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Summary

Current LID systems have difficulties in dealing with languages with insufficient or small amount of
training data available. This issue concerns not only exotic languages with small number of native
speakers, but also languages like Thai with 65 milion native speakers.

We aim to develop techniques, that will allow us to automatically obtain training data for these
troubled languages and use them in Language Recognition systems. As the present LRE systems
are trained and evaluated on Continuous Telephone Speech (CTS), the task will be to obtain speech
samples, that went through the telephone channel. This task leads us to developing an automatic
system, which obtains recordings from public broadcasts and automatically detects telephone calls
that are consequently used for training. The system was implemented and used for building the data
sets which were used for subsequent experiments.

In order to use the data obtained from broadcasts we have to cope with several issues related to
this data. The first problem is channel compensation, as the data comes not only through telephone
channel, but also through wideband broadcast. The second problem is that the telephone calls into
broadcasts are usually less spontaneous than data commonly used for current systems.

We have conducted several experiments using both CTS and broadcast data to uncover possible
problems, which can arise when using this type of data in training or evaluating current LRE systems.
The results of these initial experiments show that if the broadcast data only are used for training and
standard telephone data for testing, the performance of such system is worse, than the performance
of standard LRE systems trained and tested on CTS. Further experiments with compensation for the
distortion created by broadcast channel should be conducted to better match the target CTS data
and improve the performance.

The experiments also show, that if the broadcast data are used both for training and testing the
system, the results are very good. This can indicate, that the information about channel is very strong
in these broadcast data and that the systems are learning this information and it heavily affects the
final recognition.

Cooperation with Linguistic Data Consortium on creating a broadcast database was part of this
work. We used the developed systems to provide pre-labeling of broadcast data, see Appendix B.
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Chapter 1

Introduction

We introduce a process of automatic acquisition of speech data from the various media sources for
the language identification task. The last editions of NIST Language Recognition (LRE) evaluations
have shown that both acoustic and phonotactic approaches have reached a certain maturity level in
both modeling of target languages and dealing with the influences of different channels. However we
are still facing the common problem: the lack of training data. There is no good or large enough
database of training data for many languages including even languages like Thai, which is spoken by
65 million speakers. Also, there is an increasing demand to recognize languages from smaller and less
populous regions (many of them relevant for security of defense domain). For some of these languages,
no standard speech resources exist.

This work aims at solving this problem using the data acquired from public sources, such as satellite
and Internet TVs and radios, which contain conversational speech or telephone calls. This approach
can provide us with large amount of data that we will use to conduct experiments, which will help
to answer the question whether these data can replace or augment standard conversational telephone
speech (CTS) data. The results will also show that if we had no standard CTS training data, these
data obtained from broadcasts can be used to process the languages that we were unable to recognize
due to absence of the training data.

First, the obtained data has to be preprocessed in order to acquire clean speech segments or
individual phone calls. The task is to examine the obtained telephone calls by training and evaluating
the systems on languages for which we have both CTS and broadcast data. The results of the
experiments will show, how the systems perform, when the CTS or broadcast data are used for
training or testing.

The main challenge is channel compensation, as the obtained data are acoustically very different
from the conversational telephone speech (CTS) commonly used in LRE. Broadcast data contain a
great deal of unspontaneous speech as well. Further task is to explore how unspontaneous speech
affects current LRE systems (which are supposed to be trained on spontaneous data). The notion of
channel compensation will therefore have to be extended to cope with these factors.

We have done experiments on Dari, English, French, Hindi, Korean, Mandarin, Spanish and Viet-
namese languages, because these languages are the intersection of languages we obtained from broad-
cast sources and the languages present in standard databases available.
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Chapter 2

Data Acquisition Principles

There is unlimited source of speech data available from the broadcast media. We can acquire data
from several sources, each of which has different channel parameters, quality and number of available
languages. The list of available sources in a standard industrialized country (such as the Czech
Republic) is shown in Table 2.1 [1].

