
Multi-Channel Speech Separation with Cross-Attention and Beamforming
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Abstract
Originally, single-channel source separation gained more

research interest. It resulted in immense progress. Multi-
channel (MC) separation comes with new challenges posed by
adverse indoor conditions making it an important field of study.
We seek to combine promising ideas from the two worlds.
First, we build MC models by extending current single-channel
time-domain separators relying on their strength. Our ap-
proach allows reusing pre-trained models by inserting designed
lightweight reference channel attention (RCA) combiner, the
only trained module. It comprises two blocks: the former allows
attending to different parts of other channels w.r.t. the reference
one, and the latter provides an attention-based combination of
channels. Second, like many successful MC models, our system
incorporates beamforming and allows for the fusion of the net-
work and beamformer outputs. We compare our approach with
the SOTA models on the SMS-WSJ dataset and show better or
similar performance.
Index Terms: multi-channel source separation, cross-channel
attention, beamforming

1. Introduction
Over the past years, single-channel time-domain source sepa-
ration progressed tremendously, achieving remarkable output
quality in clean-audio conditions [1, 2, 3, 4].

Recently, distant speech processing devices, such as home
assistants or meeting transcription systems, have gained in-
creased popularity. Such devices are often equipped with mul-
tiple microphones that, in addition to an increased number of
channels, provide spatial information due to the sensors’ place-
ment. Among speech-related tasks, multi-channel source sepa-
ration is important as it is often used as a pre-processing step for
multi-speaker ASR and also has other applications. As multiple
channels and adverse conditions (including reverberation) pose
new challenges, active research in the field is underway.

Approaches to multi-channel speech source separation can
be broadly divided into (1) those extending existing single-
channel models and (2) those specifically targeted for the task
(potentially providing inductive bias).

Extensions of the pioneering time-domain source separa-
tion Conv-TasNet [1] model were presented in [5, 6]. A com-
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Figure 1: The proposed framework replacing the linear trans-
formation of separation models with designed reference channel
attention (RCA) combiner. Dotted arrows represent a transfer
of learned weights.

mon feature of the architectures is that they aim to process the
reference microphone while providing spatial clues as an addi-
tional input concatenated with the encoded version of the refer-
ence microphone. In [5], the authors provide the network with
inter-channel phase difference (IPD) features. Instead of rely-
ing on hand-crafted features, MC-Conv-TasNet lets an auxiliary
network learn suitable spatial features in a data-driven way [6].

FaSNet is a notable representative of time-domain multi-
channel source separation models tailored toward the task [7]. It
is based on a network predicting time-domain filters applied to
channels, effectively implementing a version of adaptive filter-
and-sum beamforming. Multiple new architectures extend the
original FaSNet [8, 9, 10, 11]. Among them, [10] and [11] in-
corporate a self-attention mechanism, however, none of them
uses an attention mechanism across channels.

Apart from time-domain models, time-frequency modeling
is explored in [12, 13]. The networks map complex input spec-
tra to complex spectra of separated outputs and provide note-
worthy results.

As noted, utilization of attention across channels is not
widespread in multi-channel source separation. Multi-head at-
tention across channels, as part of the source mask estimating
network, was presented in [14, 15]. The proposed networks
were supposed to provide separated outputs, but the final fo-
cus was on speech recognition and continuous speech separa-
tion (usual separation metrics were not evaluated in the stud-
ies). In ASR, a self-attention channel combiner (jointly trained
pre-processing) was presented in [16]. In [17, 18], a multi-
channel encoder-decored ASR model was proposed and refined.
The repeated encoder block contains a succession of channel-
wise self attention and cross-channel attention (CCA) layers.
Multi-channel processing has become popular also in the di-
arization field. Transformer encoders of EEND-EDA [19] were

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1693 10.21437/Interspeech.2023-2537



replaced by multi-channel versions in [20]. The first version
followed [15], the second version was a co-attention encoder.

