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In this article, we summarize the evolution of speech and lan-
guage processing (SLP) in the past 25 years. We first provide 
a snapshot of popular research topics and the associated state 

of the art (SOTA) in various subfields of SLP 25 years ago, and 
then highlight the shift in research topics over the years. We 
describe the major breakthroughs in each of the subfields and 
the main driving forces that led us to the SOTA today. Societal 
impacts and potential future directions are also discussed.

Introduction
The year 2023 marks the 75th anniversary of the IEEE Sig-
nal Processing Society (SPS). Technologies have been signifi-
cantly advanced in these 75 years, and society has been greatly 
impacted by these advances. For example, the mobile Internet 
has greatly changed people’s lifestyles. Researchers and prac-
titioners in signal processing have contributed their share to 
these progresses.

In this article, we concentrate on the field of SLP, which is 
the scope covered by the IEEE Speech and Language Process-
ing Technical Committee (SLTC), and summarize the major 
technological developments in the field and the key societal 
impacts caused by these advances in the past 25 years.

As part of the SPS, the SLTC serves, promotes, and influ-
ences all the technical areas of SLP, including automatic 
speech recognition (ASR), speech synthesis [often referred to 
as text to speech (TTS)], speaker recognition (SPR) and dia-
rization, language identification (LID), speech enhancement, 
speech coding, speech perception, language understanding, 
and dialog systems.

The SLTC can trace its roots back to the Institute of Radio 
Engineers Audio Group, founded in 1947. In 1969, this audio 
group established the Speech Processing and Sensory Aids Tech-
nical Committee. “Sensory Aids” was dropped from the name in 
the early 1970s. For more than 30 years, it remained the Speech 
Processing Technical Committee. In 2006, its scope was expand-
ed, and its name was officially changed to the SLTC.

Today, more than 50 years after the formation of the SLTC 
and 16 years after the recent name change, the field has been 
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significantly expanded and greatly reshaped by new thoughts 
and techniques. In fact, we have observed rapid progress in SLP 
in the past decade, largely driven by deep learning, big data, 
high-performance computation, and application demands. For 
example, ASR accuracy has surpassed the adoption threshold 
in the closed-talk setup where the microphone is close to the 
mouth. TTS can now generate natural-sounding speech that is 
hard to distinguish from human speech [1]. The performance 
of natural language processing tasks has been greatly improved 
with huge, pretrained language models (LMs).

The remainder of the article is organized as follows. In 
the “Status of the Field in 1998” section, we provide an over-
view of the field and summarize the main knowledge and key 
issues of each major subfield 25 years ago. In the “Main Driv-
ing Forces Over the Last Decades” section, we describe the 
main driving forces that have reshaped the field and caused 
a paradigm change in the past decade. In the “Major Techni-
cal Breakthroughs in Each Subfield” section, we summarize 
major breakthroughs and the current SOTA in each subfield. 
In the “Conclusion” section, we conclude the article with com-
ments on the societal impact, and perspectives on future devel-
opments in the domain.

Status of the field in 1998
SLP has been an active research area since the 1950s. By 
1998, the field had already made great leaps. The many key 
technologies that we know of today were developed then. In 
this section, we provide an overview of the field, summarize 
the main knowledge, and point out the key technical obstacles 
at that time.

Overview of the field
IEEE played an important role in pushing the SOTA of the 
field around 1998. IEEE Transactions on Speech and Audio 
Processing and ICASSP were the flagship journal and confer-
ence, respectively. In 1997, the SLTC extended the scope of the 
IEEE Automatic Speech Recognition Workshop and renamed 
it the IEEE Workshop on Automatic Speech Recognition and 
Understanding (ASRU).

Almost all of the popular subfields we study today had 
been extensively studied by 1998. The proceedings of ICASSP 
indicate that in 1998, the popular topics were ASR, speech 
enhancement, speech coding and perception, speech synthesis 
and analysis, speaker and LID, and speech-to-speech transla-
tion. The topic of spoken language understanding (SLU) was 
better covered in ASRU.

Speech coding
The task of speech coding is to compress speech signals for 
efficient storage and transmission. The major speech coding 
event around 1998 was the launch of the mixed-excitation lin-
ear prediction (MELP) codec [2], which is based on the lin-
ear prediction coder (LPC) but with five additional features, 
presented in 1997 as the winning candidate of the U.S. De-
partment of Defense contest to select a new federal standard 
for narrow-band (8-kHz sampling frequency) voice coding at 

2.4 kbps, replacing the previous LPC10 codec from 1984. In 
a way, this contest ended a decade-long golden age of speech 
coding as the growth of digital mobile telephony applications 
in the late 1980s through the 1990s required rapid development 
in the field.

At the time, speech coding algorithms could be categorized 
into two classes: model-based parametric codecs (also called 
source codecs or vocoders) such as MELP, operating mainly 
at rates up to 5 kbps, and waveform-matching codecs at rates 
above 5 kbps. Model-based parametric codecs usually consider 
the source-filter model of speech production and preserve only 
the spectral properties of speech. By sending only the source/
excitation type and the filter parameters, model-based paramet-
ric codecs can achieve very low bit rates. Waveform-matching 
codecs aim to reproduce the speech waveform as faithfully as 
possible. They usually do not rely on the prior knowledge that 
might have created the audio.

Even though the waveform-matching, linear-predictive codecs  
based on code-excited linear prediction (CELP) [3] employed 
a model separating the speech signal into an excitation signal 
driving a linear synthesis filter, the analysis by synthesis offered 
monotonically increased fidelity with an increased bit rate. Basi-
cally, all mobile telephony standards are based on the CELP 
methodology. At bit rates below 5 kbps, waveform matching 
performs poorly, and better quality is achieved by model-based 
parametric coding with efficient quantization of extracted speech 
features and vocoder synthesis. Parametric codecs have a tenden-
cy to produce speech that sounds a bit unnatural and robotic. The 
speech quality is limited by the model; hence, quality will stop 
improving after certain rates. The major application for paramet-
ric coders was secure voice communication, where bandwidth 
was limited and speech intelligibility was more important than 
high-fidelity quality.

After 1998, research interest in narrow-band, low-rate 
speech coding subsided. For example, there was a subse-
quent International Telecommunications Union telecommu-
nication standardization sector standardization effort for a 
new 4-kbps speech codec a few years later. This effort was 
essentially abandoned due to irrelevancy after the emer-
gence of Voice over Internet Protocol (IP), and future mobile 
communication standards offered higher bandwidths and 
encouraged speech compression efforts toward higher bit 
rates and sampling rates.

