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Abstract
We introduce the Residual Memory Network (RMN) architec-
ture to language modeling. RMN is an architecture of feed-
forward neural networks that incorporates residual connections
and time-delay connections that allow us to naturally incorpo-
rate information from a substantial time context. As this is the
first time RMNs are applied for language modeling, we thor-
oughly investigate their behaviour on the well studied Penn
Treebank corpus. We change the model slightly for the needs
of language modeling, reducing both its time and memory con-
sumption. Our results show that RMN is a suitable choice for
small-sized neural language models: With test perplexity 112.7
and as few as 2.3M parameters, they out-perform both a much
larger vanilla RNN (PPL 124, 8M parameters) and a similarly
sized LSTM (PPL 115, 2.08M parameters), while being only by
less than 3 perplexity points worse than twice as big LSTM.
Index Terms: residual memory networks, feed-forward net-
works, language modeling

1. Introduction
When first introduced to modern language modeling by Bengio
et al. [1], neural language models brought a principal improve-
ment over n-gram counting techniques: Instead of treating indi-
vidual words as unrelated events, these neural models learn to
represent words by continuous-valued vectors of fixed length.
This way, the rest of the network is independent of the exact
identity of input words and neural language models are thus
able to partially overcome the curse of dimensionality.

The next fundamental step was taken by Mikolov et al. [2],
who have compressed whole histories of words into a fixed
length representation in their recurrent neural networks (RNN).
Since then, research activity was focused on recurrent networks:

The “vanilla RNNs”, using sigmoid activation functions,
were soon replaced by more sophisticated LSTMs [3], that
achieved yet better results, arguably due to their ability to ef-
fectively learn long term dependencies. Up to this point, all
experiments indicated that increasing the model size inevitably
leads to overfitting.

This obstacle was overcome by the work of Zaremba et
al. [4], who successfully applied dropout to LSTMs. Since
then, further improvements were achieved by adding cache-like
mechanisms [5, 6].

Feed-forward networks were left aside of these improve-
ments. Only recently, a recurrence-free Gated Convolutional
Network model [7] was proposed. This sophisticated model
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Figure 1: Computation of a single hidden vector hl
t in Residual

Memory Network (RMN), at time t and layer l. The z−l block
delays its input by l timesteps. Therefore, to compute hl

t, values
of the previous hidden layer from the current time t and the
history time t− l are used. The dashed line represents residual
connection; it is present in every third layer only.

consists of many wide layers of multiplicative “gating” units.
Its authors have shown it to perform on par with big LSTM net-
works.

We approach the problem from a different angle, look-
ing for inspiration into acoustic modeling: Here, RNNs have
also replaced deep neural networks as the state of the art
tool [8, 9, 10]. However, Baskar et al. have recently proposed
Residual Memory Network (RMN) [11], a feed-forward archi-
tecture capable of reaching better WER than several stacked
LSTM layers. This architecture is actually a DNN with layers
cleverly spread over time, thus able to model temporal depen-
dencies. Also, residual connections [12] are employed to allow
training deep models.

We were therefore curious: is Residual Memory Network a
competitive language model as well? We will show that RMNs
perform more like recurrent networks than the shallow feed-
forward networks.

2. Residual Memory Network Model
The Residual Memory Network1 architecture was proposed as
an improvement for deep neural networks, that will allow them
to model long temporal contexts. The output of l-th hidden layer
at time t is given as:

hl
t = ReLU(Clhl−1

t + PClhl−1
t−l + bl+hl−3

t ) (1)

Here hl
t stands for the hidden vector at time t and l-th layer;

weight matrices Cl and P stand respectively for transformation

1This model has no direct relation to “Convolutional Residual Mem-
ory Networks” proposed by Moniz and Pal for computer vision [13],
who use an explicit memory component represented by an LSTM run-
ning along the depth of the network.
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Figure 2: Three-layer Residual Memory Network predicting a
single word wt+1, unrolled in time. Green nodes represent re-
placing word index by a word vector. Every blue node repre-
sents a single hidden vector hl

t; the red node is the output. Re-
lating this illustration to Figure 1, weight matrices are associ-
ated with arrows, while summation and nonlinearity are within
the blue nodes. The bent line in the right represents residual
connection; if the network was deeper, as suggested by grey
h3

t−4 node, residual connections would appear at other times
as well.

of current and past representation at the previous layer. The
residual connection (grey) is present only in every third layer.

