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Abstract

In speaker recognition, where speech segments are mapped to
embeddings on the unit hypersphere, two scoring back-ends are
commonly used, namely cosine scoring and PLDA. We have
recently proposed PSDA, an analog to PLDA that uses Von
Mises-Fisher distributions instead of Gaussians. In this paper,
we present toroidal PSDA (T-PSDA). It extends PSDA with
the ability to model within and between-speaker variabilities
in toroidal submanifolds of the hypersphere. Like PLDA and
PSDA, the model allows closed-form scoring and closed-form
EM updates for training. On VoxCeleb, we find T-PSDA accu-
racy on par with cosine scoring, while PLDA accuracy is infe-
rior. On NIST SRE’21 we find that T-PSDA gives large accu-
racy gains compared to both cosine scoring and PLDA.1

Index Terms: speaker recognition, PSDA, Von Mises-Fisher

1. Introduction
Probabilistic linear discriminant analysis (PLDA) [1, 2], is a
popular back-end for scoring speaker recognition embeddings
(e.g., i-vectors [3] or x-vectors [4]) in RD , following [5, 6].
However, [7] showed that length-normalizing the embeddings
onto the unit sphere, SD−1 has a Gaussianizing effect that im-
proves speaker verification performance, and this has been the
standard practice ever since. One disadvantage of the length-
normalization is that within-speaker variability is squashed in
the radial direction, making it speaker-dependent, in violation
of the PLDA assumption of a constant within-class distribution.
Moreover, given a flexible, discriminatively trained embedding
extractor, it is often found that cosine scoring (dot products be-
tween embeddings on the hypersphere) outperforms PLDA, es-
pecially when the test data is in-domain, e.g., [8, 9].

In our previous work [10], we introduced probabilistic
spherical discriminant analysis (PSDA), where the observed
and hidden variables have Von Mises-Fisher (VMF) rather than
Gaussian distributions. We found the performance of the PSDA
model to be very similar to cosine scoring because it has very
limited modeling capacity due to the low amount of trainable
parameters. This paper presents an extended version of the
PSDA model—toroidal PSDA (T-PSDA), where the observed
data still live on the unit sphere and have VMF distributions,
but now we have added a structured space (defined via a larger
set of trainable parameters) where the hidden variables live. An
open-source implementation of T-PSDA is available.2

1The contributions of Niko Brümmer and Albert Swart to this paper
were performed while they were employed by Phonexia and before they
joined Amazon and Speechly, respectively.

2https://github.com/bsxfan/Toroidal-PSDA

2. Theory
2.1. The Von Mises-Fisher distribution

When embeddings in Euclidean space, RD are length-
normalized, they are projected onto the unit hypersphere:

SD−1 = {x ∈ RD : ∥x∥ = 1}, (1)

where we model them with the Von-Mises Fisher (VMF) distri-
bution, which for x ∈ SD−1 has the density [11]:

V(x | µ, κ) = Cν(κ)

(2π)d/2
eκµ

′x, (2)

where Cν(κ) = κν

Iν(κ)
and ν = D

2
− 1 and Iν(κ) is the mod-

ified Bessel function of the first kind. The parameters are the
mean direction, µ ∈ SD−1 and the concentration, κ ≥ 0 . In
terms of the natural parameter, a = κµ, the VMF density can
alternatively be expressed as:

V(x | a) = C̄ν(κ)

(2πd/2)
ea

′x−κ, (3)

where κ = ∥a∥ and C̄ν(κ) =
eκκν

Iν(κ)
.

2.2. T-PSDA model definition

T-PSDA is inspired by the original (full) PLDA model that has
both a hidden speaker factor and a hidden within-speaker (chan-
nel) factor. We replicate this structure with T-PSDA. However,
unlike in PLDA, the spherical geometry allows multiple speaker
factors and multiple channel factors. For each speaker, let there
be a set of m ≥ 1 hidden speaker factors, Z = {zi}mi=1, where
zi ∈ Sdi−1, where all di ≥ 1.3 We represent zi ∈ Rdi , sub-
ject to z′izi = 1. Let n ≥ m and with every observation t, let
there be associated a set of n − m hidden within-speaker fac-
tors, Yt = {yti}ni=m+1, where yti ∈ Sdi−1 and all di ≥ 1.
(If m = n, it is understood that there are no within-speaker fac-
tors.) We define Ds =

∑n
i=1 di and restrict Ds ≤ D. For an

observation, xt ∈ SD−1, we define the VMF likelihood:

