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Abstract

This work explores the effectiveness of detecting positions of
out-of-vocabulary words (OOVs) in a decoded utterance using
attention weights and CTC per-frame outputs of an end-to-end
system predicting word sequences. We show that the end-to-end
approach can be effective for the task of OOV detection. CTC
alignments are shown to provide better temporal information
about the positions of OOV words than attention, and therefore
are more suitable for the task. The detected positions of OOV
occurrences are utilized for the recurrent OOV recovery task in
which probabilistic representations of the pronunciations of the
detected OOVs are clustered in order to find repeating words.
Improved detection results are shown to correlate with better
performance of the recovery of recurrent OOVs.
Index Terms: Speech recognition, Out-of-vocabulary, OOV,
Attention, CTC, End-to-end

1. Introduction and Previous Work
Out-of-vocabulary words (OOVs) pose one of the persistent
problems in automatic speech recognition (ASR) and other
speech mining tasks, as language is changing and new words
constantly emerge. In a widely used hybrid ANN/HMM ASR
system [1], OOVs are not represented in the dictionary or lan-
guage models (LMs) and therefore cannot be correctly recog-
nized. End-to-end (E2E) approaches avoid the limitations of a
dictionary by predicting character labels. However, in case an
E2E system predicts words [2], OOVs pose a problem, as the
network has no distinctive labels for these words in the training
and therefore cannot not learn their representation.

In a classic hybrid ANN/HMM ASR system, dealing with
OOVs usually involves lattices of subword units, which can be
either linguistically motivated (phonemes, syllables, etc.) or
data-driven (e.g. SentencePiece [3]). One approach within
a hybrid framework is to have two separate systems: a word
and a subword system. Decoding works on the word level and
switches to the subword level only if the output does not fit the
pre-set conditions (e.g. minimum confidence score etc.) [4].
Thus, detection and recovery stages are separated: low confi-
dence of a word system means that an OOV is detected, and
then its representation is recovered from the subword system.
Another approach exploits the combination of word and sub-
word units on the language model level, training a “flat” hy-
brid LM with both [5, 6, 7]. This approach combines detection
and recovery tasks in one: an OOV is detected when the output
contains a string of subword units, and these units also provide
acoustic representation of the OOV.

If OOVs are repeating, which is a reasonable assumption
for most new, trending words, the strings of subword units can
be clustered to discover these repeating OOVs [8, 9]. The clus-
tering criteria may include phonetic and acoustic features and

context information [10]. A more effective way of finding re-
peating OOVs is performing clustering on lattices of subword
units instead of clustering one-best strings, thus introducing
pronunciation uncertainty [11].

In [11], we used a word-subword Weighted Finite State
Transducer (WFST) decoder for OOV detection and recovery
tasks. OOV occurrences were extracted from the time periods
for which decoded hybrid word-subword lattices produced sub-
word units. This approach had the benefit of combining detec-
tion with generating phoneme representation, as well as sev-
eral drawbacks: one of them was the size of the decoding graph
and the resulting output lattices; another was that detection rates
were low due to the system having lower costs on shorter paths
containing only words, instead of longer paths with phoneme
units. Even introducing cost penalties on word arcs in decoded
lattices during WFST-decoding did not produce enough im-
provement in terms of detection recall. The highest detection
recall we were able to achieve was 26%. Low detection rate
hurts recovery performance, which brings us to investigate E2E
approaches in this paper to improve the detection task.

In the recent paper [12], an E2E system that predicts word
sequences with an attention mechanism is used for discovering
positions of OOVs. For each output label, attention points to
the relevant input frames; frames with the maximum attention
weight for the OOV label can be used to find OOV center frame.
These positions of OOVs are then used to improve generation of
subtitles with the use of subword units. In this work, we explore
the effectiveness of this method in more detail and evaluate new
methods of detecting OOVs using an E2E word predicting sys-
tem. In particular, we show that CTC alignment information
from a hybrid CTC/attention architecture [13] is more effective
for OOV detection than attention information from Listen At-
tend and Spell (LAS) model [14]. We also process the output
of the OOV detection step with an OOV recovery pipeline and
assess the effect that detection has on recovery task.

