. 5. AdaBoost/WaldBoost object detection GPU runtimedehawith several classifiers

The WaldBoost [8] pipeline is fairly similar to thene of AdaBoost (described
above), it only needs facilities to terminate tkacualation on individual pixels. This
can be done using depth test — the classifier atialuremains unchanged, but extra
rendering passes are added which compare the mdéate accumulated sum with a
given threshold and modify the depth-buffer acaagti. That means if output is
below the threshold, zero is written into the delptiffer, otherwise one is written
(using step to avoid branching). The outputs from the classifire rasterized on
depth 1 so shaders are not executed on positidghszeio depth (see Figure 6).

This approach benefits from early depth-test thatatds all fragments with the
wrong depth (without evaluation). The limitation tigat fragments modifying their
depth must be evaluated so the number of the stgpgéecisions must be low.
Therefore, training of WaldBoost classifier mustlie costs of the decisions.

8 Lukas Polok, Adam Herout, Pavel Zeniik, Michal Hradis, Roman Juranek, Radovan Josth

uniform sampler3D n_texture_0;

uniform vec2 v_pixel_00;

uniform sampler2D n_alphas;

uniform vec2 v_alpha_pixel;

uniform vec4 v_block_to_slice_00;

uniform vec3 v_selector_a00, v_selector_b00;

void main()
float f_result = .0; // result accumulator

/I classifier 0

}
"

Il classifier n

gl_FragColor.r = f_result; // write output frag ment

Fig. 6. AdaBoost shader code; texture_(0s the id of the right texturing uni, pixel_00is the
pixel size of that texturen_alphasis the id of the alphas texturing unit,alpha_pixels site for
alphas texturey_block_to_slicecontains constants required for 3D texture slicemf 2D
texcoords (width/number of layers, convolution lerwidth/number of layers, height/number
of layers*convolution kernel width and slight zeét to aid the right layer sampling),
v_selector_a0@ndv_selector_b0@re vectors selecting the right column from 3x8)gr

4 Performance Evaluation and Analysis

To evaluate the efficiency of the presented GPUlemgentation of the LRD, these
implementations were compared:

* LRD on GPU (section 3 above)

* Haar on GPU (section 4.1 below)

* LRD on CPU (section 4.2 below)
Evaluation was performed for different resolutidrtiee image, for different sizes of
the classified window and for different amount loé weak hypotheses calculated for
each classified window. Note that this evaluat®ioi determine the evaluation speed
of the weak classifiers only, not the overall perfance of the boosted classifier.

Win num frame-time [milli sec] time-per-wc [nanec}
resol size wc| IrdGPU haarGPUdMMX |IrdGPU haarGPU IrdMMX
320x200 16 5 0.244 0.370 17.7 0.872 1.325 55.29
320x200 16 10 0.527 0.469 25.0 0.942 0.839 46.71
320x200 16 50 2,524 3.010 82.0 0.902 1.076 40.04
640x480 16 5 1.173 1.642 101.§ 0.810 1.134 58.55
640x480 16 10 2.232 2.159 149.0 0.771 0.745 51.82
640x480 16 50 11.066 15.731 493.0 0.764 1.086 44.04

Table 1. Performance table for LRDonGPU, HAARonGPU and LRDonKjMhe table
contains the times of sole evaluation of the cfassisince the pre-processing for the Haar
wavelets (integral image calculation), cannot telgamplemented in the GPU (nv7950)

“Local Rank Differences” Image Feature Implemented a GPU 9

In the following table, a coarse comparison of pleeformance of the pre-processing
stage is given. Note that it is difficult to compathe pre-processing for the Haar
wavelets with the LRD convolutions, because theegral image calculation is
difficult to implement on the GPU. Note that thisan important advantage of the
LRD over the Haar wavelets, especially when in GRplementation.

resol LRDonGPU HAARonCPU LRDonCPU
320x200 0.72 1.22 2.52
640x480 1.22 10.29 9.13
800x600 3.51 16.41 13.80
1024x768 3.75 27.94 24.80
1280x1024 4.53 45.16 37.45

Table 2. Evaluation of the pre-processing stage (convahstifior the LRD, integral image for
Haar wavelets). Times are given in milliseconds.

4.1 Implementation of the Haar-like features onte GPU

Only the simplest (two-fold) Haar wavelet featurere used in this testing
implementation (though also three-fold features ased in the object detectors,
whose evaluation is slightly slower).

float GetHaar(float2 pO, float2 p1, float2 p2, floa
float2 p4, float2 p5, uniform samplerRECT IntegTex

return - texRECT(IntegTexId, p0).a + texRECT(Inte
- texRECT(IntegTexId, p2).a + texRECT(Inte
- texRECT(IntegTexId, p4).a * 2.0f + texRE

}
float Horizontal(float2 pO, float2 d, float Wintens
uniform samplerRECT IntegTexId, uniform samplerREC

float2 dx1 = float2(d.x,0.0f); float2 dx2 = float

float2 p3 = p0 + float2(0.0f, d.y);

float haar = GetHaar(p0, pO+dx1, pO+dx2, p3, p3+d
haar /= d.x*d.y * Wintensity; // Normalization

haar = clamp((haar+1.0f)*0.5f * 120.0f, 0.0f, 120
return texRECT(AlphaTexId, float2(Haarld, haar)).