P (xt | Z,Yt) = V(xt | µt, κ), (4)

where κ > 0 represents the unstructured component of the
within-speaker variability. Structured within and between-
speaker variabilities are obtained by letting the mean direction,
µt ∈ SD−1, be a linear combination of the hidden variables:4

µt =

m∑
i=1

wiKizi +

n∑
i=m+1

wiKiyti. (5)

3We include the degenerate case, di = 1, where S0 = {−1, 1}.
4Attention: i is not a speaker index. All of the variables Z =

{zi}mi=1 represent a single speaker.IC
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By restricting the weights as
∑n

i=1 w
2
i = 1 and the factor load-

ing matrices, Ki ∈ RD×di , as K′
iKi = Idi and K′

iKj ̸=i = 0,
we ensure µ′

tµt = 1. This linear combination spans a Ds-
dimensional linear subspace, but since there are n restrictions
of the forms z′izi = 1 and y′

tiyti = 1, µt is in fact restricted
to submanifold of dimension Ds − n. In the special case that
all di = 2, this manifold is known as the Clifford torus—in the
general case, we use the term toroidal manifold and use it to
name the model toroidal PSDA (T-PSDA).

For given observations, their dimensionality D is fixed, but
we have some freedom to choose the hidden variable structure.
We can choose the linear subspace dimension, Ds, and the num-
ber of factors, n, and their dimensions, di. We would choose
Ds < D if we believe the data lives close to a linear subspace
of RD . Moreover, the more factors (n of them) we choose,
the ‘thinner’ the toroidal manifold becomes because it is of di-
mension Ds − n. However, the VMF likelihood (4) allows the
data to stray away from µt and appear anywhere on SD−1. The
VMF concentration, κ, controls how far the data can stray from
the toroid where µt lives.

If we set n = m = 1 and d1 = D, then T-PSDA de-
generates to the PSDA model of [10]. If additionally, we fix
γ1 = 0, the scoring with the resulting model is equivalent to
cosine scoring.

2.3. Hidden variable prior and posterior

As in PLDA, speakers are independent. For a given speaker
with observed data, X = {xt}Tt=1, the associated hidden vari-
ables are Z and Y = {Yt}Tt=1. The T-PSDA model is com-
pleted by specifying a conjugate prior:

P (Z,Y) =

m∏
i=1

V(zi | vi, γi)

T∏
t=1

n∏
i=m+1

V(yti | vi, γi), (6)

where vi ∈ Sdi−1 and γi ≥ 0 are trainable parameters. The
posterior is proportional to (and can be recovered from) the joint
distribution:

logP (X,Z,Y) =

m∑
i=1

z′i
[
γivi + κwiK

′
i

T∑
t=1

xt

]
+

n∑
i=m+1

T∑
t=1

y′
ti

[
γivi + κwiK

′
ixt

]
+ const.

This shows the posterior remains factorial—all the hidden vari-
ables remain independent.5 The posterior factors are:

P (zi | X) = V(zi | ṽi), ṽi = γivi + κwiK
′
i

T∑
t=1

xt, (7)

P (yti | xt) = V(yti | ṽti), ṽti = γivi + κwiK
′
ixt, (8)

where we have used the natural VMF parametrization of (3).

2.4. Scoring

Because of the conjugacy, the hidden variables can be integrated
out using the candidate’s trick [12]:

P (X) =
P (X | Z0,Y0)P (Z0)P (Y0)

P (Z0 | X)P (Y0 | X)
, (9)

5Why do we not get explaining away? After all, n hidden variables
are jointly responsible for each xt. This can be understood by the mu-
tually orthogonal factor loading matrices, the Ki. The hidden factor i
is actually solely responsible for the projected observation K′

ixt.

where Z0 and Y0 are any convenient values for the hidden vari-
ables. Using this for two sets of observations, E and T, the
likelihood ratio (LR) between the same-speaker and different-
speakers hypotheses can be expressed as:

LR =
P (E,T)

P (E)P (T)
=

P (Z0 | E)P (Z0 | T)

P (Z0 | E,T)P (Z0)
, (10)

where factors involving Y0 cancel. By denoting Z0 = {zi}mi=1

and plugging in (7), the LR becomes:

LR =

m∏
i=1

V(zi | γivi + κwiK
′
iẽ)V(zi | γivi + κwiK

′
it̃)

V(zi | γivi + κwiK′
i(ẽ+ t̃))V(zi | γivi)

=

m∏
i=1

V(zi | ℓi)V(zi | ri)
V(zi | bi)V(zi | ni)

.