ASR
The task of ASR is to convert the speech audio sequence into the 
corresponding text sequence. The modern field of speech recog-
nition, as a whole, had its origins in information theory as far back 
as the early 1970s. For a fascinating view of how this approach 
took hold, the reader is referred to [4]. By 1998, data- driven ap-
proaches employing complex statistical models had gained broad 
acceptance in the community. Indeed, ASR was already being 
viewed as a largely solved problem, with a large push being 
made toward the commercialization of the technology.

Around 1998, a typical speech recognition system com-
prised the following components:
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 ■ Feature vector extractor: mel-frequency cepstral coeffi-
cients (MFCCs) or perceptual linear prediction coefficients

 ■ Acoustic model (AM): a context-dependent, phonetic hid-
den Markov model (HMM) using Gaussian mixture mod-
els (GMMs) to model feature vector probabilities

 ■ LM: a backoff-based n-gram LM, sometimes class-based LM
 ■ Hypothesis search: a Viterbi decoder, beam search; single 

or sometimes multipass
 ■ Adaptation mechanisms: an AM adaptation with maximum-

likelihood linear regression or maximum a posteriori 
(MAP). LM adaptation using cache-based interpolation with 
an add-word mechanism to handle out-of-vocabulary words.
It should be noted that neural network (NN) technology 

had achieved some limited success by 1998, but that its per-
formance was not good enough to replace GMMs, much less 
HMMs. The early systems were all trained using the maxi-
mum-likelihood criterion. By 1998, discriminative training 
criteria already existed, but performance gains were small 
and expensive to achieve. Back in 1998, “large” systems were 
trained on a few hundred hours of speech.

TTS synthesis
The goal of TTS is to render naturally sounding speech given 
an arbitrary text. Two data-driven, corpus-based speech syn-
thesis approaches were proposed in the 1990s: an exemplar-
based, unit-selection approach with which speech is synthe-
sized by concatenating scaled pronunciation-unit samples from 
a corpus, and a model-based, generative approach.

Shortly after the proposal of the first data-driven unit-
selection TTS [5] in 1992, an HMM-based, trainable unit-
selection speech synthesis was proposed [6], where decision 
tree-clustered, context-dependent HMMs were used for unit 
segmentation and cost functions. The formulation and train-
able framework of unit selection made it popular in R&D for 
the next two decades.

At the same time, the first paper toward generative TTS was 
proposed in 1995 [7], where probabilities of acoustic features 
(vocoder parameters) given linguistic features (context-depen-
dent phonemes) were modeled and generated using HMMs. 
The generative TTS’s flexibility to change its voice character-
istics was demonstrated in [8]. The generative approach was 
still incomplete in 1998 as it lacked prosody modeling and gen-
eration. Prosody refers to the duration, intonation, and intensity 
patterns of speech associated with the sequence of syllables, 
words, and phrases. Without proper prosody modeling and 
generation, long sentences will sound unnatural.

Although the unit-selection approach could synthesize 
naturally sounding speech for in-domain texts (those cov-
ered well by the corpus), due to data sparsity, its quality 
could degrade significantly for out-of-domain texts with 
discontinuities in the generated speech caused by uncov-
ered units. Furthermore, having multiple speakers, emo-
tions, and speaking styles was difficult as it required an 
ample number of recordings with these characteristics. On 
the other hand, the generative approach had already demon-
strated a way to change its voice characteristics.  However, 

the naturalness of synthesized speech was limited by the 
quality of vocoders.

SPR, identification, and diarization
The task of SPR infers speaker identity from the speech signal. 
The most straightforward task is speaker verification, which 
aims to determine whether two recordings were spoken by the 
same speaker or different ones. A range of other tasks can be 
derived from speaker verification, such as speaker identifica-
tion (closed or open set), speaker tracking (determining speak-
er trajectories), and speaker search (determining from where a 
specific voice is speaking). Two basic settings are text depen-
dent (the speaker needs to provide a predetermined key phrase) 
and text independent. Speaker diarization is a derived, more 
complicated task as it aims to segment a recording into regions 
spoken by one speaker and generate speaker labels (such as 
“A,” “B,” and so on) consistently over the recording.

The status around 1998 is covered in an excellent tutorial 
by Campbell [9]. A typical SPR system is a statistical model 
that contained feature extraction, pattern matching, and deci-
sion (see Figure 1). As in related fields, all the possibilities of 
features (LPC, MFCC, line spectral pairs, and so on) were 
investigated, and several matching techniques (Gaussian mod-
eling, distance computation, and dynamic time warping) com-
peted. R&D usually contained feature selection, testing, and 
the fusion of several matching techniques. Several research-
ers experimented with NNs, but without much success. The 
National Institute of Standards and Technology’s (NIST’s) 
Speaker Recognition Evaluation series started in 1996 and has 
since become a platform to evaluate SPR technology.

In speaker diarization, a typical system in 1998 already 
contained similar components as the current ones (excluding 
the end-to-end ones): segmentation and automatic clustering 
of segments. Kullback–Leibler (KL) distance was widely used. 
For the segmentation, a sequence of cepstral features was 
extracted from the input speech and split into 2-s windows. A 
segment boundary was detected if the KL distance between 
Gaussian distributions estimated for the neighboring windows 
was above a threshold. Similarly, it was also used for agglom-
erative clustering of the resulting segments, i.e., initially treat-
ing each segment as a cluster and then gradually merging 
clusters. The 1996 DARPA Hub 4 Broadcast News Evaluation 
was a popular task used to evaluate diarization.

LID
LID, also termed spoken language recognition or just lan-
guage recognition (LR), aims to determine the language in 
a particular speech segment. Engineers usually depend on 
linguists and politicians (https://en.wikipedia.org/wiki/A 
_language_is_a_dialect_with_an_army_and_navy) to answer 
the “Language or dialect?” question and consider every class 
labeled with the same label as a language.

Around 1998, two standard LID approaches were defined 
[10]: acoustic, aiming at the classification of a sequence of 
acoustic feature vectors into a class, and phonotactic, first 
tokenizing the input sequence into discrete units (phones) 
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using one or several phone recognizers, and then performing 
language (phonotactic) modeling. Each class (language) was 
modeled by a GMM in the case of the acoustic approach, and 
by an n-gram LM in the case of phonotactic systems. The lat-
ter obviously depended on the accuracy of phone recognition. 
Similar to SPR, LID was driven by the NIST Speaker Recogni-
tion Evaluation series started in 1996. 