In this work, we extend the first group of multi-channel
source separation models building upon architectures validated
in single-channel scenarios. Recently designed models for time-
domain speech source separation share a common high-level
structure depicted in the upper part of Figure 1. As opposed to
previous works [5, 6], we do not provide an extra input to the
separator. Instead, we replace linear transformation within the
network with the proposed reference channel attention (RCA)
combiner (Figure 1). It was motivated by the potential ability
to align information from various channels and, eventually, re-
cover the information occluded in the reference channel from
other channels. Our scheme allows the adoption of parameters
of a pre-trained single-channel systems and updates only the
RCA block on multi-channel data. It results in efficient train-
ing (especially when the number of microphones is large) as the
output error is not back-propagated to the network preceding
our module. Our contributions can be summarized as follows:
• The proposed approach is compatible with various time-

domain models following the encoder-separator-decoder
structure, including Conv-TasNet [1], DPRNN [2], DPT-
Net [3], Sepformer [4], and others.

• Our cross-frame reference channel attention (Section 2.3)
represents an alternative to CCA [17], which is designed to
provide outputs wrt. the reference channel.

• We show that the resulting networks can be conveniently used
to estimate beamforming weights. Our final best-performing
models benefit from the synergy of network-based separation
and beamforming. They provide about 15% improvement in
SI-SNRi over single-channel models.

2. Method
2.1. Single-channel time-domain speech separation

As shown in Figure 1, the time domain source mixture signal
is transformed into an internal representation via a trainable en-
coder (usually implemented by a convolutional layer). The en-
coder output is passed to a separating network specific to each
model. It is based on a temporal convolutional network (TCN)
[1], LSTM layers [2], or transformer encoder layers [3, 4]. The
network produces one mask per each source. We assume two
speech sources. The masks are applied to the encoder out-
put by multiplication. Resulting frames are subject to decod-
ing through a trainable decoder, which performs transformation
back to the time domain.

For the purpose of this paper, it is convenient to point out
commonalities of separating networks of well-known models.
The input to the network is normalized, for instance, by layer
normalization [21] or global layer normalization [1]. The nor-
malization is followed by a specific structure, often employ-
ing dual-path processing [2, 3, 4]. Subsequently, a nonlinear-
ity is applied to the resulting representation. This is the output
R ∈ RT×f of the separator block in Figure 1, where T rep-
resents frames, and f is the dimensionality of features. Impor-
tantly, R is linearly projected to per-source features:

P(s1) = RW(s1), P(s2) = RW(s2). (1)

Projection matrices W(·) ∈ Rf×d are unique for sources s1
and s2. The dimensionality of the output features is d. Masks
for individual sources are obtained by

M(s1) = σ(P(s1); θ), M(s2) = σ(P(s2); θ). (2)

The σ transformation can be as simple as nonlinearity (sigmoid,
ReLU) or can use a gating mechanism parametrized by θ [3].

2.2. Extension to multi-channel separation through refer-
ence channel attention

In this section, we describe a straightforward extension of ex-
isting pre-trained source separation networks to multichannel
ones that provide outputs aligned with the reference micro-
phone. The alignment is important (1) to be able to compute
time-domain loss correctly, (2) since it allows to obtain predic-
tions for all channels by changing the reference one (it will be
used in the beamforming weights estimation).

Time-domain separating networks extract representation
R. Rows of R (i.e., vectors rt) live in such a space that a lin-
ear transformation takes them to a source-specific feature space.
Therefore, we hypothesize that R represents a suitable level
where the information from microphones can be fused.

A simple approach would be to average channel-specific
Rc. However, due to sound propagation delay, misalignment
could occur. It would result in unwanted smoothing. Instead,
we propose a reference channel attention (RCA) module that al-
lows to attend to different parts of different channels to improve
the estimation of source signals at the reference microphone.
Our framework reuses the pre-trained model to predict Rc for
all channels c = 1, . . . , C. Subsequently, the RCA module
substitutes linear transformation in (1) as follows:

P(sn) = FRCA

(
{Rc}Cc=1;ϕ

(sn)
)
, (3)

with FRCA representing the RCA combiner parametrized by
source-specific ϕ(sn). Subsequent computation steps follow the
original architecture the module is inserted into.