Most of the aforementioned works report results on private
datasets, which makes it hard to reproduce them. We report
results on the well-known and publicly available Librispeech
dataset [15] and propose reasonable success metrics in hope of
bringing more standardization to the task.

2. Task Formulation and Success Metrics
There are two tasks in OOV processing pipeline: detection and
recovery. Detection task deals with finding OOV segments in
speech and should return the start and end times of where an
OOV can be found. OOV recovery task aims to recover acoustic
and/or graphemic representation of OOVs or link them to an
existing word identity. Although detection is a challenging task
on its own, our ultimate goal is to improve recovery of repeating
OOVs, and we will investigate the success of the detection task
mostly from the perspective of how it affects the recovery task.

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-17562901



2.1. Detection Task

First, an E2E ASR system that predicts word sequences is used
as a base for an OOV detector. The input to this stage are acous-
tic features, and as the output we get predicted word labels and
also access to internal hidden representations of words. The de-
tails of our E2E system implementation are given in section 3.
Then we perform OOV detection with the help of informa-
tion obtained from the E2E system. The desired output of this
stage is a list of timestamps marking the beginnings and ends
of OOVs. In this paper, we experiment with two approaches to
this task. The first approach involves estimating OOV positions
from attention weights, and the second approach uses per-frame
CTC predictions. Both methods are described in more detail in
the experiment section.

At this stage, detection success is evaluated. The reference
timing is obtained by force aligning the reference transcriptions
containing target OOVs to the acoustic features. These force
alignments have been done using a system trained as described
in [11] following a standard Kaldi [16] recipe. When report-
ing the OOV detection, an OOV occurrence is treated as a true
positive if the hypothesis overlaps with the reference for more
than half of the reference duration. Thus, the detection recall
is calculated as the % of true positives in the reference list of
OOVs, and detection precision as the % of true positives in the
list of detected OOV occurrences. As the ultimate goal of our
experiments is improving recovery of repeating OOVs, the de-
tection recall is more important – while incorrectly detected oc-
currences will most likely form singleton clusters and therefore
be ignored after the clustering stage, the occurrences that are
not detected at all have no chance to be recovered.

2.2. Recovery Task

Whichever of the two methods of detection is used, the detected
time regions are passed to the next stage that provides phonetic
representations of OOV occurrences for further processing. As
our goal is to find recurring OOVs via clustering of these pho-
netic representations, the processing pipeline is the following.
First, detected OOVs shorted than 0.5 second are discarded,
to avoid getting too many occurrences to cluster. Moreover,
shorter occurrences are usually not full words but rather suffixes
and hesitations. Then, a Kaldi [16] phoneme recognizer system
is used to generate decoded phoneme lattices. From the decoded
phoneme lattices, 50 best phoneme strings are generated, to-
gether with their probabilities and time alignments. From these,
all phoneme substrings that are within the detected start and end
times are extracted. This way, we extract a number of phoneme
substrings (together with their probabilities) as a set of alter-
native pronunciations for each detected OOV occurrence. We
efficiently store the alternative pronunciations and their proba-
bilities in the form of WFST by performing union of the linear
WFST corresponding to the individual 50 alternative pronunci-
ations followed by minimization of the resulting WFST.

In the next step, we cluster the OOV occurrences based on
their pronunciation similarity using the information encoded in
their corresponding WFSTs. This clustering method takes into
consideration pronunciation uncertainty and in the converged
state contains clusters, each corresponding to one OOV with a
unique pronunciation. The clustering is based on a generative
model that assumes that each OOV occurrence is a string of
phonemes sampled from an infinite mixture model where each
mixture component has a certain weight and a given (determin-
istic) pronunciation. The mixture model follows the Dirich-
let Process [17] prior, whereby the base distribution is a uni-

form distribution over all possible sequences of phonemes. The
Chinese Restaurant Process -based inference is used to infer
(the posterior distribution over) the mixture components cor-
responding to our detected (observed) OOVs, which tell how
many different OOVs there are in the data and what their pro-
nunciations are1. This inference has to further take into account
that we are uncertain about the input observations (i.e. each
OOV occurrence is represented by a distribution (WFST) over
the possible pronunciations).