Speech enhancement and separation
Real-world speech signals are often contaminated by inter-
fering speakers, noises, and reverberation. The task of speech 
enhancement and separation, which aims at extracting clean 
speech signals from a mixture, is thus very important for 
both human-to-human and human–machine communica-
tion. Conventionally, people refer to speech separation as the 
problem of segregating one or more target speakers from oth-
er interfering speakers and/or noises, and speech enhance-
ment as the problem of removing noises and/or reverberation 
from noisy speech.

The dominant techniques for speech enhancement were 
purely signal processing-based in 1998 [11]. Under this frame-
work, enhancement of noisy speech signals is essentially 
a problem of estimating a clean speech signal from a given 
sample function of the noisy signal by minimizing the expect-
ed value of some distortion measure between the clean and 
estimated signals. Although these techniques (e.g., the Wie-
ner filter) differ in the statistical models (e.g., Gaussian and 
hidden Markov processes) assumed, the distortion metric (e.g., 
minimum mean-square error) used, the domain (e.g., time, 
frequency, and magnitude domain) in which the enhancement 
is carried out, and the way the noise and speech statistics are 
estimated (e.g., minimum statistics-based noise estimator), 
they often assume that speech and noise follow statistically 
independent processes.

Speech separation is usually considered a more difficult 
problem because the target speech and the interfering speech 
share very similar characteristics. At that time, the main 
approach to speech separation, which focused on blind source 
separation, was independent component analysis, which aims 
at recovering a set of maximally independent sources from the 
observed mixtures without knowing the source signals or the 
mixing parameters. Also in that time period, the perceptual 
principles of human auditory scene analysis (ASA) was exten-
sively studied. Many of these principles were later adopted in 
the computational ASA (CASA) [12] approach.

It’s important to point out that the majority of the works 
at that time exploit only the information in the current audio 
stream, which is very different from today’s machine learning 
(ML)-based SOTA techniques that also take advantage of large 
training corpora collected or simulated over the time. Further-
more, most of the work at the time concentrated on monaural 
speech processing. This is because microphone arrays were 
considered expensive and were rarely used in practical systems, 
except in meeting scenarios. The single-microphone setup was 
believed to be more important and relevant. Both constraints 
limited the performance of the then-SOTA systems.

SLU and dialog systems
Interacting with machines in natural language has been of 
continued interest to mankind since the early days of com-
puting. Around 1998, the popular architecture for dialog sys-
tems included language understanding, a dialog manager, and 
natural language generation. Language understanding aims 
to  interpret user utterances into a semantic representation that 
can be converted to back-end knowledge and task-completion 
resources. Then, the dialog manager may formulate a query 
to the back end and predict the next system action based on 
the results of the query and the dialog context. Finally, natural 
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language generation produces the natural language utterance 
that conveys the system action.

For language understanding, approaches that rely on data 
and ML methods became feasible with the availability of 
annotated datasets, such as the air-travel-related queries of 
the DARPA airline travel information systems project. Tra-
ditionally, language understanding consists of a triage of 
tasks: intent/domain classification and slot tagging [identify-
ing contiguous spans of words in an utterance that correspond 
to certain parameters (i.e., slots) of a user query], which have 
been treated as sequence classification and sequence-tagging 
problems, respectively [13]. The most popular technique for 
slot tagging at that time was conditional random field. For lan-
guage-understanding tasks, annotated data enabled the com-
bination or replacement of the earlier symbolic approaches 
with Bayesian classifiers and HMMs [14].

For dialog management, the common approaches around 
1998 relied on dialog flows [15] that were designed by engi-
neers to represent the interactions between the machine and 
humans. Approaches that rely on machine learning-based 
methods for learning dialog policies, such as [16], proposed 
reinforcement learning for predicting the next system action, 
were just starting to appear.

For language generation in dialog systems, the majority of the 
work was also template or grammar based. ML-based methods, 
which separated sentence planning and realization for language 
generation that aimed to reduce the high cost of handcrafting 
knowledge-based generation systems, started appearing.

Main driving forces over the last decades
SLP fields underwent a slow development period of roughly a 
decade and then went on to a fast track after 2010. Since 2010, 
we have seen rapid progress with various new modeling tech-
niques and significantly improved performance. This progress 
is being driven by being able to relax previously existing mod-
eling constraints through a combination of deep learning, big 
data, and high-performance computing.

Time for a paradigm change

Big data
The Internet and various digital applications significantly in-
creased the number of data available to improve SLP systems. 
It was estimated that 2.5 quintillion bytes of data would be cre-
ated every day in 2022. For example, in the 1998 time frame, 
typical large ASR systems would be trained on a few hundred 
hours of speech and 300 million words of text. Today, it is not 
uncommon to see systems trained on 100,000 h of speech, 
with some sites [17] using more than a million hours of speech. 
Although more data alone may not guarantee performance 
improvements, when combined with model-size increases, sig-
nificant performance improvements result.

High bandwidth
Back in 1998, communication bandwidths were still at modem 
speeds (56 kb/s!), whereas today, bandwidth is on the order of 

200 mb/s, even for a relatively low-end connection. This huge 
increase in bandwidth enables almost instantaneous upload-
ing and downloading of speech signals and models, making it 
practical to utilize extremely large and accurate models in the 
cloud, resulting in dramatically increased SLP performance.

Affordable, high-performance computing
In a related development, the amount of computing power now 
available has also dramatically increased. Clock speed alone 
has increased by more than a factor of 100 over the last 25 
years. The ability to pack multiple computing cores in a single 
processor and/or coprocessor has added even more computing 
capabilities. This enabled efficient parallelization of the large 
number of matrix operations required in deep learning. This 
allows for some very powerful SLP tasks to be done locally, 
providing enhanced latency, and also permits even bigger 
models to be employed in the cloud to achieve even greater 
performance gains and yet still run in real time.

