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ABSTRACT

When recognizing emotions from speech, we encounter
two common problems: how to optimally capture emotion-
relevant information from the speech signal and how to best
quantify or categorize the noisy subjective emotion labels.
Self-supervised pre-trained representations can robustly cap-
ture information from speech enabling state-of-the-art results
in many downstream tasks including emotion recognition.
However, better ways of aggregating the information across
time need to be considered as the relevant emotion informa-
tion is likely to appear piecewise and not uniformly across
the signal. For the labels, we need to take into account that
there is a substantial degree of noise that comes from the
subjective human annotations. In this paper, we propose a
novel approach to attentive pooling based on correlations be-
tween the representations’ coefficients combined with label
smoothing, a method aiming to reduce the confidence of the
classifier on the training labels. We evaluate our proposed
approach on the benchmark dataset IEMOCAP, and demon-
strate high performance surpassing that in the literature. The
code to reproduce the results is available at github.com/
skakouros/s3prl_attentive_correlation.

Index Terms— emotion recognition, self-supervised fea-
tures, iemocap, hubert, wavlm, wav2vec 2.0

1. INTRODUCTION

Emotional expressions are a fundamental component of spo-
ken interaction. When we communicate with other people,
we are implicitly monitoring their emotional state and re-
spond based on that emotional state [1]. Emotions fall in the
realm of prosodic function. In recent years, the importance of
prosodic qualities in speech has attracted increasing attention.
This is also the case for speech emotion recognition (SER)
which has seen a growing interest with the increasing role
of spoken language interfaces in human-computer interac-
tion (HCI) applications [2]. However, recognizing emotions
in speech remains a challenging problem complicated by
numerous factors including fundamental issues of how emo-
tion is defined, elicited, expressed, and communicated [3]
and extending to how we can capture this information from

speech.

The challenges in SER can be split into three distinct
problems. First, we encounter the issue of developing engi-
neered representations that can robustly capture the acous-
tic information in speech that best describe the variation
found across different emotions. This has been traditionally
done using features such as mel-frequency cepstral coeffi-
cients (MFCCs), filterbanks, fundamental frequency, energy,
zero-crossing rate, chroma-based features and their feature
functionals [4] or through standardized feature collections
and their functionals such as eGeMAPS [5]. More recently,
self-supervised learning (SSL) has shown its effectiveness
in various domains, including SER, and is becoming the
new principle for extracting representations from speech.
HuBERT [6], Wav2vec 2.0 [7], WavLM [8], are some of the
self-supervised approaches for speech representation learning
that have been used in the context of SER [9, 5].

The second issue that we face in SER is the effective mod-
eling of the long temporal context over which emotions take
place. Emotion specific information lies beyond segmental
productions and in longer time scales. These may include
parts of an utterance but can also span across one or more
utterances. To appropriately model long-term dependencies
we need to utilize suitable methods that are capable of cap-
turing and connecting the relevant cues across time. These
vary from approaches that simply take the first and second
order statistics of self-supervised representations across time
[9] to approaches that focus on complex sequence modeling
tasks [10]. For example Sarma et al. [10] used a TDNN ar-
chitecture combined with LSTM and self-attention to model
the long-term temporal context and to capture the emotion-
ally relevant portions of speech. In a recent work, Liu et al.
[11] used a cascaded attention network to locate the relevant
emotion regions from the input features. Other approaches
also use different types of recurrent neural networks (RNNs)
to explain the long temporal contexts of emotions in speech
[12].

The third and final issue comes from the observation that
human emotional expressions are often unclear and ambigu-
ous, leading to disagreement and confusion among humanIC
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evaluators [13, 14]. This confusion might be partly attributed
to the multimodal nature of emotion expression. Facial ex-
pressions, hand gestures, and speech with its prosodic and
linguistic content all work together in eliciting different emo-
tions. Perhaps the absence of multimodality may be one
source of confusion that leads to overlaps in the clusters of
the different emotion classes. However, speech alone holds
much relevant information in its prosodic content that can be
used for robust SER. Different ways to tackle the problem
of noisy labels and consequently the uncertainty in predict-
ing emotions have been suggested in the literature. These
typically include custom loss functions [15, 11] and modifi-
cations to the target hard labels [16, 17]. For example Liu
and Wang used a triplet loss to make anchor utterances more
similar to all other positive utterances [15] while Tarantino et
al. used regression targets instead of hard categorical targets
by taking the proportion of the classes within the annotations
[17].