2.3. Reference channel attention combiner

As shown in Figure 2a, the RCA combiner FRCA is composed
of two consecutive blocks — cross-frame reference channel at-
tention and attentive channel combination. The former allows
attending to other parts of other channels aiming to pick up in-
formation that is corrupted or obscured in the reference channel.
The latter combines channels with respect to the reference one.

To simplify the description, we will omit normalization,
and we will focus only on one source, noting that an analogy
holds for the second source.

Cross-frame reference channel attention (CFRC): This
attention module was partially inspired by CCA from [17].
However, it was modified to fit the purpose of extracting sources
at the reference channel.

To allow the model to separate sources at the reference mi-
crophone (with index 1), we extract per-frame queries (from
that particular channel): Q = R1W

(Q). W(Q) ∈ Rf×d is a
query projection matrix. Channel-specific keys and values are
obtained by projecting Rc with weight matrices that are shared
across channels:

Kc = RcW
(K),

Vc = RcW
(V ),

(4)

where W(K) ∈ Rf×d and W(V ) ∈ Rf×d. The weight-sharing
approach makes the module agnostic to the number of sensors.

In the following step, depending on the channel, self- or
cross- attention is performed. We make use of relative posi-
tional encoding [22] (omitted from formulas for brevity) and a
version of factorized attention [23], where we allow the query
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Figure 2: (a) The designed multi-channel RCA combiner comprises two main blocks: (b) CFRC attending across frames using queries
extracted from the reference channel, (c) attentive channel combination, which aggregates per-frame information from all channels wrt.
the reference one.

frame to attend to keys from a limited time context. The rea-
son is twofold: 1) The CFRC attention module should be able
to align information from various microphones. Since the time
delay between signals of two microphones is limited by sound
wave propagation, only a limited time span is required. 2) By
allowing constrained context for attention, the resulting sys-
tem can process input sequences of various lengths without
the problem of quadratic growth of memory with the sequence
length (known for standard self-attention [24]).

Let qt ∈ Rd be a query vector corresponding to the frame
index t (i.e., the t-th row of matrix Q). Analogically, let vectors
kc,t ∈ Rd and vc,t ∈ Rd be t-th rows of Kc and Vc, respec-
tively. Then the output ac,t of the utilized sparse attention for
frame index t and channel c is defined as

ac,t = softmax

(
q⊺
tK

⊺
c,St√
d

)
Vc,St ,

Kc,St = (kc,τ )τ∈St , Vc,St = (vc,τ )τ∈St .

(5)

St = {t − x, . . . , t + x} is a set of frame indices around t
within a context of x. Concatenation of vectors ac,t over the
time dimension results in Ac ∈ RT×d. As shown in Figure 2b,
the output R̂c of the CFRC attention module is obtained from
Ac by feed-forward network and residual connection.

Attentive channel combination: The last block of the
RCA module performs a frame-wise combination of channels
in an attentive fashion (being invariant to the number of chan-
nels). To this end, the outputs of the CFRC attention mod-
ule are altered. First, they are concatenated to yield tensor
[R̂1, R̂2, . . . , R̂C ] ∈ RC×T×d. Then the same processing
steps are repeated for every frame index (i.e., slice Ut ∈ RC×d

of the aforementioned tensor). We note that in practice, compu-
tation is performed in parallel thanks to independence.

As detailed in Figure 2c, the combination is performed
wrt. the reference channel (marked in blue). A query vec-
tor is extracted only from the reference channel: q1,t =

W(Q,comb)u1,t, where u1,t ∈ Rd is a row of Ut corresponding
to the reference microphone. The output of the block is

pt = softmax

(
q⊺
1,t(UtW

(K,comb))⊺√
d

)
(UtW

(V,comb)),

(6)
where W(Q,comb), W(K,comb), and W(V,comb) are projection
matrices of shapes d × d. Vectors pt are finally concatenated,
yielding a source-specific matrix P corresponding to that in (1).