All of the listed sources except Internet radios are geographically dependent regarding location.
The quality of different Internet sources varies a lot and it is important to carefully choose them. We
have used an archive1 of Voice of America Internet radio to obtain data for all languages.

This particular data of VoA were obtained in MP3 format, bitrate is 24 Kbit/s, sampling rate
22,050 Hz, 16 bit encoding, mono. Original media data include a great portion of music and speech
with the music in background. We have to deal with this problem and select only clean speech
segments. Also we should deal with the problem of a low speaker variability in the obtained data, for
instance as it is common in news programmes, which are moderated by the same speaker. So far, we
have not investigated into this problem and used only telephone calls in broadcasts, where speaker
variability should be sufficient.

2.1 Detecting Phone Calls

Our phone call detector is based on the fact that a telephone channel acts like a bandpass filter, which
passes energy between approximately 400 Hz and 3.4 KHz. On the other hand, regular wideband
speech contains significant energy up to around 5 KHz. Common media sources like satellite radio or
Internet radios are usually sampled at 22 kHz so it supports this bandwidth, which means that if we
place a phone call into the regular radio transmission, we will see a significant change in the spectrum
(Figure 2.1).

Figure 2.1: Phone Call in a Radio Broadcast.

1FTP server 8475.ftp.storage.akadns.net directory /mp3/voa
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Table 2.1: Overview of different channels. DVB stands for Digital Video Broadcasting - Terrestrial,
Cable and Satellite. By parallel recording we mean the possibility of acquiring more broadcasts
simultaneously using one recording device (i.e. one DVB-S receiver).

Inet. radio DVB-T DVB-C DVB-S Analog

Languages approx. 100 1 - 3 approx. 5 20 - 30 3 - 5
Quality variable good good good bad
Parallel recording yes yes yes yes no

For the detection, we first resample the signal to commonly used 16 kHz. The signal is divided into
frames of 512 samples with no overlap and Fourier spectrum is computed for each frame. To detect
boundary between wideband and telephone speech, we concentrate on the frequency range between
2350 and 4600 Hz. The power spectral density (PSD) in this range was used (see Figure 2.2). At
first, the PSD was normalized to zero mean and unit variance. Then values in the first half (from
2350 to 3475 Hz) and values in the second half (from 3475 to 4600 Hz) of the PSD were summed.
A ratio between these two sums was compared with a threshold and the decision was made. If the
ratio is higher than selected threshold, there is more energy in lower frequencies and we considered
the segment a telephone call speech. For the block diagram of this process see Figure 2.3.
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Figure 2.2: Power Spectral Density of telephone call in the broadcast (left figure) and wideband speech
(right figure).

2.2 Detecting Wideband Speech Segments

Recordings obtained from media broadcasts contain great deal of music, speech with music in the
background or other nonspeech sounds. The task is to detect clean speech segments which can be
used in language recognition or possibly in the other applications.

The detection is done by estimating frame by frame likelihoods, of classes speech and other (non-
speech). GMM models were used to estimate these likelihoods. These models contain 1024 Gaussians
and were trained on 12.7 hours of speech and 18.7 hours of nonspeech wideband data. MFCC coeffi-
cients with deltas and double deltas were used as features for training. These data (containing several
languages) were obtained from Linguistic Data Consortium and were manually annotated for these
two classes.

Once we obtain frame by frame log-likelihoods for each class, we filter them using simple median
filter2 and subtract these two sets of values. The resulting log-likelihood ratios are averaged over 100
frames and compared to empirically set thresholds. Depending on the threshold, we decide whether we

2Window size of this median filter is 5.
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16 KHz signal Compute PSD in the
window of 512 samples

Sum the values of PSD from
 2350 to 3475 Hz

Sum the values of PSD from
 3475 to 4600 Hz

Divide the sum from lower 
frequencies by the sum from

higher frequencies and obatin
a ratio

If the ratio is higher than the
threshold, mark segmet under

window as telephone,
 else mark the segment

as wideband

Shift  the window

Figure 2.3: Block diagram of detecting telephone calls in the wideband signal.