This paper presents a framework for SER that uses pre-
trained speech models with a novel approach to attentive pool-
ing based on channel-wise correlations on soft targets. We
evaluate the framework with HuBERT [6], Wav2vec 2.0 [7],
and WavLM [8] upstream models. We use the SUPERB [9]
evaluation setup throughout our experiments. The effective-
ness of our proposed framework is evaluated on the interactive
emotional dyadic motion capture (IEMOCAP) dataset [18]
and shows state-of-the-art performance in SER.

2. RELATION TO PRIOR WORK

The idea of taking the correlations between different filter
responses over the spatial extent of the feature maps to ob-
tain a representation of the style of an input image was intro-
duced by Gatys et al. [19]. Their method was later adapted to
speech where it has found applications in speech generation
and voice conversion [20], pooling to obtain speaker embed-
dings [21], and sentence-level tasks such as speaker identifi-
cation, speaker verification, and SER [22].

In this work, we extend the method for correlation pool-
ing presented in [22]. In [22], it was shown that channel-wise
correlations provide an alternative way of extracting speaker
and emotion information from self-supervised models, pro-
viding also improvements over the standard mean and mean-
std pooling (std stands for standard deviation). In the present
work, we add an attention mechanism to pool representations
before estimating the correlation matrix, while reducing the
confidence on the target labels with label smoothing.

3. PROPOSED METHOD

We construct our SER framework based on the pipeline and
principles of SUPERB [9]. As finetuning pretrained models
has a high resource demand in terms of the computational
power needed, we use a simple framework with a frozen
pretrained model and lightweight classification heads. An
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Fig. 1. Overview of the proposed architecture.

overview of our framework is presented in Fig. 1. In this
section we describe details of the proposed approach.
3.1. Layer-wise pooling
We extract information relevant for our downstream task as in
SUPERB ([9]), by taking representations from all transformer
layers in the model and collapsing them to one via a weighted
average (see Fig. 1). There is one weight for each layer (a
total of L + 1) and all weights are trained jointly with the
classification network. The weighted average representation
is expressed as follows

ht =

L∑
l=0

γlht,l, (1)

where the weights
∑L

l=0 γl = 1, γl ≥ 0 are implemented
with a learnable vector of size L+1, followed by the Softmax
function, and ht,l is the representation of the lth layer at time t
(ht,0 is the output of the Convolutional Network – ConvNet).

3.2. Frame-wise pooling
Tasks requiring sentence-level classification typically employ
a pooling method, such as mean, max or attentive pooling.
Mean pooling, which is employed in SUPERB is defined as

r = h̄ =
1

T

T∑
t=1

ht, (2)

where T is the number of acoustic features of an utterance
extracted by the ConvNet, r is the resulting pooled represen-
tation, while ht are the representations at time t after layer-
wise pooling. Concatenating the pooled representations with
std features is in general helpful in speaker recognition [23],
and is implemented as

r =

h̄;( 1

T

T∑
t=1

(ht − h̄)2

)1/2
 , (3)
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where [·; ·] denotes vector concatenation and the exponents
should be considered as element-wise operators.