The temporal context is captured by delay connections (sec-
ond term in Eq. (1)), which fast-forward values of hidden vec-
tors through time. Lag of these delay connections changes over
the depth of the network, helping to increase the level of ab-
straction in successive layers.

We use RMN in a slightly simpler definition (illustrated in
Figure 1):

hl
t = ReLU(Clhl−1

t + P lhl−1
t−l + bl+hl−3

t ) (2)

The formulation (2) directly contrasts RMN to RNN: In-
stead of combining the input of a given layer with its previous
output, the input is combined with a historical input. The effect
of accessing historical representation from previous layer stacks
— the historical input depends on yet older outputs of the layer
before. Thus the length of the input considered by the network,
although finite, is significant (Section 2.2).

Being a feed-forward network dealing with sequences,
RMN under formulation (2) can also be viewed as a special vari-
ant of Time Delay Neural Network (TDNN) [14]. Differences
from TDNNs, as used recently for acoustic modeling [15], in-
clude adding residual connections, orienting the model at depth
rather than width and considering only previous inputs.

2.1. Residual Memory Networks Unrolled in Time

Similar to RNNs, we can view the RMN architecture unrolled
in time, as illustrated in Figure 2. This perspective offers two
additional insights:

Every (nonresidual) path from an input word to the output
is of the same length. Thus all words are nearly equal in terms
of how difficult it is to backpropagate gradients to them. This
is likely to be part of explanation why are the RMNs able to
outperform RNNs.

Since the projections Cl and P l are shared across different
timesteps, every hidden representation has to be usable not only
in the current timestep but also in those following. This helps
RMNs to avoid the curse of dimensionality, much like RNNs.
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Figure 3: Dependence of the model performance on the fre-
quency of look-back increase ϕ. With shorter models (higher
ϕ), the performance degrades, the effect is consistent since
ϕ = 5.

2.2. Reducing the Temporal Span

As the length of history look-back is increased with every layer,
the input temporal span on RMN is proportional to the square
of the number of layers, exactly as 1

2
L(L + 1) + 1, where L

is depth of the network. For example, for a 15-layered RMN,
sequence of 121 words is considered as the input. However, all
previous results of neural language modeling indicate, that such
context can not be effectively exploited without some form of
cache mechanism. Also, so wide input requires considerable
memory and computational effort. Therefore we aim to reduce
it.

Formally, we replace the original definition (2) of a RMN
layer by:

hl
t = ReLU(Clhl−1

t + P lhl−1
t−D(l) + bl+hl−3

t ) (3)

HereD : N+ → N+ is an arbitrary function. ForD(l) = l,
the original model is recovered; but we want to set it so that it
grows slower. We achieve this in a parametrized way by intro-
ducing a frequency of look-back increase (ϕ), which is basically
a scaling factor. D(l) is then defined as: D(l) = 1 +

⌊
l−1
ϕ

⌋
.

For instance by setting ϕ = 4: Layers 1 to 4 take input from
their respective timestep (hl−1

t ) and the previous one (hl−1
t−1);

layers 5 to 8 combine the hl−1
t and hl−1

t−2 and so on.
Using the ϕ equal to ϕ̂ results in reducing the context at

most ϕ̂-times. For example, with 15 layers and ϕ = 4, the
length of the context drops from 121 to 37 words.

In practice, values of ϕ up to 4 typically grant nice memory
savings without hindering the performance.