}
sOutPS FragmentProgram(sVS2PS IN, uniform samplerRE
uniform samplerRECT IntegSqTexId, uniform samplerR

sOutPS OUT;
float window_energy = +texRECT(IntegSqTexId, IN
-teXRECT(IntegSqTexId, IN.texcoordO
-texRECT(IntegSqTexId, IN.texcoord0
+texRECT(IntegSqTexId, IN.texcoord0
float haarid = 0; float sum = 0;
sum += Horizontal(IN.texcoordO+float2(0.0f, 0
window_energy, IntegTexld, AlphaTe
sum += Vertical(IN.texcoordO+float2(3.0f, 3.0
window_energy, IntegTexld, AlphaTe
sum+=// ...
QOUT.color.r += sum/haarid; OUT.color.a = 1.0f;

t2 p3,
Id)

gTexld, p1).a* 2.0f
gTexId, p3).a
CT(IntegTex!d, p5).a;

ity,
T AlphaTexld, float Haarld)
2(d.x+d.x, 0.0f);

x1, p3+dx2, IntegTexId);

.0f); // quantization
a;

CT IntegTexld,
ECT AlphaTexId)

.texcoord0).a

+ float2(WND_W, 0.0f)).a

+ float2(0.0f, WND_H)).a

+ float2(WND_W, WND_H)).a;

.0f), float2(8.0f, 8.0f),
xld, haarid); haarid++;
f), float2(2.0f, 8.0f),

xld, haarid); haarid++;

return OUT;

Fig. 7. Evaluation of the Haar-like features in the GPU)(Cg

The Haar wavelets require normalization by the gyneén the classified window —
both to evaluate the energy and to evaluate thmirfeathemselves, integral images
are used, which is the fastest method availableutoknowledge. The calculation of

10 Lukas Polok, Adam Herout, Pavel Zentik, Michal Hradis, Roman Juranek, Radovan Josth

the integral images constitutes theeparatory phaseevaluated in the comparison.
Please note that (to our knowledge) there is nectffe way of calculating the
integral image in the shading language, so theguetpry phase is implemented in
the CPU. The shader evaluating the classifieftuistiated in Figure 7.

4.2 Implementation of the LRD on Intel CPU

The performance of the GPU implementation was ceathto an implementation on

standard Intel CPU using MMX instructions. To siifypfeature evaluation as much

as possible, the convolutions of image are pre-eatetpand stored in the memory in
such manner that all the results of the LRD grid lba fetched into the CPU registers
through two 64-bit loads. This positively affecte tevaluation that is performed in
MMX CPU instructions (introduced by Intel).

rowl = convolution_{w,h}(x, y)
row2 = convolution_{w,h}(x. y+1)
pixelA = (A < 8) ? rowl[A] : row2[A-8];
pixelB = (B < 8) ? row1[B] : row2[B-8];
mmO = expand(pixelA)

mm1 = expand(pixelB)

mm2 = load(row1)

mm3 = load(row2)

mm4 = cmp(mm2, mmO)

mm5 = cmp(mm2, mm1)

mm6 = cmp(mm3, mmO)

mm7 = cmp(mm3, mm1)
mask(mm4, validO)

mask(mmb, validl)

mask(mmeé, validO)

mask(mm?7, validl)

mm4 = add(mm4, mm6)

mmb5 = add(mm5, mm7)

mmO0 = sum_pi8(mm4)

mmO += sum_pi8(mmb5)

return mmoO

Fig. 8. Pseudocode of the MMX implementation of the LRD

.......

' --.-\‘.\T‘ y 11
),§, D508
N\ 0D00D0n @ DEEeass:
AR
\
P EEEREEE e
ARERRE) jpnana|
Aol

Fig. 9. Block diagram of the MMX implementation of the LRD

“Local Rank Differences” Image Feature Implemented @ GPU 11

A pseudocode of the MMX implementation is shownFigure 8 and the block
diagram of the evaluation is shown in Figure 9. TRD are parameterized by the
feature’s positionx, y) and the block sizew(h) which determine the convolution
image to use. First the data from the subsequews af the convolved images are
loaded into registergqwl, row2). The values of the rank pixels are loaded from th
data pixelA pixelB) and expanded to the MMX registers. The regisiétis the data
are thencompared to the expanded valuegpidelA andpixelB and the result of the
comparisoris masked (since we are interested in 3x3 grid anly 4x4 pixels were
loaded). The comparison’s results are summed —rdhelting registers, therefore,
contain the rank sum of differences of a pixel aate A and B. Finally, the 8-bit
values in the resulting registers auwnmed together which corresponds to the LRD
response.