are in the speech segment or nonspeech segment or whether we are not sure (segments to be checked
by human annotator). For the block diagram of this process see Figure 2.4.
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16 KHz signal Estimate log. l ikelihood
of speech and other class

for current frame

End of File

NO

YES
Filter log likelihoods for both

classes by median fi l ter

Subtract f i l tered log
likelihoods and obtain

log l ikelihood ratio

Compute average log
likelihood ratio in the

window of 100 frames

Depending on the threshold,
mark signal under the window

as speech, nonspeech or
not sure

End of File Shift  the windowEND YES NO

Take another frame

Figure 2.4: Block diagram of detecting speech and nonspeech segments in the wideband signal.
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Chapter 3

Training and Test Sets

In order to compare, how our LRE systems perform when using broadcast and standard CTS data,
we created a data set from broadcast data. We selected eight languages1 from the Voice of America
ftp archive. We have chosen these particular languages, because we have the data for these languages
present in CallFriend, NIST LRE 2003 and NIST LRE2007 databases. In order to create reasonably
robust experiment, we have chosen these languages even if we expected problems with French and Dari
language: the French language in the Voice of America archive is recorded in the Africa region and
therefore the obtained samples can substantially differ from the utterances spoken by native French
speakers in our CTS databases. The Dari language was chosen, because this language is very close to
the Farsi language which is present in CallFriend, NIST LRE 2003 and NIST LRE 2007 databases.
We decided to relabel Farsi to Dari in those databases for the purpose of the experiments.

Additionally, we expect, that the people calling into the Voice of America broadcasts speak the
same language as the language label denoting particular recording of broadcast. We did not have
resources to manually check all data, so errors can occur in labeling of the training and test data.
We have to keep in mind all of these compromises we have made when analyzing the results of the
experiments.

3.1 Telephone Call Segments

We decided to select only telephone calls which are present in the Voice of America broadcasts, because
we believe these data will be affected by passing through the telephone channel and will better match
our CTS data. First, our phone call detector was used to detect phone call segments in the wideband
data. The telephone call into broadcast can be interrupted by a moderator and we want to reconstruct
the call from the segments of the calling person. The postprocessing of this detection was made in
order to obtain these reconstructed segments.

For the purpose of the postprocessing of label file created by phone detector, an algorithm which
marks particular phone segments as phonecall1, phonecall2 . . . was designed. This algorithm
marks individual phone call segments in order to join them into longer segments. The algorithm
accepts segments which are longer than 10 seconds, because our phone call detector makes a lot of
short segments, which are more likely to contain some wideband portion. Phone call segments are
assigned the same label until there is a maximum 120 seconds of wideband segment between them.
When the wideband segment between phone calls is longer than 240 seconds, the next phone segments
will be assigned new label (e.g. phonecall2).

When the label file created by the telephone detector is processed by the algorithm explained
above, we cut and join the segments with the same label. Speech@FIT phone recognizer [2], [3] was
used to determine the pause in the speech at the borders of each segment and these time stamps were

1Dari, English, French, Hindi, Korean, Mandarin, Spanish and Vietnamese
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Table 3.1: Training data in hours after segmentation for each language.
Language CallFriend Broadcast
Dari/Farsi 21.2 6
English 39.8 6
French 21.5 6
Hindi 19.6 6
Korean 18.4 6
Mandarin 41.7 6
Spanish 43.8 6
Vietnamese 20.6 6

Table 3.2: Number of 30 second test segments for each language.
Language NIST 2003 NIST 2007 Broadcast
Dari/Farsi 80 88 150
English 240 266 150
French 80 80 150
Hindi 80 268 150
Korean 80 108 150
Mandarin 80 496 150
Spanish 80 256 150
Vietnamese 80 168 150

used to cut the segments out of the original recordings. Then the cut segments with the same label
were concatenated into one file to obtain the reconstructed telephone call.