3. Testing on the Penn Treebank
We explore abilities of the model on the well studied Penn Tree-
bank [16], as preprocessed by Mikolov [17]. Specifically, the
training set consists of 930k tokens, validation set of 73k to-
kens, and test set of 82k tokens. The vocabulary is reduced
to 10k most common words, the rest is replaced by an <unk>
token.

We have implemented the model in Keras [18], using
Theano [19] as backend. We found the model easier to opti-
mize using Adam [20] than with plain stochastic gradient de-
scent (momentum included).

Inspired by the practice of [21], we take advantage of the
feed-forward nature of the model and create minibatches from
randomly shuffled data.
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Figure 4: Influence of the learning rate α; training progresses
from right to left. Learning rates from 1 · 10−3 down result
in over-training, higher ones end up under-fitting the training
data. The best result is achieved right on the edge of overfitting
by the model optimized with learning rate 1 · 10−3.

In preliminary experiments, we made three general find-
ings:

1. Using batch normalization (BN) [22] helps the model to
learn significantly faster. Adding BN also typically leads
to slight decrease in final perplexity. We add BN right
before every nonlinearity in the model, except for the
output softmax.

2. We have observed that increasing the size of batches im-
proves not only the speed of computation, but also the
best achieved validation perplexity. Thus we have set-
tled on using minibatches of 256 samples.

3. The best results were achieved with residuals skipping 2
nonlinearities; with skipping 1 nonlinearity being closely
behind.

3.1. Size of the model

The first set of our experiments focuses on the size of the model,
evaluating 3 hyperparameters:

1. Network depth: The performance of RMNs is not very
sensitive to network depth. When increasing the depth
from small values (e.g. 3), perplexity drops are achieved.
Then, networks in range 12–18 give very similar re-
sults. Networks deeper than 18 layers do not show per-
formance problems, but are difficult to fit into memory
when using big minibatches.

2. Hidden layer width: Again, we found RMNs not very
sensitive to this parameter. Networks with 100 to 300
hidden units per layer were found reasonable. However,
as hidden layers widen, it becomes more difficult to train
the model, eventually hindering both training and valida-
tion performance.

3. Frequency of look-back increase ϕ: Performance of
networks was quite invariant to small values of ϕ (see
Figure 3). Therefore we took an aggressive approach
with ϕ = 4, which led to networks considering shortest
input history while maintaining good performance.

We selected following configuration for successive experi-
ments: 15 hidden layers, 256 units each, ϕ = 4.
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Figure 5: Progress during training (right to left), as depen-
dent on the decay rate k; the initial learning rate was set to
α = 1 · 10−3. Learning was stopped after 20 epochs in all
cases. Training with small decay allows near-perfect fit to the
training data, but consistently misses the high-quality valida-
tion valley. The best result was obtained with decay 3 · 10−4.
Using stronger decay prevents the model from learning training
data so well and model trained this way also misses the valley
of best validation performance.

3.2. Regularizing the model

Although batch normalization was reported to act as regular-
izer [22], we found some of our reasonably small models to
nearly learn the training corpus (reaching training PPL under
5), while losing any generalization power.

Thus we experimented with additional regularization:
dropout [23], word-dropout [24] and MaxNorm [23, 25]. None
of these schemes prevented overfitting while achieving good
performance at the same time.

Therefore, we followed the regularization practice of [11]
and applied L2 regularization. This regularization was found to
be a crucial element in the training procedure, with reasonable
values of β being in range from 3 · 10−5 to 3 · 10−4.

Finally, we only regularized the L2 norm of our model, with
regularization weight β = 10−4.

3.3. The learning procedure

Having set the model architecture and regularization, we move
our attention to the learning procedure. Using the Adam opti-
mizer, we left the momentum controlling parameters β1, β2 to
their suggested values (0.9, 0.999) and focused on the learning
rate α.