Open source tools
Another driver of performance improvements has been the 
community’s emphasis on research reproducibility and pro-
viding open source implementations of newly developed 
techniques, e.g., Kaldi (https://github.com/kaldi-asr/kaldi).  
Investments in deep learning platforms like TensorFlow and 
PyTorch have additionally sped up the rate of development of 
new speech processing toolkits, which powered a new wave of 
fundamental research, e.g., ESPnet (https://github.com/espnet/
espnet), SpeechBrain (https://github.com/speechbrain/speech 
brain), and Fairseq (https://github.com/facebookresearch/
fairseq). 

Deep learning and big models
Large-scale data sets and powerful computing infrastructure 
have enabled the adoption of deep learning techniques. Rela-
tive to the previous generation of technology, they have higher 
modeling capacity and can thus better leverage big data and 
offer significantly improved generalization abilities.

Neural architectures
Before the 2000s, single hidden layer, feedforward NNs were 
used in speech systems, either as a replacement for GMMs 
or as feature extractors [18], [19]. Later in the 2010s, deep 
feedforward NNs with many layers of latent representations 
began to replace latent variable models, e.g., GMMs, par-
tially observable Markov decision processes, and i-vectors 
in speech systems, offering significant improvements across 
multiple benchmarks.

Unlike GMMs, NNs do not make any assumptions about 
the input data distribution. They are able to use far more data 
to constrain each parameter because the output for each train-
ing case is sensitive to a large fraction of the weights. Recurrent 
NNs (RNNs), with and without explicit memory, e.g., simple 
RNNs and long short-term memories, can capture long-range 
dependencies between inputs and bring finer-grain integration 
of temporal information for speech and language representation 
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[20]. In RNNs, connections between nodes can create a cycle, 
allowing output from some nodes to affect subsequent input to 
the same nodes. However, the sequential nature of recurrent net-
works made it harder to leverage the all-parallel world of GPUs, 
which revolutionized the deep learning community with mas-
sive computational increases. Transformer layers [21] much bet-
ter leverage GPUs by utilizing positionwise feedforward layers 
(i.e., the same feedforward layers are used for each positioned 
item in the sequence) and replacing the recurrence operation 
with a multihead self-attention sublayer (which runs through 
an attention mechanism several times in parallel) that captures 
input dependencies using a constant number of operations.

End-to-end modeling and optimization
Typical speech recognition, generation, translation, and dialog 
systems combine many logical components, e.g., feature repre-
sentation, AM, LM, speaker, pronunciation, translation mod-
els, waveform generation, and hypothesis search, to name just 
a few. Modeling each logical component explicitly in classical 
systems ensured tight performance control and enabled easier 
integration of human knowledge. The first wave of research on 
neural models for spoken language systems represented each 
module with a neural counterpart, offering solid gains while 
maintaining the modularity of existing systems. Advances in 
numerical methods for optimizing NNs (e.g., layer normaliza-
tion and residual connection) enabled neural models to com-
bine multiple logical functions. Recent approaches trained sin-
gle end-to-end models (instead of optimizing each component 
separately) to represent entire systems, e.g., ASR [20], [22], 
dialog systems [23], and TTS [24].

Big, pretrained models
One major bottleneck for deep neural models is their reliance 
on large volumes of labeled data, which is aggravated in end-
to-end models that rely exclusively on data to skip low-level 
domain knowledge as feature engineering is accomplished au-
tomatically in the network instead of from human design. The 
help came from semisupervised (which utilizes both labeled 
and unlabeled data) and self-supervised training (which obtains 
supervisory signals from the data itself) approaches, which, by 
leveraging massive, unlabeled speech data, have reached un-
precedented performance levels recently. Pseudolabeling, also 
known as student–teacher distillation, trains a student model 
on a few hours of labeled data to track outputs generated by 
a teacher model [25]. Self-supervised approaches [26] utilize 
pretext tasks to pretrain models generatively, contrastively, or 
predictively. These representation learning models impacted a 
wide range of downstream spoken language tasks, e.g., ASR, 
speaker diarization, SLU, and spoken question and answer.

Generative modeling
Parallel to the efforts in learning representations using 
unlabeled speech and audio data, there was an active line 
of research for modeling data distributions and learning 
high-quality generative models. Autoregressive (AR) genera-
tive models predict future values based on past values, both 

given and predicted, in previous steps. They factorize a high-
dimensional data distribution into a product of AR conditional 
distributions. Thanks to reparameterization, a way that solves 
undifferentiable expectations by rewriting them so that the dis-
tribution with respect to which we take the gradient is indepen-
dent of model parameters, the encoder, which converts the input 
into a latent representation, and the decoder, which reconstructs 
the input from the latent representation, variational autoencod-
ers (autoencoders whose input is encoded as a distribution over 
the latent space instead of a single point) can be trained jointly 
to reconstruct input data from samples of learned latent distri-
butions. Generative adversarial networks (GANs) mimic the 
input data distribution through an adversarial game between a 
generator and a discriminator, aiming to discover realistic in-
puts from fake generated ones [27]. Utilizing these generative 
approaches has led to significant progress in generative models 
of speech that are controllable and of realistic quality.

Major technical breakthroughs in each subfield
Although deep learning has reshaped the whole field, differ-
ent subfields have different problems to solve. In this section, 
we introduce the major technical breakthroughs in each major 
subfield in the past decades and describe the current SOTA.

Speech coding
As higher bandwidths became available for speech communi-
cation, first through Voice over IP applications such as voice 
and video conferencing over the Internet, and later in mobile 
communication such as Voice over LTE, bit rate scalable co-
decs were introduced. These codecs could operate at rates and 
bandwidths ranging from 5 to 6 kbps for narrow band and up to 
hundreds of kilobits per second for full-band speech and gen-
eral stereo audio. Examples are Opus (https://opus-codec.org/), 
unified speech and audio coding [28], and enhanced voice 
services [29]. To achieve the ability to operate over this wide 
range of bit rates and signal bandwidths, these codecs combine 
linear predictive time-domain methods from low-rate speech 
coding with transform coding (such as the modified discrete co-
sine transform) common in high-quality general audio coding. 
Transform coding compresses audio data by representing the 
original signal with a small number of transform coefficients.

These are all still based on traditional digital signal pro-
cessing techniques. As ML became successful in other speech 
processing areas, it also made its way into speech coding. 
WaveNet [30] showed that generative modeling can achieve 
impressive speech quality when conditioned on traditional 
speech analysis features such as spectral envelopes and pitch 
parameters. In [31], it was shown that traditional low-rate  
parametric speech codec features could drive a WaveNet neu-
ral synthesis and produce high-quality wideband speech at  
2.4 kbps. Since then, other methods have been presented, driv-
ing down the complexity and bit rate further. Recent work [32] 
has produced high-quality speech at ~400 bps.