We note that this module is a version of multi-head atten-
tion across channels [14] (also used in [20]). Contrary to [14],
a query is extracted only from the reference channel (not from
all).

3. Experimental setup
As already discussed, the proposed module is insertable into
various time-domain source separation models. In this study,
we focus on two of them — Conv-TasNet (a pioneering model
in time-domain separation) and DPTNet (a representative of ar-
chitectures based on transformer-encoder blocks). As is com-
mon in signal-based separation, all models were trained to opti-
mize SI-SNR in an utterance-level permutation invariant train-
ing (PIT) fashion [25]. We compare models in terms of SI-SNR
improvement (SI-SNRi [dB]), short-time objective intelligibil-
ity (STOI), and perceptual evaluation of speech quality (PESQ).

3.1. Extension of Conv-TasNet

Insertion of the RCA combiner into Conv-TasNet follows Fig-
ure 1 exactly. Linear transformation in (1) is commonly im-
plemented by 1×1 convolution. Hence, our module seamlessly
replaces the convolution layer in the original model.

We set hyperparameters according to the best non-causal
model in [1] following Asteroid1 recipe. ReLU is used as a
nonlinearity providing the final values of source masks.

3.2. Extension of DPTNet

DPTNet utilizes a dual-path scheme dividing a sequence into
overlapping segments and performing consecutive attention
within and across segments. In [3], linear transformation (Fig-
ure 1) is applied to all features of all segments. Then, the seg-
ments are combined in an overlap-and-add fashion. To reduce
computational and memory burden associated with a simple
replacement of the linear transformations, we first merge seg-
ments via overlap-and-add. This yields R — suitable input to
the RCA combiner. We argue that this is a minimal change. As
opposed to Conv-TasNet, the σ function in (2) applied to result-
ing P is not a simple nonlinearity. A gating approach is adopted
instead.

Contrary to the original work [3], we set hyperparameters
according to Asteroid. The encoder/decoder window size is set
to 16. The overlap of frames is 50%. The dimensionality of en-
coder features is 64. We use only 2 DPT layers (not 6), where
each transformer encoder block has 4 heads. LSTM output di-
mensionality is 256, and segments in DPT have a length of 100.

3.3. Data

For both training and evaluation, we utilize the SMS-WSJ
dataset [26] — a spatialized multi-speaker version of WSJ. It
provides 33,561 (87.4h) training, 982 (2.5h) validation, and

1https://github.com/asteroid-team/asteroid
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1,332 (3.4h) evaluation mixtures. The mixtures were created by
simulating reverberant room conditions drawing T60 randomly
from the interval [0.2, 0.5] s. The employed virtual circular mi-
crophone array, with a radius of 10 cm, comprises six sensors.
Recordings also contain a low-energy additive white noise.

For the experiments with two channels, opposite micro-
phones were selected. In training, random pairs were used.
Only the pair of channels (1,4) was employed in the evaluation.

To focus solely on the separation ability of models, rever-
berant images of sources at the reference microphone serve as
targets in training and testing.

4. Experiments
4.1. Direct model outputs

As a reference, we first trained single-channel Conv-TasNet and
DPTNet models on the SMS-WSJ training data (picking ran-
dom channels from the array). The results obtained with the
first microphone are presented in Table 1, with ch being 1. The
weights learned in this stage were reused in multi-channel ex-
periments, where they were kept fixed without fine-tuning.

Next, we replaced linear projections of the interest with
RCA combiners and trained them using signals of either two
or six microphones. We note that it is possible to train RCA
combiners on two microphones and use them when testing on
six channels and vice versa (due to channel count invariance).
However, in this study, we match the number of training and test
channels. In Table 1 (net ✓, BF ✗), we observe slight improve-
ments compared to single-channel models. It is noteworthy that
the performance is bounded by pre-trained fixed weights. The
improvement comes solely from a lightweight RCA combiner.
It makes use of other channels to separate sources in the refer-
ence one.