After the clustering process converges, clusters of the size
≥ 2 (as we are only interested in recovering repeating OOVs)
are post-processed to obtain graphemic representations of the
recovered OOVs. For this purpose, the most likely phonetic
pronunciation of each cluster is passed through a phoneme-to-
grapheme system. We use a joint-sequence model [18], but it is
trained on a reverse, phoneme to grapheme, dictionary.

The output of the whole pipeline is a list of previously un-
seen OOV words in their graphemic representation. When re-
porting the OOV recovery success, this list is compared to the
list of the reference OOVs with the help of Levenstein distance.
A word is marked as recovered (true positive) if its graphemic
representation does not differ from some reference word by a
distance more than 1. For example, a recovered word “mo-
rover” would be considered correctly recovered, but “anctious”
– not. Thus, in our pipeline, successful OOV recovery depends
on 1) enough occurrences of the same word present in the text
and 2) successfully detected, 3) the clustering assigning enough
of these occurrences to the same cluster, and 4) the phoneme-to-
grapheme conversion correctly discovering the graphemic rep-
resentation of the word from its subword unit representation.
Recovery recall shows the percentage of OOVs from the refer-
ence list that were recovered, and recovery precision shows the
percentage of the recovered words that belong to the reference
OOV list.

3. E2E ASR Systems for OOV Detection
Two E2E ASR systems are used in this work as the sources for
OOV detection: one trained with attention, and another with a
hybrid CTC/attention architecture.

For attention-based OOV detection, Listen Attend and Spell
(LAS) model [14] is used. The model has an encoder with 5-
layers and a single layer decoder. Each encoder layer has a
bidirectional LSTM layer followed by a linear projection layer
(LSTM-P) and all the encoder layers have residual connections.
Dropout is applied on the output of the LSTM network. The de-
coder is a single unidirectional LSTM. Both the encoder and the
decoder have a hidden layer size of 320 units. The LSTMs used
in the encoder are bi-directional so the output size is double the
hidden size and the following linear projection layer projects
these representations back to the hidden layer size. The input
sequence is subsampled by a factor of 2 by initial two LSTM-
P layers. The network is optimized to predict words from the
Mel-filter bank features.

For OOV detection with the use of CTC, E2E system
is trained with a hybrid CTC/attention architecture described
in [13]. The total loss used for optimizing the model has two
components: the CTC loss (Lctc) and label-smoothed cross-
entropy between the predicted and the ground-truth label se-
quences (LAtt), which is estimated from the decoder of the LAS
model. Both losses are combined as follows:

1www.fit.vutbr.cz/˜iegorova/public/CRP_
Adaptation_for_FST_Clustering.pdf
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(a) LAS (b) hybrid attention/CTC with 0.9 CTC cost weight

Figure 1: Comparison of attention and CTC alignments to real OOV times. Lower x axis is in frames and the upper one is in seconds.
Dashed lines with labels show reference transcriptions with reference word timings in brackets. Black lines show borders of words
according to CTC. Colored plots show attention weights for corresponding output labels.

loss = β × Lctc + (1− β)× LAtt, (1)

with the label smoothing factor β = 0.1 [19, 20]. The models
are trained with a uniform scheduled sampling scheme using
60% of the ground truth tokens.

The model is optimized using the ADAM [21] optimizer
with the learning rate of 0.003, and the initial learning rate is
halved upon encountering an increase in the validation error
rate. The model is early-stopped upon encountering an increase
in the validation accuracy for three epochs. The predicted label
sequences are decoded with a beam size of 10.