The code, compared to CPU without MMX, is more mjali since the values are
compared in one step. The slowest step of evaluiithe expansion of 8 bit valte
the 64 bit MMX register. Since the instruction ketks a single instructioto do this,
the expansion must be done by a sequendahitifleft andor instructions. A similar
problem is the final sum of rank differences - ¢i§iit values in a register must be
summed together. Again, there is no suppoitistruction set.

5 Conclusions and Future Work

This paper presents an experimental implementatfaime Local Rank Differences
image feature on a GPU and its comparison to adperoaches, specifically to the
Haar-like features on the GPU.

The LRD features seem very well suitable for patteecognition by image
classifiers. They exhibit inherent gray-scale tfarmation invariance, ability to
capture local patterns, and the ability to reflgoantitative changes in lightness of
image areas. The implementation on the GPU is nedidp efficient, and a great
advantage of the LRD over the common Haar wavéldtse GPU environment is the
feasibility of the pre-processing stage, which habvious efficient solution for the
Haar wavelets.

The authors of this paper are currently workingaonefficient implementation of
the whole WaldBoost engine utilizing the LRD feawion the GPU. At the moment,
the partial implementation (see section 3.1) iseeably fast (1.6 ms looking for face
in a 256x256 image). However, the authors haveraéetues how to improve the
current implementation and increase its speed Iplgsseveral times. Also, for the
purpose of efficient implementation in FPGA, somedifications to the LRD feature
definition are being prepared that can also haesilide properties on the GPU — by
rearranging the memory layout.

Although the implementation of the LRD on CPU, whis used in the comparison
(section 4) is efficient (by using recent multimednstructions of the processor),
better implementations and variation of the LRDI wlso be looked for on the Intel
CPU platform.

In any case, this results of the presented worlnitielfy lead in a conclusion that
that the Local Rank Differences features preseatvial low level image feature set,

12

Lukas Polok, Adam Herout, Pavel Zentik, Michal HradiS, Roman Juranek, Radovan Josth

which outperforms the commonly used Haar waveletseiveral important measures.
Fast implementations of object detectors and athage classifiers should consider
the LRD as an important alternative.

Acknowledgements

This work has been supported by the Ministry of &dion, Youth and Sports of the
Czech Republic under the research program LC-06@0é&nter for Computer
Graphics), by the research project “Security-OsdnResearch in Informational
Technology” CEZMSMT, MSM0021630528, and by Czectaf@rAgency, project
GA201/06/1821 “Image Recognition Algorithms”.

References

10

. General-Purpose Computation on GPUs, (available af 101.4:2008 at

http://www.gpgpu.org)

. Kadir, T., Brady, M.: Saliency, Scale and Image Digsion. International Journal of

Computer Vision, Volume 45, Number 2 / November 2001

. Lienhart, R., Maydt, J.: An extended set of HaaeIfkatures for rapid object detection,

ICIPO2(I: 900-903).

. Michel, P. et al: GPU-accelerated Real-Time 3D TiragKor Humanoid Locomotion and

Stair Climbing, Proceedings of the 2007 IEEE/RSJri@onal Conference on Intelligent
Robots and Systems, 2007

. Ojala, T., Pietikdinen, M., Maenpad, T.. Gray scaled rotation invariant texture

classification with local binary patterns. In: ConguVision, ECCV 2000 Proceedings,
Lecture Notes in Computer Science 1842, SpringedqR804-420.

. Schapire, R., Singer, Y.: Improved boosting algenghusing confidence-rated predictions.

In: Machine Learning, 37(3):297-336, 1999

. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc,GPU-based Video Feature Tracking And

Matching, Technical Report TR 06-012, DepartmeniCofmputer Science, UNC Chapel
Hill, May 2006

. Sochman, J., Matas, J.: WaldBoost — Learning forel@onstrained Sequential Detection.

In: 2005 IEEE Computer Society Conference on Comp\iteipn and Pattern Recognition
(CVPR'05) - Volume 2

. Sochman, J., Matas, J.: Learning A Fast Emulata Bfnary Decision Process. In ACCV

2007.

Viola, P., Jones, M.: Rapid object detection usingoasted cascade of simple features.

In: CVPR, 2001

11Zemxik, P., Hradi§, M., Herout, A.: Local Rank Differasc- Novel Features for Image

Processing, In: Proceedings of SCCG 2007, Budmeri¢e2@®7, s. 1-12