In an experiment with fixed learning rate (Figure 4), we
found out there is a critical point between values α = 1 · 10−3

and α = 3 · 10−4. Using bigger learning rates hinders learning,
keeping both training and validation perplexity high. Setting
the learning rate to smaller values leads to severe overfitting, but
reasonable solution can be obtained by early stopping. An inter-
esting fact is that although most small learning rates eventually
converge to a similar performance on the training set (around
PPL 6), only those close to α = 3 · 10−4 pass through a region
of low validation perplexity.

Next, we experimented with learning rate scheduling, by
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Table 1: Comparison of RMNs to previously published results

Model # parameters test PPL

KN-smoothed 5-grams [17] 141.2
shallow feed-forward NN [17] around1 2 M 140.2

vanilla RNN2 8.2 M 123.3
small LSTM [26] 2.0 M 115
SCRN [26] 2.8 M 115
small RMN 2.3 M 112.7
medium LSTM [27] 5 M 109.7
medium RMN 7.1 M 107.0

big LSTM [27] 20 M 79.8
1 Exact size of the model unknown; estimate based on experiments

in [1].
2 Trained in-house with Mikolov’s original tool rnnlm.

using a continuous learning rate decay, parametrized as:

αt =
α0

1 + k · u (4)

where α0 is the initial learning rate, k is the decay constant
and u is the learning time, measured in number of parameter
updates.

Results of this experiment are summarized in Figure 5. Pat-
tern similar to Figure 4 emerges, with a valley of good valida-
tion performance around training perplexity 60. The best results
here are better than in the experiment with the fixed learning
rate; we obtain our best overall result here, as the model that
achieved validation PPL 111.8 with k = 3 · 10−4, has reached
test perplexity 107.0.

3.4. Comparison with models in literature

Finally, Table 1 compares the performance of RMNs with other
language models found in the literature. RMNs are represented
by (1) a small model with 100 hidden units per layer and (2)
a medium sized one with layer width 256. Parameters of both
these models were obtained with decay k = 3 · 10−4.

It immediately follows from Table 1 that the additional
computational strength of RMNs puts them well above the shal-
low feed-forward networks.

Comparing RMNs to recurrent networks, RMNs do their
job rather well, outperforming not only much larger vanilla
RNN, but also an similarly sized LSTM and Structurally Con-
strained Recurrent Network (SCRN) [26].

Considering the shallow feed-forward network as baseline
for both RNN and RMN, we see the hierarchical structure of
RMN brings much greater gain, while the fixed input scope
is not limiting its capacity. Taking a message from these re-
sults, it seems that having multiple nonlinear transformations
has greater direct effect than just compressing all history into a
single vector and increasing its length.

Increasing the model size, we see that RMNs scale simi-
larly to LSTMs. However as discussed in 3.1, there is a limit
to scaling RMNs, leaving gap between best RMN and large,
dropout-regularized LSTMs [27].

4. Conclusions
We have successfully applied Residual Memory Networks
(RMN) to language modeling. Despite the fact that RMNs are
purely feed-forward and free of any gating-like multiplication,

we have found the model competitive to similar sized RNNs,
including LSTMs.

Specifically, we have obtained test perplexity 112.7 on the
Penn Treebank, using a small model using 100 units per hid-
den layer. Enlarging the model to 256 hidden units per layer,
RMN reaches perplexity 107.0, thus outperforming appropri-
ately scaled LSTM.

We were not able to train large models yet, but given the ex-
perience in acoustic modeling, we believe this is still possible.
Next we aim to (1) explore the effects of adding multiplicative
connections into the architecture and (2) to compare our archi-
tecture with the original TDNN in detail, seeking some conclu-
sion on limits of similar feed-forward architectures.

5. References
[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A Neural

Probabilistic Language Model,” J. Mach. Learn. Res., vol. 3, pp.
1137–1155, Mar. 2003.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudan-
pur, “Recurrent neural network based language model,” in IN-
TERSPEECH 2010, 11th Annual Conference of the International
Speech Communication Association, Makuhari, Chiba, Japan,
September 26-30, 2010, 2010, pp. 1045–1048.
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