From the input feature sequence of T frames: X =
[x1,x2,x3, . . . ,xT ], the encoder produces the encoded hidden
representation H = [h1,h2,h3, . . . ,hT ]. Let yi and yi−1 be
the present and the past predicted labels, si is the state/output
of the decoder RNN, and ci is the context vector from the at-
tention module. The current output label yi is predicted by the
LAS decoder as follows:

si = RNN(si−i, ci−1, yi−1) (2)

ci = Attention(si, H) (3)

P (yi|X; yi−1, yi−2, .., y1) = Linear([si, ci]). (4)

with Attention(si, H) evaluated as follows:

fi,j = F ∗αi−1 (5)

ei,j = zT × tanh(Usi−1 +Vhj−1 +Wfi,j + b) (6)

αi,j = exp (ei,j)/

T∑
k=1

exp (ei,k) (7)

ci =

T∑
j

(αi,jhj). (8)

Here, the weights U, V, W, and F are trainable weight matri-
ces and z, b are trainable vectors; ci is a weighted sum of H
using the frame-level attention weights αi,j . Therefore, ci can
be seen as a summary vector representing a subsequence in H
that is responsible for producing the current label yi. Eqs. 5 and
6 are the location aware attention from [22].

4. Experiments and results
4.1. Data and OOV Simulation Setup

In continuation of the experiments in [11], the database for the
current experiments was the LibriSpeech ASR corpus of audio-
books [15]. From LibriSpeech, 100 hours of clean data and 500
hours of “other” data are used for system training. OOV dis-
covery is done on the remaining chunk of 360 hours of clean
data, which we call “OOV eval data”. The LibriSpeech dictio-
nary contains 200000 words, but for E2E training the number
of word labels has been reduced to 10000 most common words
(minimum 32 occurrences per word). OOV symbol is also in-
cluded among the E2E target labels and replaces all the less-
frequent words for the training.

Since the audiobooks are predominantly from the 19th cen-
tury, a real OOV scenario is impossible – there are no new
words. Thus, an artificially created list of OOVs for testing
has been taken from [11]. In short, it is a “reverse” choice of
OOVs from outdated 19th-century words that are less likely to
be seen in modern dictionaries and language models. The re-
sulting list 2 of OOVs consists of 1000 designated OOVs, which
exemplify 19-century bookish English, for instance, it includes
words such as interposed, hastened, mademoiselle, indignantly,
countenance, etc. There are enough high-repetition words that
would be the targets for the recurrent OOVs recovery task: the
words’ frequency in the OOV eval data ranges from 0 to 296
reference occurrences, with the mean of 51 occurrences. All

2www.fit.vutbr.cz/˜iegorova/public/
LibriSpeech_1000_OOV_list.txt

Table 1: Comparison of BPE baseline results with [23].
%WERs for word-predicting E2E systems on 10k vocabulary.

system dev c dev o test c test o
[23] no LM 4.87 14.37 4.87 15.39
BPE 960hrs 4.99 15.18 5.02 15.65

LAS attention 14.21 26.61 14.58 27.19
LAS att. (OOV word) 8.66 21.78 8.79 22.36

ctc+att β = 0.9 15.38 27.29 16.00 27.85
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Table 2: OOV Detection and recovery results using methods described in subsections 4.3 and 4.4. Column “OOV occurrences” shows
the amount of occurrences on the clustering input, and column “clusters” shows the amount of clusters of size 2 or more after clustering
saturates.

Detection method OOV
occurrences

Detection Recovery
recall precision clusters recall precision

attention > 0.5 sec 57701 33.4% 14.5% 147 0.7% 6%
att > 0.5 sec 0.2 right shift 57669 34.4% 14.9% 489 5.5% 29%

ctc+att β = 0.5 134843 73.7% 32.0% 1996 8.3% 15%
ctc+att β = 0.9 148428 81.5% 35.3% 3485 14.0% 15%

recovery recall and precision metrics are calculated on this list.
The resulting OOV rate (percentage of OOVs in all the words)
is 1.5%. For the purpose of E2E training, all the words from the
list have also been assigned the same OOV label as the words
not included in the 10k vocabulary.

4.2. E2E WER baselines

Classic E2E systems do not deal with OOVs, as they are trained
to predict characters or byte pair units (BPEs) [3] that repre-
sent less frequent words as word parts. Table 1 shows, that,
when tested on the full LibriSpeech database (960 hours), our
BPE system functions on par with the systems with no LM re-
ported in [23]. For the OOV experiments, the training of E2E
system predicting words was done on 600 hours, leaving out
the OOV eval data. E2E targets are 10000 words that do not
include words from the OOV list described in subsection 4.1.
The third row shows WER as calculated on reference transcrip-
tion; it is much higher than for the BPE experiment due to the
introduction of OOVs. The fourth row shows the potential of
the E2E system as an OOV detector, as it treats predicting the
OOV label for an OOV word as correct, and not as substitution.
Finally, the last row shows WER for an E2E system that gives
most weight to the CTC training objective. For the ASR task,
it performs worse than the pure attention system, but as we will
see later, this system is helpful in the OOV detection task.