Most of today’s neural speech codecs are excellent at repro-
ducing clean speech, however, in a practical speech coding 
system, in addition to complexity constraints for running in 
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real time on devices, the system should also be able to handle 
speech in different background scenarios, e.g., in noisy and/or 
reverberant environments. This has been a challenge for neu-
ral speech codecs. In [33], an end-to-end system based on an 
autoencoder with GAN losses was proposed, and this method 
achieved good quality for both clean and noisy speech.

ASR
Initial advances in deep learning-based speech recognition were 
based on extensions to the existing GMM-HMM framework 
[34]. The basic HMM nature was not touched; deep learning 
was only applied to output distributions in the HMM framework. 
Over time, there were increasingly more attempts to replace the 
HMM framework with one based solely on deep learning.

A more speech-focused methodology called connectionist 
temporal classification (CTC) [35] combined HMM concepts 
with sequence-to-sequence mapping. It took almost 10 years 
to demonstrate competitive performance over hybrid models, 
with the realization that phone-based models worked better for 
CTC than state-based ones. CTC also produced a competitive 
performance with grapheme-based units, eliminating the need 
for costly pronunciation dictionaries (at least for systems with 
adequate numbers of training data).

Benefiting from the monotonic relation-
ship between ASR inputs and outputs, the 
RNN transducer [20] took the modeling pro-
cess further by augmenting the AM with a 
prediction network, which replaced the need 
for an LM and was trained jointly within the 
whole “end-to-end” ASR model.

Encoder–decoder models with attention 
[21], a processing mechanism that allows a 
network unit at a layer to pay more attention (with a higher 
weight) to specific units at other layers, were then successfully 
adapted from the translation community, but such networks’ 
freedom to reorder outputs would sometimes introduce new 
types of speech recognition errors.

Another significant advance in speech recognition occurred 
when it was realized that self-supervised learning concepts, 
as embodied in bidirectional encoder representations from 
transformers, could be adapted to improve speech recognition 
performance. To achieve that, the concept of masking discrete 
elements in a text stream, as is done in Bidirectional Encod-
er Representation from Transformers (BERT), needed to be 
extended to speech, which is a continuous signal. More gen-
erally, self-supervised methods were further extended to the 
pretraining of speech models [26] so that the more accessible, 
unlabeled speech data may be exploited to improve speech 
processing performance. Again, the main challenge here was 
extending models originally developed for discrete units (text) 
to continuous units (speech) without obvious reconstruction 
targets, as there are in a text stream.

TTS
Unit-selection TTS was popular in R&D in the early 2000s. 
There were many commercial unit-selection TTS systems and 

several open source software toolkits. In generative TTS, 
statistical parametric speech synthesis [36] with high-quality 
vocoders gained popularity in the late 2000s. The Blizzard 
Challenge (https://www.synsig.org/index.php/Blizzard_
Challenge), an annual event that evaluates TTS systems with 
a common training speech corpus and a set of test sentences, 
started in 2005 and helps researchers and developers compare 
different technologies on the same ground.

Deep learning was first introduced to replace the HMM-
based AM in generative TTS [37]. In 2016, WaveNet [30], an 
AR generative model for raw audio, demonstrated that it could 
integrate an AM and a vocoder into a single generative model 
and synthesize more naturally sounding speech than conven-
tional unit-selection and generative TTS systems. In parallel, 
the AR encoder–decoder models with attention were success-
fully adapted as an AM of generative TTS [38] like other 
sequence-to-sequence mapping problems. A combination of 
the encoder–decoder model with the WaveNet-based vocod-
er model achieved near-human-level synthetic speech [39]. 
Recently, non-AR generative models demonstrated that they 
could achieve the same or better performance than these AR 
generative models, both in AMs and vocoders [1]. Finally, inte-

grating these two components into a single 
model to make the entire system fully end to 
end is being actively investigated [24].

Some SOTA, NN-based, TTS systems 
have demonstrated human parity in the 
reading-speech (in contrast to conversational 
speech that features wide prosody variations) 
synthesis domain. Current research in TTS 
targets harder speech generation tasks, such 
as synthesizing texts in low-resource lan-

guages, handling code mixing (the embedding of linguistic units 
such as words and morphemes of one language into an utterance 
of another language), code switching (alternating between two 
or more languages) within a sentence, synthesizing long-form 
texts, realizing expressiveness, and synthesizing nonverbal 
vocalizations such as laughter. Humans are still significantly 
better than TTS with these tasks. Developments in data collec-
tion, analysis, and modeling can help us tackle these hard tasks.

SPR, identification, and diarization
In SPR, the beginning of 2000s was dominated by Gaussian 
mixture speaker models MAP-adapted from a universal back-
ground model (GMMs-UBM) [40]. Two important variations 
of using adapted GMMs existed: 1) direct evaluation of the 
likelihood of utterance, where the verification score was the 
log-likelihood ratio between GMM-UBM and speaker-adapt-
ed GMM, and 2) extracting adapted GMMs’ parameters as 
“speaker supervectors” and using them as the input to another 
classifier [e.g., a support vector machine (SVM)].

Many techniques, such as feature mapping and nuisance 
attribute projection, were developed to compensate for chan-
nel variability so that speaker variability could be better iden-
tified. In [41], joint factor analysis (JFA) was introduced as 
an improvement to the previous GMM-UBM/MAP approach, 

A more speech-focused 
methodology called 
connectionist temporal 
classification combined 
HMM concepts with 
sequence-to-sequence 
mapping.
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where large GMM models could be robustly and independently 
adapted to the speaker and/or channel of an utterance.  Similar 
to the eigenvoices adaptation used in ASR, in which each 
speaker is represented as a linear combination of latent basis 
vectors named eigenvoices, only low-dimensional speaker and 
channel latent vectors needed to be estimated from an input 
utterance. The subsequent i-vector approach directly used the 
latent vectors as low-dimensional, fixed-length embeddings 
of speech utterances [42]: i-vectors defined only one “total-
variability” space, and supervectors of GMM means were pro-
jected into such a space by a total-variability matrix trained on 
a huge number of unlabeled speaker data. I-vectors, however, 
included both wanted speaker and unwanted channel informa-
tion, so scoring had to be implemented by probabilistic linear 
discriminant analysis (PLDA), rather than by simple distance 
metrics. I-vectors dominated the field for more than a decade, 
and they became popular elsewhere, from LR to the adaptation 
of ASR systems (even those based on deep learning).