4.2. Integration with beamforming

The designed approach can be seamlessly combined with beam-
forming. It represents an extension with no additional trainable
parameters. The advantage of our approach is that after the first
propagation of channels through the separator (i.e., after ob-
taining {Rc}Cc=1), no further forward propagation through it
is required. By switching the reference microphone, the RCA
combiner consecutively provides outputs aligned with all the
channels. It is needed for subsequent beamforming. Since Rc

are extracted by a shared network, the source permutation prob-
lem does not exist at the stage of RCA. It makes it easy to align
sources in channels at the network output.

Given the time-domain separated sources, we follow [27] to
compute source masks per channel, aggregate them over chan-
nels, and eventually use them to estimate per-source spatial co-
variance matrices (SCM). This way of SCMs prediction is suit-
able in our scenario because the outputs of separation networks
can have a different dynamic range compared to the input (due
to SI-SNR objective). Since the network outputs are used to es-
timate source prevalence in time-frequency bins (by computing
ratio), a dynamic range is of no importance. Finally, MVDR
[28, 29] beamformer weights are computed using SCMs.

As shown in Table 1 (net ✗, BF ✓), beamformed signals
do not outperform separation network outputs when two mi-
crophones are used. On the other hand, beamforming with six
channels provides outputs with better intelligibility and percep-
tual quality as measured by STOI and PESQ. This is likely due
to the fact that beamforming does not introduce artifacts (which
are audible in separation network outputs). However, residual

Table 1: Multi-channel source separation results on SMS-WSJ.
*The output of FaSNet-TAC is a beamformed (BF) signal.

base model # ch output SI- STOI PESQparam. net BF SNRi

Oracle MVDR – 2 ✗ ✓ 6.84 0.86 2.34
Oracle MVDR – 6 ✗ ✓ 10.75 0.94 3.04
FaSNet-TAC [9] 2.7M 6 ✓ ✓* 11.52 0.91 2.85
MC-C-TasNet [6] 5.0M 6 ✓ ✗ 11.82 0.92 2.94

Conv-TasNet

5.0M 1 ✓ ✗ 10.34 0.89 2.75

5.5M 2 ✓ ✗ 10.43 0.90 2.77
5.5M 2 ✗ ✓ 6.62 0.86 2.31
5.5M 2 ✓ ✓ 9.98 0.90 2.62

5.5M 6 ✓ ✗ 10.43 0.90 2.77
5.5M 6 ✗ ✓ 9.65 0.93 2.91
5.5M 6 ✓ ✓ 11.98 0.94 3.17

DPTNet

2.8M 1 ✓ ✗ 10.92 0.90 2.77

3.0M 2 ✓ ✗ 11.05 0.90 2.82
3.0M 2 ✗ ✓ 6.74 0.86 2.32
3.0M 2 ✓ ✓ 10.30 0.90 2.64

3.0M 6 ✓ ✗ 11.13 0.91 2.83
3.0M 6 ✗ ✓ 9.84 0.94 2.93
3.0M 6 ✓ ✓ 12.40 0.94 3.22

interfering sources arguably still harm the SI-SNRi metric.
Finally, we propose an approach based on a fusion of net-

work and beamformer outputs. It comes at a very low computa-
tional cost compared to beamforming since network outputs are
already available during beamformer weights estimation. Let
y(sn,net) and y(sn,BF) be time-domain outputs of the network
and beamformer for the source sn, respectively. Considering
scale invariance, the fusion y(sn,fus) is obtained as

y(sn,fus) =
⟨y(sn,net),y(sn,BF)⟩

2||y(sn,net)||22
y(sn,net) +

y(sn,BF)

2
. (7)

In the case of six channels, the fusion benefits from network
outputs (with high SI-SNRi) and beamformer outputs (provid-
ing perceptually better signals) — Table 1 (net ✓, BF ✓).

We compare our six-channel versions of models with rep-
resentatives of the two aforementioned time-domain model
groups trained from scratch — MC-Conv-TasNet [6] and
FaSNet-TAC+joint+4ms [9] (Asteroid version), as well as with
the oracle MVDR using ideal binary masks [30]. We note that
to facilitate a fair comparison with our approach, the employed
MC-Conv-TasNet does not use WPE [31] to preprocess inputs.
Its spatial encoder does not use pairs of channels, but for consis-
tency with our approach, it employs all at once. We observe that
six-channel versions of our models are competitive as both tend
to outperform or perform at least on par with all the baselines.