Using this approach, we obtain significantly smaller number of telephone segments than we would
get taking directly the output of the telephone detector. The benefit is that the segments contain
less wideband caused by errors in detecting the phone calls and the speaker variability is increased,
because we have less segments with the same speaker. On the other hand, it is possible, that the final
segments contain more different speakers.

3.2 Broadcast Data Sets

Using the procedure explained above, we created broadcast test set, selecting 150 segments for each
language. Each selected segment was cut out from the detected telephone call in such way, that it
contained 30 seconds of speech. Our phoneme recognizer was used to determine the length of speech.

Broadcast training set was created by taking the merged phone call segments2 until we reached
the limit of six hours of speech per language.

3.3 CTS Data Sets

CTS test sets were created by taking subsets of NIST LRE 2003 [4] and 2007 [5] evaluation data.
Only 30 second segments were used. Training set was created by taking subset of languages from
CallFriend database. All data sets are listed in tables 3.1 and 3.2.

2Described in section 3.1
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Chapter 4

Experiments

We performed experiments both with phonotactic and acoustic systems. With both systems, we tested
several techniques to improve the performance to show in which direction the development of LRE
systems using data obtained from broadcasts together with standard CTS data should continue. The
results are evaluated using standard metrics: Detection Error Tradeoff (DET) curve, Decision Cost
Function (DCF) and Equal Error Rate (EER) [5]. All experiments were done on 30 second segments.
We present results of phonotactic and acoustic systems derived from our systems submitted to NIST
LRE 2007 evaluation [6, 7].

4.1 Phonotactic systems

The first phonotactic system [6, 7] is based on string output of our Hungarian phoneme recognizer.
The second phonotactic system [6, 7] is based on lattice output of our Hungarian phoneme recognizer.
The phoneme recognizer is based on hybrid ANN/HMM approach, where artificial neural networks
(ANN) are used to estimate posterior probabilities of phonemes from Mel filter bank log energies
using the context of 310ms around the current frame [3]. Trigram language models were trained on
CallFriend database for CTS phonotactic system and for broadcast phonotactic system, the language
models were trained on broadcast training set. Linear back-end calibration [8] was applied on the
obtained scores. Calibration of scores was done on the test set, which may lead to overoptimistic
results, but according to our experience, the results for properly trained calibration will not differ
much. Both CTS and broadcast systems were evaluated against all test sets.

4.1.1 Results of Phonotactic Systems

The results are listed in tables 4.1 and 4.2. Phonotactic system based on string output was outper-
formed by the phonotactic system with lattices in all cases.

Table 4.1: Phonotactic systems based on string output - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 1.781 9.072 6.583

Broadcast 11.949 18.593 1.416
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Table 4.2: Phonotactic systems based on lattice output - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 0.900 6.995 5.232

Broadcast 8.958 15.215 1.398

4.2 Acoustic systems

Our acoustic systems are built on the experience with GMM modeling for speaker recognition [9]
which follows conventional Universal Background Model-Gaussian Mixture Modeling (UBM-GMM)
paradigm [10] and employs number of techniques that have previously proved to improve GMM system
performance [11]. This system was chosen because it can easily compensate for the channel distortion.

Table 3.1 lists the corpora used to train our systems. CTS system was trained on CallFriend
database and broadcast system was trained on our broadcast database.

Our systems use the popular shifted-delta-cepstra (SDC) [12] feature extraction, where 7 MFCC
coefficients (including coefficient C0) are concatenated with SDC 7-1-3-7, which totals in 56 coefficients
per frame. Vocal-tract length normalization (VTLN) [13] performs simple speaker adaptation. VTLN
warping factors are estimated using single GMM (512 Gaussians), ML-trained on the whole CallFriend
database (using all the languages). The model was trained in standard speaker adaptive training (SAT)
fashion in four iterations of alternately re-estimating the model parameters and the warping factors
for the training data. Each language model is obtained by traditional relevance MAP adaptation [14]
of UBM using enrollment conversation. Only means are adapted.