Here, ẽ and t̃ are the sums of the observations in respectively E
and T. We have introduced mnemonic short-hand notation for
the parameters of the above VMF factors: ℓ for left, r for right,
b for both, and n for none. In the score, all factors of the form
ea

′zi(2π)−di/2 cancel—see (3), so that the score simplifies to:

LR =

m∏
i=1

C̄νi(∥ℓi∥)e−∥ℓi∥ C̄νi(∥ri∥)e−∥ri∥

C̄νi(∥bi∥)e−∥bi∥ C̄νi(∥ni∥)e−∥ni∥
. (11)

To get an idea of what the score does, let us assume the ideal
situation where the γi = 0, so that the speaker factors have uni-
form distributions. Noting that C̄ν(x) is almost constant com-
pared to e−x on the scale that x typically varies, the log LR can
be approximated as:

κ

m∑
i=1

|wi|
(∥∥K′

i(ẽ+ t̃)
∥∥− ∥∥K′

iẽ
∥∥− ∥∥K′

it̃
∥∥)+ const.

The score becomes more positive if ẽ and t̃ are aligned and
more negative if they are not. If ẽ, or t̃, or both are summed over
multiple aligned inputs, then the score magnitude can increase.
The score is essentially a linear fusion, weighted by the |wi|.
The score magnitude is also scaled by the observation VMF
concentration, κ.

Finally, note that when scoring, we never use the wi and
the Ki for i > m, i.e., for the within-speaker subspaces. It
may be asked what is the use of this part of the model? Yes,
that part does not participate in scoring, but it does play a part
when learning the model parameters. The three sources of
variability—the unstructured VMF noise (parametrized by κ)
and the structured within and between-speaker variabilities—
compete to explain the total variability in the observed data.

2.5. Training

For a given T-PSDA architecture, the parameters are κ and
{Ki, wi,vi, γi}ni=1 and they can be learned with maximum
likelihood, using an EM algorithm. The E-step is to compute
the EM auxiliary, i.e. the log-likelihood expectation w.r.t. the
hidden variable posterior:

Q =

S∑
s=1

⟨logP (Xs | Z,Y) + logP (Z,Y)⟩P (Z,Y|Xs)
,

where the data for speaker s is Xs = {xst}Ts
t=1, and S is the

total number of speakers. Recall that the posterior is a product
of VMF factors given by (7) and (8). Since the log-likelihood is

Authorized licensed use limited to: Brno University of Technology. Downloaded on August 10,2023 at 16:17:44 UTC from IEEE Xplore.  Restrictions apply. 



linear in the hidden variables, we can simply plug in the poste-
rior expectations, z̄si and ȳsti, in place of the hidden variables:

Q = Q(x) +

m∑
i=1

Q
(z)
i +

n∑
i=m+1

Q
(y)
i , (12)

where

Q(x) =

S∑
s=1

Ts∑
t=1

logV(xst | µ̄st, κ),

Q
(z)
i =

S∑
s=1

logV(z̄si | vi, γi),

Q
(y)
i =

S∑
s=1

Ts∑
t=1

logV(ȳsti | vi, γi),

(13)

where we have defined:

µ̄st =

m∑
i=1

wiKiz̄si +

n∑
i=m+1

wiKiȳsti. (14)

The M-step maximizes Q w.r.t. all the parameters. We can max-
imize the above Q-terms independently. For the Q(z)

i and Q
(y)
i ,

these are standard VMF maximum likelihood problems:

vi, γi ← argmax
v,γ

S∏
s=1

V(z̄si | v, γ), i ≤ m,

vi, γi ← argmax
v,γ

S∏
s=1

Ts∏
t=1

V(ȳsti | v, γ), m < i ≤ n.

(15)

It remains to maximize Q(x). First, we can maximize it w.r.t.
{Ki, wi}, independently of κ, which is equivalent to maximiz-
ing:

S∑
s=1

Ts∑
t=1

[ m∑
i=1

wix
′
stKiz̄si +

n∑
i=m+1

wix
′
stKiȳsti

]

=

m∑
i=1

wi tr
(
Ki

∑
s

z̄si
∑
t

x′
st

)
+

n∑
i=m+1

wi tr
(
Ki

∑
st

ȳstix
′
st

)
=

n∑
i=1

wi tr(KiR
′
i),

where Ri is defined by matching the final line to the one above.
We do a few iterations of co-ordinate ascent, alternatively up-
dating w = (w1, . . . , wn) and F =