5. Conclusion
In this paper, we proposed a reference channel attention (RCA)
combiner — a module that extends various time-domain single-
channel source separation models into multi-channel ones while
reusing pre-trained parameters (adding only 0.6M and 0.2M
parameters to Conv-TasNet and DPTNet, respectively). We
showed improvements in separation metrics brought by RCA.
Importantly, our framework allows for beamforming integration
and fusion with network outputs providing considerable gains.

In our experiments, pre-trained weights remained fixed. In
the future, we might release this constraint and fine-tune the
whole network on multi-channel data. By allowing the RCA
module to provide outputs for all channels, we might base the
whole separation network on it.

1696



6. References
[1] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing Ideal

Time–Frequency Magnitude Masking for Speech Separation,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 27, no. 8, 2019.

[2] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-Path RNN: Effi-
cient Long Sequence Modeling for Time-Domain Single-Channel
Speech Separation,” in ICASSP, 2020, pp. 46–50.

[3] J. Chen, Q. Mao, and D. Liu, “Dual-Path Transformer Net-
work: Direct Context-Aware Modeling for End-to-End Monaural
Speech Separation,” in Proc. Interspeech, 2020, pp. 2642–2646.

[4] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong,
“Attention Is All You Need In Speech Separation,” in ICASSP,
2021, pp. 21–25.

[5] R. Gu, J. Wu, S. Zhang, L. Chen, Y. Xu, M. Yu, D. Su, Y. Zou, and
D. Yu, “End-to-End Multi-Channel Speech Separation,” CoRR,
vol. abs/1905.06286, 2019.
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lanović, “Self-Attention Channel Combinator Frontend for End-
to-End Multichannel Far-Field Speech Recognition,” in Proc. In-
terspeech, 2021, pp. 3840–3844.

[17] F.-J. Chang, M. Radfar, A. Mouchtaris, B. King, and S. Kun-
zmann, “End-to-End Multi-Channel Transformer for Speech
Recognition,” in ICASSP, 2021, pp. 5884–5888.

[18] F.-J. Chang, M. Radfar, A. Mouchtaris, and M. Omologo, “Multi-
Channel Transformer Transducer for Speech Recognition,” in
Proc. Interspeech, 2021, pp. 296–300.

[19] S. Horiguchi, Y. Fujita, S. Watanabe, Y. Xue, and K. Nagamatsu,
“End-to-End Speaker Diarization for an Unknown Number of
Speakers with Encoder-Decoder Based Attractors,” in Proc. In-
terspeech, 2020, pp. 269–273.

[20] S. Horiguchi, Y. Takashima, P. Garcı́a, S. Watanabe, and
Y. Kawaguchi, “Multi-Channel End-To-End Neural Diarization
with Distributed Microphones,” in ICASSP, 2022, pp. 7332–7336.

[21] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,”
CoRR, vol. abs/1607.06450, 2016.

[22] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-Attention with Rela-
tive Position Representations,” in Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 2
(Short Papers). New Orleans, Louisiana: Association for Com-
putational Linguistics, Jun. 2018, pp. 464–468.

[23] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generat-
ing Long Sequences with Sparse Transformers,” CoRR, vol.
abs/1904.10509, 2019.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is All you
Need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Asso-
ciates, Inc., 2017.

[25] M. Kolbaek, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker Speech
Separation With Utterance-Level Permutation Invariant Training
of Deep Recurrent Neural Networks,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25, no. 10, Oct.
2017.

[26] L. Drude, J. Heitkaemper, C. Boeddeker, and R. Haeb-Umbach,
“SMS-WSJ: Database, Performance Measures, and Baseline
Recipe for Multi-Channel Source Separation and Recognition,”
arXiv preprint arXiv:1910.13934, 2019.
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