In verification phase, standard Top-N Expected Log Likelihood Ratio (ELLR) scoring [14] is used
to obtain verification score, where N is set to 10. However, for each trial, both language model and
UBM are adapted to channel of test conversation using simple eigenchannel adaptation [9] prior to
computing the log likelihood ratio score.

Calibration of scores was done on the test set, which may lead to overoptimistic results, but
according to to our experience, the results for properly trained calibration will not differ much. Both
CTS and broadcast systems were evaluated against all test sets.

4.2.1 Results of Acoustic Systems

First, both systems were trained without channel compensation. Then, eigenchannel adaptation was
applied. Two different matrices containing 50 eigenchannels were used. The first matrix was computed
from broadcast training set. The second matrix was taken from our NIST LRE2007 system [6]. This
matrix was trained on CTS databases.

We also experimented with training channel compensation using both CTS and data from broad-
casts, hoping that the channel compensation will solve the mismatch between CTS and broadcasts.
Especially we were hoping to improve the poor results when training on broadcasts and testing on
CTS. However, so far we were not successful with such cross-condition channel compensation.

The results are listed in tables 4.3, 4.4 and 4.5.
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Table 4.3: Acoustic systems without eigenchannel compensation - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 3.407 8.807 8.261

Broadcast 14.423 19.502 3.250

Table 4.4: Acoustic systems with eigenchannels trained on broadcast data - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 1.145 5.644 8.250

Broadcast 9.840 15.013 0.583

4.3 Discussion

The results of both acoustic and phonotactic systems were consistent. Phonotactic systems using
lattices significantly outperform phonotactic systems based on string output in all test cases. See
Appendix A for detailed results.

We expected that the acoustic systems outperform phonotactic systems, but only phonotactic sys-
tem trained on CTS was outperformed by acoustic system trained on CTS with channel compensation
trained on telephone data.

The results of acoustic systems prove that the individual samples are recorded over different chan-
nels, therefore application of eigenchannel adaptation [15] is crucial to compensate the channel dis-
tortion. In language detection task, channel variability may comprehend not only variability in the
telephone channel or type of microphone, but also session or speaker variability.

Channel compensation trained on CTS is generally better. Broadcast data probably do not reflect
the variations of channels.

The results of acoustic systems trained on broadcast data can imply, that the wideband channel
added additional distortion to the obtained data, which affects the results obtained when testing
against the CTS data. The decline in performance when testing against the CTS data can be also
affected by different type of speech, that is usually present in the broadcasts. Speech in media
broadcasts is usually less spontaneous. Speech in radio broadcasts in comparison with our CTS
databases does not contain many hesitations, interruptions and is usually grammatically correct.

However the performance of systems trained on broadcast data and tested on CTS data is worse
than the performance of systems trained and tested on CTS, the results show the similar trend over
individual languages. This trend when EER is approximately two times higher except for the Dari
and French language 1, can be observed on NIST 2007 test set (see figures 4.1 and 4.2), which consists
of more difficult data for recognition.

1We expected problems for these languages, see section 3.
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Table 4.5: Acoustic systems with eigenchannels trained on CTS data - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 0.420 4.296 3.083

Broadcast 9.222 14.290 0.922

When evaluating the acoustic system trained on broadcast data, we obtain excellent performance
on broadcast data, which can indicate, that the system learned also the different channels of individual
radio stations. This hypothesis has to be kept in mind when using broadcast data both for training
and testing. Channel compensation trained on broadcasts even emphasizes this possible problem.
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Figure 4.1: Equal Error Rate of individual languages for phonotactic systems based on lattices trained
on CTS and broadcasts.

Da
ri

En
gli
sh

Fr
en
ch

Hi
nd
i

Ko
re
an

Ma
nd
ar
in

Sp
an
ish

Vi
et
na
me
se

0

2

4

6

8

10

12

14

16

18

20

CTS
BroadcastE

E
R

Figure 4.2: Equal Error Rate of individual languages for acoustic systems trained on CTS and broad-
casts with channel compensation trained on broadcast data.
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Chapter 5

Conclusions

We introduced a simple but promising approach of acquiring telephone data for LID. Experiments
with selected languages using standard telephone data and telephone data acquired from broadcast
were performed. Both phonotactic and acoustic approaches for recognition were investigated.

