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Abstract

This paper describes the acoustic language recognition sub-
systems of Brno University of Technology (BUT) which con-
tributed to the BUT main submission to the NIST LRE 2007.
Two main techniques are employed in the subsystems discrim-
inative training in terms of Maximum Mutual Information, and
channel compensation in terms of eigenchannel adaptation in
both, model and feature domain. The complementarity of the
approaches is analyzed.
Index Terms: Language detection, NIST LRE 2007 evalua-
tion, discriminative training, eigenchannel adaptation in model
domain, eigenchannel adaptation in feature domain

1. Introduction
To date, there is a fair number of methods developed to improve
performance of the state-of-the-art acoustic language recogni-
tion systems. Still, two issues are main challenges in the task,
inter-session channel variability compensation as recordings be-
longing to the same language may be obtained through different
channels, and language discrimination as some languages may
have common features. This paper addressed both these prob-
lems within the UBM-GMM framework [12]. Here, to com-
pensate on the channel, eigenchannel adaptation techniqueis
applied; to train the models descriptively, Maximum MutualIn-
formation (MMI) is used.

Formerly, a channel compensation method was proposed
task by Kenny [22] in terms of factor analysis (FA). Brümmer
[13] has developed a simplified version of FA, eigenchan-
nel adaptation. These methods were developed within GMM
framework and are implemented in model domain. Later,
Castaldo in [7] has introduced an approximation of eigenchan-
nel adaptation, eigenchannel adaptation in feature domain. With
channel compensation performed in feature domain, different
approaches can be used for the feature distribution model-
ing. Both compensating techniques, eigenchannel adaptation
in model and feature domain, were involved in our systems.

As was proven during LRE 2005 in [2], discriminative
training, by means of MMI, in language recognition task is
highly beneficial and brought a great decrease in EER.

We investigate improvements given by both approaches and
their combination. Further, we examine complementarity ofthe
both methods and systems based on approaches of different na-
ture, such as phonotactic systems.

2. Theoretical Background
This section gives a brief information on the objectives of eigen-
channel adaptation and discriminative training.

2.1. Eigenchannel Adaptation in Model Domain

Let supervector be aMD dimensional vector constructed by
concatenating all GMM mean vectors and normalized by cor-
responding standard deviations.M is the number of Gaussian
mixture components in GMM andD is dimensionality of fea-
tures. Before eigenchannel adaptation can be applied, we must
identify directions in which supervector is mostly affected by
changing channel. These directions (eigenchannels) are defined
by columns ofMD×R matrixV, whereR is the chosen num-
ber of eigenchannels (R = 50 in our system). The matrixV
is given then byR eigenvectors of average within-class covari-
ance matrix, where each class is represented by supervectors
estimated on different segments of the same language.

Once the eigenchannels are identified, language-dependent
model (or language-independent UBM) can be adapted to a test
conversation by shifting its supervector in the directionsgiven
by eigenchannels to better fit the test conversation data. Math-
ematically, this can be expressed as finding the channel factors,
x, that maximize the following MAP criterion:

p(O|s + Vx)N(x;0, I) (1)

wheres is supervector representing the model to be adapted,
p(O|s + Vx) is likelihood of the test conversation given the
adapted supervector (model) andN(x; 0, I) denotes normally
distributed vector. Assuming fixed occupation of Gaussian mix-
ture components by test conversation frames,ot, t = 1, . . . , T ,
it can be shown [13] thatx maximizing criterion (1) is given by:
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whereVm is D × R part of matrixV corresponding tomth

mixture component,γm(t) is the probability of occupation mix-
ture componentm at timet, µm andσm are the mixture com-
ponent’s mean and standard deviation vectors of the model to
be adapted and
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In our implementation, occupation probabilities,γm(t), are
computed using UBM and assumed to be fixed for given test
conversation.

2.2. Eigenchannel Adaptation in Feature Domain

Adaptation in feature domain aims at projecting every observa-
tion featureo(t) to the session-independent space. Channel fac-
tors, x, are estimated using UBM (and not speaker-dependent



models). The adapted feature vector is then obtained using
1-best Gaussian in the following way:

o
′

t = ot + Vmx (4)

wherem is the index of the best scored Gaussian andVm is the
part ofV corresponding to them-th Gaussian.

2.3. Maximum Mutual Training

Unlike in the case of ML training which aims to maximize the
overall likelihood of training data given the transcriptions, the
MMI objective function to maximize is the posterior probability
of correctly recognizing all training segments:

FMMI(λ) =
R
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wherepλ(Or|sr) is likelihood of r-th training segment,Or,
given the correct transcription of the segment,sr, and model
parameters,λ. R is the number of training segments and the
denominator represents the overall probability density,pλ(Or).
Definition of the re-estimation formula is to be found in [2].