3.3. Correlation pooling
Correlation pooling (introduced in [21]) is an alternative pool-
ing method which has shown improvements in speaker recog-
nition. The embedding dimension of SSL models (typically
768 or 1024) is too high to estimate correlations. We there-
fore project h onto a lower dv-dimensional space v via a lin-
ear layer (dv = 256). We then calculate the mean vector µ
and the covariance matrix Σ of v as follows

µ =
1

T

T∑
t=1

vt, Σ =
1

T

T∑
t=1

(vt − µ)(vt − µ)′, (4)

where x′ denotes the transpose of x. Finally, the correlation
matrix is derived by normalizing with respect to the variances
as follows

C = Σ⊘ S, (5)

where S = ss′ + ϵ1, s = diag(Σ)1/2 (i.e. the vector of std),
⊘ denotes element-wise division, while ϵ = 10−8. Since C
is a symmetric matrix and its diagonal elements are equal to
1, we vectorize the elements above the diagonal, yielding a
(dv×(dv−1)/2)-sized vector, which we project onto a linear
layer followed by the Softmax over the emotion classes. For
regularization, dropout is applied to v, where whole channels
are dropped with probability pd = 0.25.

3.4. Attentive correlation pooling
We introduce here the attentive correlation pooling, by insert-
ing weights in the estimates of the statistics, i.e.

µ =

T∑
t=1

wtvt, Σ =

T∑
t=1

wt(vt − µ)(vt − µ)′ (6)

and we calculate C as in eq. (5). The weights {wt}Tt=1 (where∑
t wt = 1 and wt ≥ 0) are estimated using a new flavor of

attention. Similarly to the single-head attention a single set
of weights is estimated. Similarly to the multi-head attention,
multiple heads are employed, however their similarities with
vt are aggregated prior to the Softmax function via the log-
sum-exp function, as follows

{wt}Tt=1 = Softmax
(
{at}Tt=1

)
, (7)

where
at = log

∑
h

exp (q′
hot + bh) , (8)

the heads {qh, bh}Hh=1 are trainable dv-dimensional vectors
and biases, ot = ReLU(Wattvt) and Watt is a square matrix
(dv×dv). Note that an equivalent implementation is to use as
input to the Softmax the (H×T )-sized vector of dot-products
q′
hot+ bh and sum the outputs over heads to obtain {wt}Tt=1.

As we observe, the proposed attention resembles a mix-
ture model with heads parametrizing the mixture components.

The log-sum-exp function is a soft version of the max opera-
tor, meaning that at is high when at least one of the H head-
specific dot-products {q′

hot + bh}Hh=1 is high.
The rationale for proposing this kind of attention is two-

hold. We desire to keep the multi-modality of multi-head at-
tention since a single head is too weak to capture the phonetic,
speaker, emotion and channel variability. On the other hand,
the standard multi-head attention results in H context-vectors
(in our case H correlation matrices), which can be hard to es-
timate robustly, especially when the utterances are short and
the estimation involves second-order statistics.

3.5. Label smoothing
With label smoothing we soften the hard (one-hot) targets
vectors y of the training set as follows

yLS = y(1− pl) + pl/K, (9)

where pl is the label smoothing parameter (i.e. the proba-
bility mass equally distributed to all classes) and yLS is the
smoothed target vector [24]. Cross-entropy is still employed
as loss function, but with soft targets.

4. EXPERIMENTS
4.1. Datasets
The IEMOCAP database consists of multi-modal recordings
(speech, video) by 10 actors in dyadic sessions in English
(≈ 12 hours) [18]. The dataset is split in 5 dialogue ses-
sions (one female-male speaker pair per session). The emo-
tions conveyed are happiness, anger, excitement, sadness, sur-
prise, fear, frustration, and neutral state. As in other studies
on IEMOCAP, we relabel excitement as happiness and use 4
balanced emotion classes, namely: anger, happiness, sadness,
and neutral [9, 5, 25]. All other classes are discarded.

4.2. Experimental Setup
We use a 5-fold cross-validation setup where at each fold we
leave out one session from the dataset. Each held-out session
consists of two speakers that are not present in the train and
validation sets. This approach leaves approximately 19% of
the data for testing. Mean and standard deviation across folds
is computed and presented as the aggregated result. Our SER
framework is evaluated with WavLM, Wav2vec 2.0, and Hu-
BERT speech representations.