Obtained results show, that if systems trained on broadcast data are used to recognize CTS, the
performance is significantly lower than it would be with the systems trained on target data. However,
experiments with channel compensation techniques indicate, there is a possibility to improve the
performance by investigating other compensation techniques to suppress the distortion caused by
passing the telephone call through wideband channel. On the other hand, training the systems on
CTS data and testing on broadcast data seems to be all right as the same trends are observed for the
CTS based test sets.

Performed experiments show, that if broadcast data are used both for training and testing, the
performance is excellent but if the CTS data are used to evaluate the system, the performances drop
dramatically. This is probably because the systems trained and tested on broadcast data have learned
some information about the channel of particular broadcast, especially if all samples of the same
language come from one radio station, but this problem deserves further investigation. As soon a
database exists, where one language comes from different broadcasts, the experiments should be made
to verify this idea.

Results of the experiments also lead to a claim, that the broadcast data are “easier”, as they
contain mostly clean, prepared and grammatically correct speech. This idea is supported by the
fact, that broadcast data were always (except the case when the channel compensation trained on
broadcasts was used) recognized by systems trained on CTS data with better accuracy than NIST
2007 data which contain a lot of unclean speech.

It should be remembered, that the results of systems trained on broadcasts were obtained on
automatically created databases without human annotator checking and several compromises were
made, especially considering Farsi language as Dari and using French spoken in the African region.
Also only 6 hours of training data per language was used to train systems on broadcast data in
comparison with average 28 hours of training data per language for systems trained on CTS data.

The performance of the systems trained on broadcast data simulates a scenario, when no standard
CTS training data are available and we need to detect a particular language. Although the results are
significantly worse than ones we would get with CTS data for training, using the broadcast data can
be the only option in such situation.
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Appendix A

Detailed Results
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Table A.1: Results of phonotactic system based on string output. System trained on CallFriend
database.

Language NIST 2003 NIST 2007 Broadcast

Dari 1.517 3.858 10.476
English 2.529 10.682 3.761
French 2.440 2.237 10.285
Hindi 2.142 10.202 6.238
Korean 0.208 6.142 5.000
Mandarin 0.952 11.166 4.000
Spanish 0.714 4.343 1.523
Vietnamese 0.684 7.314 5.619
Average 1.398 6.993 5.863
pooled minDET 1.700 7.627 6.261
pooled EER 1.781 7.736 6.583
pooled unweighted minDET 1.794 9.072 6.261
pooled unweighted EER 1.982 9.122 6.583

Table A.2: Results of phonotactic system based on string output. System trained on broadcast
database.

Language NIST 2003 NIST 2007 Broadcast

Dari 19.077 19.371 0.7142
English 11.666 19.698 2.666
French 13.839 20.968 1.285
Hindi 17.440 21.619 0.904
Korean 6.994 12.737 1.142
Mandarin 9.017 22.321 0.238
Spanish 5.000 10.200 0.666
Vietnamese 4.970 12.335 0.285
Average 11.000 17.406 0.988
pooled minDET 11.644 18.286 1.333
pooled EER 11.949 18.593 1.416
pooled unweighted minDET 12.035 18.796 1.333
pooled unweighted EER 12.250 19.122 1.416
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Table A.3: Results of phonotactic system based on lattices. System trained on CallFriend database.

Language NIST 2003 NIST 2007 Broadcast

Dari 0.744 3.707 6.714
English 1.726 11.108 3.761
French 0.803 1.976 7.761
Hindi 0.446 8.609 5.523
Korean 0.208 5.720 3.571
Mandarin 0.535 8.762 2.142
Spanish 0.148 3.904 1.857
Vietnamese 0.625 5.977 4.428
Average 0.654 6.221 4.470
pooled minDET 0.822 6.903 5.083
pooled EER 0.900 6.995 5.232
pooled unweighted minDET 0.866 7.769 5.083
pooled unweighted EER 0.875 7.836 5.232

Table A.4: Results of phonotactic system based on lattices. System trained on broadcast database.