3. Experimental Setup
The results are presented in terms of the100 × Cavg (the for-
mulas are to be found in [17]).

3.1. Data

3.1.1. Training Data

To compile the training data set, different sources were used
(NIST1996, NIST2003, NIST2005, CallHome, CallFriend,
Fisher, Mixer, OGI-multilingual, OGI 22 languages, Foreigen
Accented Englis, SpeechDat-East) [20]. The amount of train-
ing data for different languages greatly varied, from1.5h for
Thai language to228h for English.

The training data was divided onto two subsets: the first
subset was used for training the models of languages and the
second was used for training of the back-end parameters.

3.1.2. Evaluation data

NIST LRE2007 data was used as the evaluation data. There are
14 languages defined as detection targets with more than7500
segments to identify. The evaluation set contains test segments
with three nominal durations of speech:3, 10 and30 seconds.
Detailed information can be found in the NIST LRE 2007 eval-
uation plan [17].

3.2. Systems

3.2.1. Pre-processing

The voice activity detection (VAD) is performed by our Hun-
garian phoneme recognizer [15], with all the phoneme classes
linked to ’speech’ class. The frames containing silence areex-
cluded from the further processing.

3.2.2. Features

All systems use the shifted-delta-cepstra (SDC) [1] together
with direct MFCC. The feature extraction was the same as in
our LRE2005 system [2]:7 MFCC coefficients (including co-
efficient C0) concatenated with SDC 7-1-3-7, which totals in56
coefficients per frame.

The features were transformed using vocal-tract length nor-
malization (VTLN) [5]. The warping factors are estimated us-
ing single GMM (512 Gaussians), ML-trained on the whole
CallFriend database (using all the languages). The model was
trained in standard speaker adaptive training (SAT) fashion in
four iterations of alternately re-estimating the model parame-
ters and the warping factors for the training data.

3.2.3. GMM system with 2048 Gaussians per lan-
guage with eigenchannel adaptation in model domain:
GMM2048-eigchan

The inspiration comes from our GMM system for speaker
recognition [14] which follow conventional Universal Back-
ground Model-Gaussian Mixture Modeling (UBM-GMM)
paradigm [12].

Each language-dependent model is obtained by traditional
relevance MAPadaptation [4] of UBM using enrollment con-
versation. Only the means are adapted with the relevance factor
τ = 19.

In the verification phase, standard Top-N Expected Log
Likelihood Ratio (ELLR) scoring [4] is used to obtain verifi-
cation score, whereN = 10 in our system. However, for
each trial, both the language-dependent model and the UBM
are adapted to the channel of the test conversation using eigen-
channel adaptation in model domain prior to computing the log
likelihood ratio score.

The eigenchannel matrix was composed of eigenchannels
derived in the following way:

1. UBM is trained using the original features.

2. For each utterance, a new GMM is obtained by MAP
adaptation.

3. A supervector of means normalized by corresponding
standard deviations is obtained from each GMM.

4. A maximum of100 supervectors per database and lan-
guage were selected.

5. The mean is subtracted from supervectors over each lan-
guage of a database (not over language as one would ex-
pect)

6. Eigenchannels (i.e. directions in which language-
dependent models are adapted for each test utterance)
are given by eigen vectors of the covariance matrix esti-
mated from the supervectors (see [3] for details).

3.2.4. GMM system with 2048 Gaussians per language with
eigenchannel adaptation in feature domainGMM2048-chcf

A similar set of GMM models with2048 Gaussians per lan-
guage was trained in UBM-GMM fashion. However, the fea-
tures (both, the training and test set) were first compensated us-
ing eigenchannel adaptation in feature domain [10, 11] (where
eigenchannel matrix was the same as in the standard approach,
see 3.2.3). In the case of the training data, the channel fac-
tors (see equation 1) were estimated using the UBM with2048
Gaussians. The test data was channel compensated in the same
manner as the training data. However, due to the short duration
of the segments, to achieve better generalization (as eigenchan-
nels can be estimated more robustly from the covariance ma-
trix), the UBM with 256 Gaussians was used for channel factor
estimation.



Table 1: Performance of our acoustic systems on LRE 2007 data

30 sec 10sec 3sec

GMM2048, baseline 8.03 12.89 21.77
GMM2048-eigchan 2.76 7.38 17.14
GMM2048-chcf 2.94 7.40 17.93
GMM256-MMI ( 15 MMI it) 4.15 8.61 18.43
GMM256-MMI-chcf ( 3 MMI it) 3.73 9.81 20.98
GMM2048-MMI-chcf ( 3 MMI it) 2.41 7.02 16.90

Table 2: Performance of our best-performing acoustic and
phonotactic system, and their fusion

30 sec 10sec 3sec

(1) GMM2048-MMI-chcf 2.41 7.02 16.90
(2) EN Tree 3.54 10.69 22.66
(1) + (2) (LDA fusion) 1.50 5.27 14.55

3.2.5. GMM-MMI:GMM256-MMI

This system uses GMM models with256 Gaussians per lan-
guage as the base models, where mean and variance parameters
were iteratively re-estimated using Maximum Mutual Informa-
tion criterion - the same as for LRE2005 [2]. A relatively small
number of Gaussians was chosen for high resource consump-
tion during MMI training. The models’ parameters were re-
estimated in15 iterations.