5. RESULTS AND ANALYSIS

An overview of the results for the most common pooling
methods and our proposed approach is shown in Table 1. The
results are presented for the best configuration of our frame-
work with pd and pl both equal to 0.25 and H = 4. The best
overall performance was achieved for our proposed approach
using WavLM (75.60%; see also Fig. 2) which is higher
compared to other SSL approaches in the literature on the
same data — 67.20% with frozen Wav2vec 2.0 [5], 67.62%
with frozen HuBERT [9], 73.01% with fine-tuned HuBERT
[26], and 69.08% with fine-tuned Wav2vec 2.0 model [26].
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Table 1. Unweighted accuracy (% mean and std) between test
sets for SER in IEMOCAP using HuBERT large, Wav2vec
2.0, and WavLM large self-supervised representations.

Pooling method HuBERT Wav2vec 2.0 WavLM
mean 65.73 (2.73) 66.86 (1.76) 69.44 (1.53)
mean-std 69.15 (1.61) 69.92 (1.17) 72.56 (1.67)
corr (pd = 0) 69.82 (1.35) 68.44 (1.85) 72.34 (1.54)
corr (pd = 0.25) 69.72 (1.19) 67.85 (1.84) 72.27 (1.45)
corr attentive 73.86 (2.10) 70.01 (2.20) 75.60 (2.33)

Our method also yields results that surpass those on the
benchmark setup of SUPERB on the same dataset and splits;
SUPERB is a leaderboard that benchmarks the performance
of a shared model across a range of speech processing tasks
[9]. In particular, SUPERB reports an accuracy of 70.62%
with WavLM and 67.62% with HuBERT whereas we obtain
75.60% and 73.86% respectively. For comparison, using stan-
dard acoustic features, the reported performance is consider-
ably lower: 52.4% using eGeMAPS [5], 49.8% with spec-
trograms [5], 57.6% using filter banks [27], and 54.6% using
MFCCs [28].

5.1. Attention
To investigate the performance of the proposed attentive cor-
relation pooling method we experimented with different num-
bers of attention heads (H). Specifically, we tested for H =
1, 4, 16, 32 heads. We obtained the best result with H = 4.
Note that we did not observe any correlation between heads
and emotion classes, meaning that there is no direct mapping
between heads and emotions. In particular, for Session 1, Hu-
BERT, pd = 0.25, pl = 0.25 accuracy was 70.32% (H = 1),
73.18% (H = 4), 72.53% (H = 16), and 71.34% (H = 32).

5.2. Label smoothing and dropout
To better understand the performance of our system, we
probed our setup by varying the parameters for label smooth-
ing and dropout rate. For a set number of attention heads
(H = 4), label smoothing was varied for pl = 0, 0.15, 0.25, 0.3
and dropout rate for pd = 0...0.5. The effect was evaluated
on Session 1 of the setup for attentive correlation pooling
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HuBERT. Lines represent different label smoothing values.

using HuBERT and the results can be seen in Fig. 3. Both
dropout and label smoothing have an impact on the perfor-
mance with label smoothing having a greater positive effect;
increasing performance from 67.93% (pd = 0, pl = 0) to
70, 41% (pd = 0, pl = 0.25) and even further with increasing
dropout to 73.18% (pd = 0.25, pl = 0.25).

The impact of dropout rate and label smoothing was also
investigated for mean, mean-std, and correlation pooling. The
impact in all was small to negligible. For example, for pd =
0, pl = 0.25 the performance remained unchanged compared
to pd = 0, pl = 0 for mean, mean-std, and correlation pooling
while for pd = 0.25, pl = 0.25 there was a small improve-
ment for correlation pooling (from 68.20% to 70.60%).

6. CONCLUSIONS

In this work we presented an SER framework that uses self-
supervised representations and is based on label smoothing
and a novel approach to attention, attentive correlation pool-
ing. Notably, our method does not require fine-tuning of the
pre-trained SSL models but rather uses a light-weight clas-
sification head that attempts to capture all relevant emotion
information from the pre-trained representations. We run sev-
eral experiments using a 5-fold cross-validation setup and we
have clearly demonstrated that our method reaches high per-
formance in all pre-trained models tested surpassing that of
the literature in similar tasks. In future work, we will ex-
tend the evaluation setup and validate the performance of our
method on more datasets.
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