Language NIST 2003 NIST 2007 Broadcast

Dari 14.791 18.498 0.428
English 10.029 17.637 1.904
French 11.339 18.696 1.428
Hindi 12.559 16.958 0.666
Korean 3.839 8.172 1.142
Mandarin 5.446 16.762 0.333
Spanish 2.142 8.616 0.904
Vietnamese 2.886 9.717 0.047
Average 7.879 14.382 0.857
pooled minDET 8.697 15.017 1.220
pooled EER 8.958 15.215 1.398
pooled unweighted minDET 9.258 15.313 1.220
pooled unweighted EER 9.607 15.497 1.398
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Table A.5: Results of acoustic system trained on CallFriend database without channel compensation.

Language NIST 2003 NIST 2007 Broadcast

Dari 2.083 2.359 5.190
English 1.488 13.291 10.619
French 4.077 2.531 12.333
Hindi 4.255 15.340 13.238
Korean 2.291 7.788 6.238
Mandarin 2.559 10.153 5.666
Spanish 4.315 8.564 2.761
Vietnamese 1.160 3.661 4.190
Average 2.779 7.961 7.529
pooled minDET 3.277 8.670 8.184
pooled EER 3.407 8.807 8.261
pooled unweighted minDET 3.276 10.601 8.184
pooled unweighted EER 3.375 10.873 8.261

Table A.6: Results of acoustic system trained on broadcast database without channel compensation.

Language NIST 2003 NIST 2007 Broadcast

Dari 21.577 23.920 1.142
English 9.375 22.564 3.761
French 16.220 20.010 3.666
Hindi 20.952 24.347 2.476
Korean 11.428 15.325 3.190
Mandarin 9.017 20.200 0.714
Spanish 10.000 14.083 1.428
Vietnamese 7.351 7.847 1.857
Average 13.240 18.537 2.279
pooled minDET 13.958 19.317 2.833
pooled EER 14.423 19.502 3.250
pooled unweighted minDET 13.357 20.133 2.833
pooled unweighted EER 13.633 20.350 3.250
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Table A.7: Results of acoustic system trained on CallFriend database with channel compensation
trained on broadcast data.

Language NIST 2003 NIST 2007 Broadcast

Dari 0.625 1.432 11.428
English 1.101 9.014 8.714
French 1.250 0.949 12.333
Hindi 0.654 10.878 7.666
Korean 0.148 4.563 3.238
Mandarin 0.803 7.139 5.619
Spanish 1.011 3.580 2.523
Vietnamese 0.148 3.556 9.761
Average 0.718 5.139 7.660
pooled minDET 1.104 5.447 8.166
pooled EER 1.145 5.644 8.250
pooled unweighted minDET 1.196 6.746 8.166
pooled unweighted EER 1.250 6.959 8.250

Table A.8: Results of acoustic system trained on broadcast database with channel compensation
trained on broadcast data.

Language NIST 2003 NIST 2007 Broadcast

Dari 15.565 17.015 0.142
English 6.517 15.538 0.476
French 11.458 13.324 0.238
Hindi 14.851 17.612 0.000
Korean 6.994 10.583 0.809
Mandarin 6.666 16.875 0.000
Spanish 6.428 10.113 0.714
Vietnamese 2.678 9.773 0.142
Average 8.895 13.854 0.315
pooled minDET 9.471 14.510 0.505
pooled EER 9.840 15.013 0.583
pooled unweighted minDET 9.196 15.939 0.505
pooled unweighted EER 9.508 16.198 0.583
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Table A.9: Results of acoustic system trained on CallFriend database with channel compensation
trained on telephone data.