3.2.6. GMM-MMI with channel compensated features:
GMM256-MMI-chcf, GMM2048-MMI-chcf

The GMM256-MMI-chcf system was trained in an identical
manner as the GMM256-MMI system, however the features
were preliminary compensated by means of eigenchannel adap-
tation in feature domain.

In the GMM2048-MMI-chcf system the number of Gaus-
sians per language was increased to2048.

3.3. Normalization and Calibration

In this work, all results are presented for the systems calibrated
using linear Gaussian back-end (LDA) and linear logistic re-
gression back-end (LLR) [8] used in cascade. During LDA, for
each class, a single full-covariance Gaussian (the covariance
matrix is shared among all classes) is trained on the vector of
scores generated from all models. LLR is trained in a discrim-
inative fashion. The FoCal Multi-class toolkit by Niko Brum-
mer1 was used for this purpose.

4. Results
We used a UBM-GMM system with2048 Gaussians per lan-
guage as the baseline system, where no eigenchannel adaptation
was employed (GMM2048). Results of the individual systems
described above and the baseline are listed in Table 1.

When eigenchannel adaptation in model domain was ap-
plied, GMM2048-eigchan, the error decreased almost to one
third of the baseline. When eigenchannel adaptation was

1http://niko.brummer.googlepages.com/focalmulticlass

Table 3: Effect of calibration for the GMM2048-MMI-chcf on
LRE 2007 data

30 sec 10 sec 3 sec
No back-end 5.75 9.45 18.44
LDA+LLR 2.41 7.02 16.90

done in feature domain, GMM2048-chcf, the error was slightly
higher than for GMM2048-eigenchan but the approach enables
simple application of additional MMI parameter re-training to
improve the performance.

Then several experiments were run by applying MMI train-
ing in order to select the best performing configuration. In-
spired by our2005 LID system, GMM-MMI system was first
trained with256 Gaussians. In this case,15 iterations of the
parameter re-estimations were required to converge. the error
of this system was significantly lower than the error of the base-
line, however the system did not reach the performance of the
GMM2048-eigchan system.

Observing the good performance of the systems employing
eigenchannel adaptation and MMI training, respectively, and
assuming complementarity of the techniques, our intentionwas
to combine both techniques in order to achieve further improve-
ment of the result. When the models with256 Gaussians were
trained on the compensated features and the parameters of the
models were re-estimated by means of MMI, where already3
iterations were sufficient, we observed relative improvements of
22 % to the accuracy of the GMM256-MMI system on30 sec
condition.

Still, we supposed there was room for further improving of
the recognition by increasing the number of Gaussians. When
the models were trained in the same manner as GMM256-MMI-
chcf only with the number of Gaussians increased to2048
(again, only3 iterations were run), the system out-performed
the 2048GMM-eigchan system by35 % relative in30 sec con-
dition.

4.1. Calibration

The calibration of the obtained scores was an important part
in building our systems. To outline the effect of the calibration,
the results of the uncalibrated GMM2048-MMI-chcf system are
present as well as of the calibrated system (see Tab 3). However,
in case of3 sec condition, the decrease of the error is only about
8 % relative, in case of30 sec condition, we could observe more
than50 % of relative reduction of the error.

4.2. Complementarity with the Other System

In order to draw an overview of the performance of our acoustic
systems, we present (for sake of comparison) results achieved
with our best phonotactic system, ENTree (see Tab 2) [21].
The approach is based on recognizing of the phonemes using
English phoneme recognizer and following language model-
ing (PRLM). The ENTree system employs binary decision tree
language modeling based on creating a single language inde-
pendent tree (UBM) and adapting its distributions to individual
language training data, as described in Navratil’s work [18, 19].
Binary decision tree is trained on posterior weighted counts
from phoneme lattices [2]. When both, our best-performing
acoustic system GMM2048-chcf and ENTree, were fused, we
observed a great reduction in ERR which indicates high com-



plementarity of the systems. Complementarity of our other sys-
tems was further examined, for a detailed description see [20].

5. Conclusion
We showed that both eigenchannel adaptation and MMI train-
ing are greatly beneficial in the language recognition task.It
was shown that, the approximation of the standard eigenchannel
adaptation, eigenchannel adaptation in feature domain is almost
as accurate as the standard approach. Moreover, it has a great
advantage, that it allows to apply MMI parameter re-estimation
without modifying the MMI training algorithm. We showed that
when eigenchannel adaptation is applied in feature domain,fur-
ther improvement of the result can be achieved by subsequent
re-estimating of the parameter of GMM by using MMI training.
We showed that our best acoustic system is complementary and
well fused with our other systems. We have also shown, the cal-
ibration of the obtained scores is an important part of building
an accurate recognition system.
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