SPR was actually one of the last ML fields where GMMs 
surrendered to NNs. Efforts have been made for more than a 
decade, and researchers have registered partial victories (such 
as NN-based features and NN alignments, instead of using 
Gaussian components), but the true switch to NNs came after 
Snyder et al. [43] trained a time-delay NN on a large pool of 
speakers with a speaker identification criterion. The NN has 
several blocks: 1) extracting frame-by-frame hidden represen-
tations; 2) pooling over time, resulting in a fixed-length repre-
sentation of an utterance; 3) adding a few more NN layers to 
produce the embedding (x-vector); and 4) during training, the 
“x-vector” is connected to a linear classification layer, which 
was discarded once the “x-vector” extractor was trained. Since 
the introduction of x-vectors, the SPR standard architecture 
has stabilized with the chain feature-extraction—embedding 
extraction—back end. Current work in SPR is compatible with 
the other ML fields and includes research in data augmenta-
tion, novel network architectures (often taken from the com-
puter vision community, such as ResNet34), training criteria, 
end-to-end systems (including trainable signal processing 
blocks), and the use of pretrained models.

In diarization, the Bayesian information criterion (BIC) [44] 
has long been used for both segmentation and clustering. Dia-
rization has closely followed the developments in SPR: i-vectors 
(or x-vectors) were used to represent the speech segments, and 
PLDA was used to evaluate the similarity for segment cluster-
ing. Also, the BIC-based segmentation was replaced by sim-
pler uniform segmentation, where i- and x-vectors are extracted 
every 0.25 s from a window of approximately 1.5 s. Hierarchi-
cal agglomerative clustering, spectral clustering, or clustering 
based on Bayesian HMMs were typically used to cluster the 
segments. Variational Bayes (VB) diarization (Bayesian HMM 
with eigenvoice priors [45]) was unique as it did not perform 
separate segmentation and clustering steps. VB techniques 
worked excellently with deep NN (DNN)-generated x-vectors 
representing segments of fixed length. Current work in diariza-
tion also targets end-to-end architectures, and promising results 
have been obtained with target-speaker voice activity detection.

LID
Significant improvements were made to the acoustic approach 
of LID in the early 2000s by reusing discriminative training 
that had previously been tested in ASR. As phone recognition 
was the first speech field where NNs achieved significant suc-
cess, it is not surprising that the phonotactic approach of LID 
benefited from the development of reliable phone recognizers. 
LID then evolved alongside SPR because the same groups and 
people typically worked on both techniques, and some of this 
evolution is covered by [46]. LID based on JFA and i-vectors 
virtually eliminated the need for phonotactic approaches.

Although some attempts to use DNNs for LID still found it 
advantageous to combine with GMMs and use NNs as feature 
extractors, others have shown the superiority of NNs, leading to 
neural approaches dominating the LID field earlier than SPR. 
X-vectors have also proven their modeling power for LID [47], 
with simple, discriminative Gaussian classifiers used as the back 
end. The interest in LID also initiated several data collection 
efforts, from the extraction of telephone calls from broadcasts 
done by Brno University of Technology and the Linguistic Data 
Consortium around 2009, to the recent VoxLingua107 data col-
lection. As for SPR, LID currently witnesses developments in data 
augmentation, new NN architectures, and end-to-end systems.

Speech enhancement and separation
Over the past two decades, we have observed significant prog-
ress in speech enhancement and separation. Most of the devel-
opments are summarized in [48], [49], [50], [51], and [52].

In 2001, nonnegative matrix factorization (NMF) [52], an 
unsupervised data-driven technique, was introduced under the 
assumption that the audio spectrogram has a low rank structure 
that can be represented with a small number of nonnegative 
bases. Under certain conditions, the decomposition in NMF 
is unique, without making orthogonality or independence 
assumptions. The main difference between NMF and previous 
signal model-based approaches (e.g., the Wiener filter) is that 
NMF uses clean speech and noise streams to learn the basis, 
and then applies these bases during the testing phase.

Around the same time, CASA was proposed [12]. In CASA, 
certain segregation rules based on perceptual grouping cues 
(e.g., pitch and harmonics that can be used to distinguish dif-
ferent speakers) are designed to operate on low-level features 
such as a spectrogram to estimate a time-frequency (T-F) mask 
for each signal component belonging to different speakers. This 
mask is then used to reconstruct the signal by multiplying it 
with the input. Although CASA has many limitations [50], the 
idea of estimating T-F masks, when combined with data-driven 
approaches, has reshaped the direction of speech enhancement.

Deep learning has also led to a paradigm shift in speech 
enhancement and separation. The key idea is to convert the orig-
inal problem into a supervised learning problem [49], [50]. As 
the target clean speech is seldom available in real-world record-
ings, the training sets are usually synthesized by mixing various 
clean speech, noise, and reverberation conditions. The task then 
becomes extracting the clean speech from the synthesized mix-
ture. As the mixing sources and parameters are known  during 
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the training phase, various training objectives (mostly T-F masks 
and signal matching based) can thus be directly defined if only 
one speaker needs to be extracted from the mixture. However, if 
two or more speakers need to be separated and  extracted from 
the mixture and there is no information (e.g., speaker embed-
ding, face, or location) during the segregation process to identify 
the order of the set of extracted speech streams, some tech-
nique is needed to solve the permutation-ambiguity issue [50]. 
The two most effective approaches for solving this problem are 
deep cluster [53] and permutation-invariant training (PIT) [54]. 
Unfortunately, the synthesized mixture, although it can be close, 
is different from the real recordings. To exploit the real record-
ings that do not come with the separation or enhancement tar-
gets, mixture-invariant training [55] was proposed and achieved 
significant success when combined with PIT.

Another observation in the past two decades is the improved 
exploitation of additional information. For example, the research 
on multichannel processing [48] and multimodal processing [51] 
has significantly increased. Multichannel processing can uti-
lize spatial information to improve the performance of speech 
enhancement and separation. Beamforming based solely on 
signal processing was the dominant multichannel technique 
10 years ago. Today, deep learning has been exploited to esti-
mate sound statistics, learn a dynamic beamformer, and intro-
duce additional target clues such as speaker embedding and 
multimodal information.