[
K1 · · · Kn

]
. When

F is temporarily fixed, we define w̃ = (w̃1, . . . , w̃n), where
w̃i = tr(KiR

′
i). Conversely, when w is temporarily fixed, we

define F̃ =
[
w1R1 · · · wnRn

]
. The maximizing updates,

subject to the constraints w′w = 1 and F′F = I, are:6

w← w̃

∥w̃∥ and F← F̃(F̃′F̃)−
1
2 . (16)

Finally, once the optimal values for w and F have been ob-
tained, we can fix them to find the optimal κ:

κ← argmax
κ

∑
st

logV(xst | µ̄st)

= argmax
κ

T log
κν

Iν(κ)
+ κ

n∑
i=1

wi tr(KiR
′
i),

(17)

6The F update requires the symmetric, positive-definite matrix
square root.

where T =
∑

s Ts and ν = D
2
− 1. This scalar optimization

can be done with a general-purpose (typically derivative-free)
numerical optimization algorithm.

3. Experiments
We perform the experiments with the T-PSDA model on two
datasets: NIST SRE’21 [13] and VoxCeleb [14, 15]. In both
cases, we compare the speaker verification performance of the
proposed model with cosine scoring and PLDA. Experiments
with the original PSDA are not repeated here, because it per-
forms on par with cosine scoring [10].

3.1. NIST SRE’21

For the experiments on the NIST SRE’21 evaluation set, we
use exactly the same ResNet152 embedding extractor as used
in [16]. We used the version of the extractor that was fine-tuned
on long (10 s) segments. This embedding extractor was used
as input for a number of different scoring back-ends that we
compare below.

The PLDA and T-PSDA models require training, while co-
sine scoring does not. All back-end models were trained on
the full NIST CTS superset [17] unlike in [16] where only the
English, Mandarin, and Cantonese subsets were used (hence,
there are minor performance differences between the results of
this paper and those presented in [16]). In all cases, the em-
beddings were centered and length-normalized. We optionally
used linear discriminant analysis (LDA) to reduce the dimen-
sionality of the embeddings from 256 to 100, because we have
observed before [16] that roughly half of the embedding dimen-
sions have almost no useful variability and that LDA improved
some of the back-ends. The parameters for LDA and centering
were obtained from the same training set.

Table 1: Performance of the baseline and T-PSDA back-ends
with and without score normalization on evaluation set of NIST
SRE’21. The performance metrics are minimum cost (min C)
and equal-error-rate (EER, %) as computed by the NIST scor-
ing tool.

no S-norm S-norm
min C EER min C EER

1 cos 0.490 9.18 0.520 8.62
2 cos + LDA 0.468 8.10 0.596 7.77
3 PLDA 0.444 7.88 0.653 7.55
4 PLDA + LDA 0.452 7.78 0.650 7.80
5 T-PSDA 0.381 6.16 0.375 5.77

Table 1 compares the proposed T-PSDA against the two
baseline models (cosine scoring and PLDA), with and without
LDA and with and without adaptive score normalization [18].
For PLDA we set the sizes of each of the speaker and channel
subspaces to 100.7 For score normalization, we used the 400
highest scores of the enrollment and test segments against 5000
randomly chosen embeddings from the training set. The results
of the baseline models are shown in lines 1 to 4 of Table 1. No-
tice that score normalization leads to significant performance
degradation in terms of minimum cost for all baseline back-
ends, while in some cases, it improves equal error rate (EER).

7For PLDA after LDA down to 100 dimensions, the subspaces are
therefore of full rank, so that PLDA degenerates to the two-covariance
variant [6].
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Table 2: Performance of the baseline and T-PSDA back-ends. The performance is reported in terms of equal-error-rate (EER, %) and
minimum Detection Cost Function computed at target probability ptar = 0.05 (minDCF0.05).

no S-norm S-norm
Vox1-O Vox1-H Vox1-O Vox1-H

minDCF0.05 EER minDCF0.05 EER minDCF0.05 EER minDCF0.05 EER

1 cos 0.071 1.10 0.126 2.13 0.061 1.01 0.118 2.03
2 cos +LDA 0.116 1.54 0.263 4.15 0.100 1.38 0.160 2.62
3 PLDA 0.254 4.47 0.325 6.80 0.213 3.48 0.285 6.05
4 PLDA +LDA 0.113 1.55 0.198 3.44 0.106 1.40 0.152 2.96
5 T-PSDA 0.069 1.07 0.127 2.16 0.065 0.97 0.119 2.05

Also, let us notice that in this experiment (NIST’21), using LDA
is beneficial for cosine scoring, but not for PLDA. For the other
experiment (VoxCeleb, described below), we observe the oppo-
site.