4.3. OOV Detection with Attention

A LAS-based E2E system is used for the OOV detection exper-
iments described in this section. For each output label, attention
vector αi is pointing to certain frames that are relevant to the
current decision. However, there is no guarantee that attention
will be aligned to the real position of the word in the output.
If we look just at the maximum of attention weight and con-
sider the frame it points to as the hypothesized OOV time, we
discover that only 26% of these frames lie within a reference
OOV timing, and the detection recall is just 32%. This contra-
dicts [12], where the centers of attention were assumed to point
to the centers of OOVs. However, if we look at whether there
is an overlap between the reference timings and the frames that
are responsible for 90% of attention mass, 87% of the hypothe-
sis time spans intersects with reference timings, suggesting 75%
detection recall.

If we plot LAS attention vectors αi for each predicted word
label as shown in Fig.1(a), we get more insight into what hap-
pens. It can be noted that the maxima of attention lie before the
centers of words and the span of attention is indeed earlier in
time than the reference word alignments.

This shift has negative influence on recovery: if we convert
frames receiving 90% of attention mass for OOVs into times,
and then extract their pronunciations according to these times
and run clustering on them, the result will be very poor (see
Tab. 2, the first row). There are almost no repeating phoneme

strings to cluster, hence, there are not many clusters of at least
size 2 and a low recovery recall. To solve this problem, the
next experiment was made with timings obtained from attention
with different delays. The best results have been observed with
a delay of 0.2 seconds (see Tab. 2, the second row).

4.4. OOV Detection with CTC

In an E2E system trained with a hybrid CTC/attention architec-
ture, CTC also provides a way of obtaining timing information
from the labels. Word boundaries are positioned on the frames
for which a new label is predicted. When the output is a blank
symbol or the same label as before, there is no word boundary.

Table 2 shows the OOV detection results for the hybrid at-
tention/CTC system with different weights given to attention
and CTC costs (β from equation 1) in rows 3 and 4, respectively.
Both result in more extracted OOV occurrences than attention
due to the fact that attention tends to be very spiky. These oc-
currences also have much better overlap with reference timings,
as confirmed by the detection scores. They also cluster much
better and improve the recovery recall and precision metrics.

Interestingly, while attention provides better WER in gen-
eral, CTC alignments are more trustworthy for the task of OOV
timings extraction. This can be seen from the results obtained
by the system with 0.9 cost given to CTC (4th row in Table 2).
In Fig. 1(b), alignments from CTC are drawn as black lines. It
can be seen that, although attention does not reflect OOV po-
sition well, the word boundaries from CTC alignment mostly
correspond to the reference word boundaries.

5. Conclusions
Our experiments have shown that the E2E approach definitely
has a potential to be applied for the task of OOV detection and
outperforms detection by a hybrid lattice framework presented
in [11]. CTC alignments provide better temporal information
about word positions than the pure attention-based E2E system
and so are more suitable for extracting OOV occurrences. The
improved detection results also correlate with better recovery of
recurrent OOVs. For the pure attention-based E2E model it can
be seen that, even though the system performs better in terms
of WER, there is no guarantee that attention actually points to
the positions of frames directly responsible for producing the
output label in question.
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“Detection and Recovery of OOVs for Improved English Broad-
cast News Captioning,” Proceedings of INTERSPEECH, 2019.

[13] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hy-
brid CTC/Attention Architecture for End-to-End Speech Recog-
nition,” Journal of Selected Topics in Signal Processing, 2017.

[14] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016,
pp. 4960–4964.

[15] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “LIB-
RISPEECH: an ASR Corpus Based on Public Domain Audio
Books,” Proceedings of ICASSP Conference, 2015.

[16] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemanna, P. Motlı́cek, Y. Qian, P. Schwarz,
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