SLU and dialog systems
The past two decades have been flourishing for dialog systems. 
Due to the advancements in speech and language technology, 
several commercial applications, such as customer service ap-
plications, virtual personal assistants, and social bots, have been 
launched, resulting in a huge number of interactions. These 
have resulted in even more research interest in dialog systems 
as they have enabled us to identify remaining challenges and 
new conversational application domains and scenarios.

For language understanding, the methods relying on SVMs 
and CRFs were followed by the use of DNNs [56] and large, 
pretrained LMs fine-tuned for language understanding [57]. 
Similar to language understanding, pretrained LMs have 
proven to be useful for other dialog tasks as well; for exam-
ple, dialog-state tracking and response generation. Inspired by 
these works, zero- (with no training sample) and few-shot (with 
only several training samples) methods that rely on fine-tuning 
question answering [58], prompt tuning, and instruction tuning 
[59] were shown to be effective.

In parallel, end-to-end methods based on deep learning 
[23], for both task-oriented and open-domain dialog sys-
tems, became popular. Most recently, ChatGPT, a general-
purpose, open-domain dialog system based on the generative 
predictive transformer [60], has shown great potential and 
become prevalent.

Conclusion
In this article, we reviewed major advances made in the SLP 
fields in the past 25 years. The availability of more data, higher 

computation power, and advancements in deep learning tech-
niques have accounted for the majority of the progress made in 
SLP in the last decade. In this section, we summarize the state 
of the field today, with comments on future developments.

Comments on the field today
Figure 2 compares the ICASSP SLP paper theme category per-
centages (2023 versus 1998). We observe that the percentage 
of categories such as ASR, speech synthesis, SPR, language 
modeling, speech enhancement, and speech analysis has dras-
tically increased over the last 25 years. Language understand-
ing, emotion recognition, voice conversion, multilingual ASR, 
speaker diarization, speech corpora and resources, ML for 
language processing, and self-supervised learning emerge as 
significant theme categories. In contrast, ASR robustness (now 
achieved with a large number of realistic training data), fea-
tures for ASR (feature engineering is now part of data-driven 
model training), NNs (speech modeling with NNs has become 
a universal tool), and speech coding no longer take up a notice-
able percentage as theme categories.

Figure 3 shows the evolution of ICASSP SLP paper submis-
sion statistics for the past 20 years. We observe that the number 
of paper submissions has nearly tripled. Especially, we see a 
roughly 20%/year-over-year increase for the last five years.

The developments in SLP have enabled many scenarios 
and significantly improved our daily life. For example, ASR 
techniques, given their significantly improved accuracy, are 
now widely used in smart assistants such as Siri, Alexa, and 
Google Now; in-car entertainment systems, voice search sys-
tems, and medical transcription systems. ASR techniques have 
also enabled many other scenarios, such as speech-to-speech 
translation. Due to the high quality of synthesized speech, TTS 
techniques have significantly improved the multimodal and 
multimedia context generation process. They are widely used 
in audiobooks, digital humans, and dialog systems.

Perspectives on future developments
We have observed the convergence of techniques in most of 
the subfields of SLP. Only decades ago, these subfields were 
based on very different theories and models; today, most of 
them are based on the same set of deep learning techniques. 
When a new effective model or algorithm is developed in one 
of these subfields, it is quickly applied to other subfields and 
brings progress to them. We welcome this trend and believe 
it will continue because, although many problems seem to 
be different on the surface, they are identical at a higher and 
more abstract level. At the same time, we believe problems 
in different subfields come with different assumptions and 
have different structures. These assumptions and structures 
should be taken into consideration when designing models to 
advance the SOTA.

Given this convergence, one of the main impacts we expect 
to see in the coming years is an increasing number of systems 
that may have different preprocessing and postprocessing 
modules for different modalities, but share a common central 
architecture. This will facilitate cross-modal learning and data 
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sharing, something humans do easily but with which current 
systems still struggle.

For language understanding and dialog-response genera-
tion, although these new methods (e.g., ChatGPT) have result-
ed in significant improvements, several challenges remain, 
such as maintaining the factual accuracy of the responses, 

modeling longer context that is important for future interac-
tions, and common-sense reasoning.

Another area that still requires significant technology 
advancement deals with the general area of catastrophic forget-
ting. The SOTA today in speech and other modalities involves 
fine-tuning a large, pretrained network; this results in biasing 
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the network to the new data with a resultant loss in robustness. 
Again, although there have been some attempts to deal with 
this problem, we have a long way to go.

We’d also like to point out that the majority of the prog-
ress has been made in support of data-driven techniques. This, 
however, does not mean that theoretical models are useless or 
less meaningful. In fact, we think theories on deep learning 
should be established to explain the models and results we have 
thus far, and new theories should be developed to guide further 
development of the fields in which they apply. It is also ben-
eficial to combine theoretical models with data-driven tech-
niques, e.g., in the speech enhancement and separation fields.

As the performance of the systems continues to improve, it 
is very important to maintain ethics. For example, as synthe-
sized speech is no longer distinguishable from human speech 
under some conditions, we need to make sure that the advanced 
TTS technique is not used to cheat people or for illegal finan-
cial gain. The research society should have clear guidance on 
how to evaluate the benefits and side effects of new research 
and techniques. Both technical and legal mechanisms are also 
needed to prevent evil people from getting access to powerful 
techniques, and to identify AI-generated content.

Acknowledgment
Dong Yu is the corresponding author.

Authors
Dong Yu (dongyu@ieee.org) received his Ph.D degree in 
computer science from the University of Idaho. He is a distin-
guished scientist and vice general manager at Tencent AI Lab, 
Bothell, WA 98011 USA. Prior to joining Tencent in 2017, he 
was a principal researcher at Microsoft Research, Redmond, 
WA. He has two monographs and more than 300 papers to his 
credit. His work has been widely cited and recognized by the 
IEEE Signal Processing Society Best Paper Award in 2013, 
2016, 2020, and 2022, as well as by the 2021 NAACL Best 
Long Paper Award. He was elected chair of the IEEE Speech 
and Language Processing Technical Committee from 2021 to 
2022. His research focuses on speech and natural language 
processing. He is a Fellow of IEEE and a fellow of 
Association for Computing Machinery and the International 
Speech Communication Association.