T-PSDA provides great freedom in selecting its parameters:
the number and sizes of the hidden speaker and channel vari-
ables. For this reason, it is not feasible to consider all possible
combinations of T-PSDA settings to select the best one. We
used uniform hidden variable priors: we set all γi = 0 and did
not learn the prior parameters. For the other parameters, we
used the following strategy: we start from the simplest config-
uration with a single speaker variable and no channel variables.
Gradually, one parameter at a time, we increase the complexity
of the model. First, we optimize the dimensionality of the sin-
gle speaker variable; then we experiment with having several
speaker variables such that their summed dimensions are the
same as what we found optimal in the first step. After this, hav-
ing the speaker variable dimensions fixed, we introduce chan-
nel variability and similarly optimize the number and size of
the channel variables. Following this approach, we arrive at the
optimal architecture of T-PSDA model: we fix the number of
hidden speaker variables to one (m = 1) and the dimensional-
ity of this variable (d1 = 60); also we use two 5-dimensional
hidden channel variables (n = 3, d2 = d3 = 5). The perfor-
mance of the final model is shown in line 5 of Table 1.

Comparing T-PSDA to the baselines, we observe signifi-
cant performance improvement in both cases: when score nor-
malization is performed or not. Also, notice that T-PSDA ben-
efits from score normalization, unlike the baselines. However,
it is important to mention that these results are achieved with
a model found by a greedy search in the space of the T-PSDA
configurations. T-PSDA performance greatly depends on the
correct settings for the number and dimensionality of the hidden
variables; in some experiments with different configurations of
the model, the performance was considerably worse.

3.2. VoxCeleb

For the Audio from Video (AfV) data experiments, we repli-
cate the experimental setup of [10] where a ResNet34 embed-
ding extractor trained on the development part of the VoxCeleb2
dataset was used, and the performance was tested on the orig-
inal test set of VoxCeleb1 (Vox1-O) and a set of “hard” trials
constructed out of the whole VoxCeleb1 (Vox1-H). The perfor-
mance is evaluated in terms of EER and minimum Detection
Cost Function with the probability of the target trial set to 0.05.

The results of the baseline models are shown on lines 1 to 4
of Table 2. The results for cosine scoring and the PLDA model
are shown with and without LDA reducing the dimensionality
of the embeddings from 256 to 200. When the PLDA model is

trained on the raw embeddings without dimensionality reduc-
tion, we set the sizes of each of the speaker and channel sub-
spaces to 100. When LDA is applied, we train the PLDA with
full-rank within and across-class covariances. Notice that LDA
is critical for a good performance of the PLDA model, while
for cosine distance scoring, it is rather detrimental. Also, for all
baselines, we show the performance with adaptive score nor-
malization. Score normalization is done the same way as for
SRE experiments: we use the highest 400 scores of the trial
sides against 5000 embeddings from the training set.

To find the appropriate architecture of the T-PSDA model,
we followed an approach similar to the one used in NIST
SRE’21 experiments: looking for one configuration parame-
ter at a time and treating the others as fixed. In this way, we
found the optimal architecture of the T-PSDA model which is
having a single 120-dimensional speaker variable, i.e., m =
1, d1 = 120, and five 1-dimensional hidden channel variables
(n = 6, d2 = . . . = d6 = 1). The performance of this
model is shown on line 5 of Table 2. For this system, we pro-
vide the results with and without score normalization. As seen
from the results, for AfV data, T-PSDA performs on par with
the best-performing baseline method (cosine scoring), outper-
forming PLDA.

4. Conclusion
We have generalized the simple PSDA model of [10] to a new
model called T-PSDA. The PSDA model is too simple: lack-
ing trainable parameters, it was not able to outperform cosine
scoring in a situation where a trainable PLDA model was able
to outperform cosine scoring in a new domain (NIST SRE’21).
The T-PSDA model has a set of trainable parameters of a size
similar to PLDA. Like PLDA, T-PSDA can model within and
between-speaker variabilities in subspaces, while T-PSDA has
the advantage of using VMF distributions that better model
length-normalized embeddings. These benefits gave a clear per-
formance advantage for T-PSDA on the NIST data. In the Vox-
Celeb experiment, where the embedding extractor is trained on
in-domain data, T-PSDA does not benefit from its domain adap-
tation capability and performs on par with cosine scoring. In
contrast, PLDA performs worse on VoxCeleb.
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