Language NIST 2003 NIST 2007 Broadcast

Dari 0.178 1.471 3.190
English 0.416 6.850 4.619
French 0.446 0.587 4.619
Hindi 0.178 7.643 2.190
Korean 0.208 2.923 1.285
Mandarin 0.505 8.168 1.285
Spanish 0.119 2.636 0.380
Vietnamese 0.000 2.005 1.142
Average 0.256 4.035 2.339
pooled minDET 0.383 4.258 2.964
pooled EER 0.420 4.296 3.083
pooled unweighted minDET 0.437 5.714 2.964
pooled unweighted EER 0.500 5.730 3.083

Table A.10: Results of acoustic system trained on broadcast database with channel compensation
trained on telephone data.

Language NIST 2003 NIST 2007 Broadcast

Dari 11.220 17.892 0.047
English 7.410 17.296 1.666
French 13.839 13.585 0.238
Hindi 14.970 15.280 0.095
Korean 3.720 6.250 0.714
Mandarin 9.166 20.584 0.000
Spanish 6.726 9.027 0.619
Vietnamese 2.023 5.336 0.000
Average 8.634 13.156 0.422
pooled minDET 9.136 14.136 0.886
pooled EER 9.222 14.290 0.922
pooled unweighted minDET 8.964 15.772 0.886
pooled unweighted EER 9.107 15.860 0.922
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Appendix B

Cooperation with Linguistic Data
Consortium

We were collaborating with the Linguistic Data Consortium (LDC) on preparation of broadcast data
database, which will contain recording from various radio stations in many languages. Language labels
of all recordings in this database need to be manually verified. Verification of such large amount of
data consisting of tens of languages represents a problem in routing a recordings to an annotator, able
to recognize language of particular recording.

We received a set of various broadcast recordings from LDC without language labels. It was
expected, that these recordings contain 39 different languages. 1 This package contained over 7GB or
10150 files of stereo recordings compressed in mp3 format. Given the fact, that the recordings often
contain different broadcast stations in the left and right channel, more than 14000 hours of data had
to be processed and labeled.

In order to label the data, we downloaded large amount of broadcast data from the Voice of America
archive, where the recordings are labeled according to location of broadcasting and predominant
language. We prepared the data for training using the same techniques explained in section 3.1 and
trained a phonotactic system based on string output from our Hungarian phoneme recognizer. The
language models were trained for 43 languages 2 and there was an average of 14.1 hours of speech per
each language for training. However this number varied from 4.7 hours (for Serbian )to 64 hours (for
Korean).

We provided three top-scoring language labels for each file and each channel to speed up the routing
of files to human annotators. We also provided speech and nonspeech labels and labels for the phone
calls detected in the broadcasts. These labels were obtained by techniques explained in sections 2.1,
2.2 and 3.

We have also created software packages for phone call detection and speech/nonspeech segmen-
tation. This software was shipped to LDC will allow them to process the recorded broadcast more
effectively.

1Albanian, Amharic, Armenian, Azeri, Bengali, Bosnian, Burmese, Cantonese, Creole, Croatian, Dari, English,
French, Georgian, Greek, Hausa, Hindi, Indonesian, Khmer, Korean, Kurdish, Lao, Mandarin, Pushto, Persian, Por-
tuguese, Russian, Serbian, Shona, Somali, Spanish, Swahili, Thai, Tigrigna, Turkish, Ukrainian, Urdu, Uzbek, Viet-
namese

2Albanian, Amharic, Azerbaijani, Bengali, Bosnian, Burmese, Cantonese, Creole, Croatian, Dari (Persian), English,
French, Georgian, Greek, Hausa, Hindi, Indonesian, Khmer, Kinyarwanda, Korean, Kurdish, Lao, Macedonian, Man-
darin, Ndebele, Oromo, Pashto, Persian, Portuguese, Russian, Serbian, Shona, Somali, Spanish, Swahili, Thai, Tibetan,
Tigrinya, ”Talk To America - English”, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese
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