Yifan Gong (yifan.gong@ieee.org). received his Ph.D. 
degree in computer science from the Department of 
Mathematics and Computer Science, University of Nancy I, 
France. He leads a speech modeling team developing machine 
learning and speech technologies across scenarios/tasks at 
Microsoft, Redmond, WA USA. Prior to joining Microsoft in 
2004, he worked as a senior research scientist at the National 
Center of Scientific Research, France, and then as a senior 
member of the technical staff at Texas Instruments. He has 
authored and coauthored more than 300 publications in books, 
journals, and conferences, and has more than 70 granted pat-
ents. He serves on the Senior Editorial Board of IEEE Signal 
Processing Magazine and is the elected chair of the IEEE 
Speech and Language Processing Technical Committee 

(2023–2024). His research focus is on speech processing. He 
is a Fellow of IEEE.

Michael Alan Picheny (map22@nyu.edu) received his 
Sc.D. degree in electrical Engineering and computer science 
from the Massachusetts Institute of Technology. He has worked 
in the speech recognition area since 1981, joining the IBM 
Thomas J. Watson Research Center after finishing his doctorate 
degree. After retiring from IBM in 2019, he joined NYU-
Courant Computer Science and the Center for Data Science, 
New York, USA, as a part-time research professor. He has pub-
lished numerous papers in both journals and conferences on 
almost all aspects of speech recognition. He was chair of the 
IEEE Speech Technical Committee from 2002 to 2004 and a 
member of the International Speech Communication 
Association (ISCA) Board from 2005 to 2014. Her research 
focus is on speech recognition.  He is a Fellow of IEEE and a 
fellow of the ISCA.

Bhuvana Ramabhadran (bhuv@google.com) received her 
Ph.D. degree in electrical engineering from the University of 
Houston. She leads a team of researchers focusing on semisu-
pervised learning for speech recognition and multilingual 
speech recognition at Google, New York, NY 10011 USA. 
Prior to joining Google, she was a distinguished research staff 
member and manager at IBM Research AI, IBM Thomas J. 
Watson Research Center, New York, where she led a team of 
researchers in the Speech Technologies Group and coordinated 
activities across IBM’s worldwide laboratories in the areas of 
speech recognition, synthesis, and spoken-term detection. She 
was elected chair of the IEEE Speech and Language 
Processing Technical Committee from 2015 to 2016. Her 
research interests include speech recognition and synthesis 
algorithms, statistical modeling, signal processing, and 
machine learning. She is a Fellow of IEEE and a fellow of the 
International Speech Communication Association.

Dilek Hakkani-Tür (dilek@ieee.org) received her Ph.D. 
degree in computer engineering from Bilkent University. She is 
a senior principal scientist focusing on enabling natural dialogs 
with machines at Amazon Alexa AI, Sunnyvale, CA USA, Prior 
to joining Amazon, she was a researcher at Google, Microsoft 
Research, the International Computer Science Institute at the 
University of California, Berkeley, and AT&T Labs-Research. 
She received best paper awards for publications she coauthored 
on conversational systems from the IEEE Signal Processing 
Society, International Speech Communication Association 
(ISCA), and European Association for Signal Processing. 
Recently, she served as editor-in-chief of IEEE Transactions on 
Audio, Speech, and Language Processing. Her research inter-
ests include conversational artificial intelligence, natural lan-
guage and speech processing, spoken dialog systems, and 
machine learning for language processing. She is a Fellow of 
IEEE and a fellow of the ISCA.

Rohit Prasad (roprasad@amazon.com) received his M.S. 
degree in electrical engineering from the Illinois Institute of 
Technology. He is a senior vice president at Amazon, Boston, 
USA, where he is head scientist for Amazon Alexa. He leads 
R&D in artificial intelligence technologies for enriching the 

Authorized licensed use limited to: Brno University of Technology. Downloaded on August 16,2023 at 17:59:59 UTC from IEEE Xplore.  Restrictions apply. 



38 IEEE SIGNAL PROCESSING MAGAZINE   |   July 2023   |

daily lives of everyone, everywhere. Prior to Amazon, he was 
the deputy manager and senior director of the Speech, 
Language and Multimedia Business Unit at Raytheon BBN 
Technologies. He is a named author on more than 100 scien-
tific articles and holds several patents. He was listed at num-
ber nine in Fast Company’s “100 Most Creative People in 
Business” in 2017 for leading the “voice-controlled revolu-
tion.” In 2021, he was listed as one of the 50 most influential 
people in technology as part of “Future Tech Awards.” His 
research interests include speech processing and dialog sys-
tem. He is a Senior Member of IEEE.

Heiga Zen (heigazen@google.com) received his Ph.D. 
degree in computer science from the Nagoya Institute of 
Technology in 2006. He is a research scientist with the Google 
Brain team, Tokyo 150-0002, Japan. After receiving his Ph.D. 
degree, he joined Toshiba Cambridge Research Laboratory, 
U.K., in 2008. He was with the Text-to-Speech team at 
Google, London, between 2011 and 2018, then moved to the 
Brain team in Tokyo as one of its founding members. He is 
one of the early explorers in generative model-based speech 
synthesis, one of the original authors of the hidden Markov 
model-based speech synthesis system HMM/DNN-based 
Speech Synthesis System (HTS), and its first maintainer. He 
served as a member of the IEEE Speech and Language 
Processing Technical Committee between 2012 and 2014. He 
is a fellow of the International Speech Communication 
Association. He is a Senior Member of IEEE.

Jan Skoglund (jks@google.com) received his Ph.D. 
degree in information theory from the School of Electrical and 
Computer Engineering of Chalmers University of Technology, 
Sweden, in 1998. He leads a team that develops speech and 
audio signal processing components for capture, real-time 
communication, storage, and rendering (deployed in products 
such as Meet and Chromebooks) at Google, San Francisco 
CA USA. After receiving his Ph.D. degree, he worked on low 
bit rate speech coding at AT&T Labs-Research, Florham Park, 
NJ. He was with Global IP Solutions (GIPS), San Francisco, 
from 2000 to 2011, working on speech and audio processing 
tailored for packet-switched networks. GIPS’ audio and video 
technology is found in many deployments by, e.g., IBM, 
Google, Yahoo, WebEx, Skype, and Samsung, and was open 
sourced as WebRTC after a 2011 acquisition by Google. His 
research interests include speech and audio signal processing. 
He is a Senior Member of IEEE.
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