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ABSTRACT

Self-supervised learning of speech representations from large
amounts of unlabeled data has enabled state-of-the-art results
in several speech processing tasks. Aggregating these speech
representations across time is typically approached by using
descriptive statistics, and in particular, using the first- and
second-order statistics of representation coefficients. In this
paper, we examine an alternative way of extracting speaker
and emotion information from self-supervised trained mod-
els, based on the correlations between the coefficients of the
representations — correlation pooling. We show improve-
ments over mean pooling and further gains when the pooling
methods are combined via fusion. The code is available at
github.com/Lamomal/s3prl_correlation.

Index Terms— Speaker identification, speaker verifica-
tion, emotion recognition, self-supervised models

1. INTRODUCTION

Large speech models trained in a self-supervised manner,
such as Wav2Vec 2.0, HuBERT, and WavLM, have shown
exceptional performance when finetuned on the downstream
tasks [1, 2, 3]. However, finetuning the weights of such
models on each task is a non-scalable solution for produc-
tion systems performing several of these downstream tasks in
real-time. For such systems, the preferable solution would be
to extract a single set of speech features from a shared model,
followed by a task-specific lightweight classifier.

To this end, the Speech processing Universal PERfor-
mance Benchmark (SUPERB) challenge [4] was recently
introduced, with the goal of benchmarking the performance
of such speech models on a variety of speech tasks (e.g. ASR,
keyword spotting, spoken language understanding, emotion
recognition, speaker recognition, identification and diariza-
tion, a.o.) keeping the models’ weights frozen and employing
a lightweight task-specific classifier [4].

Among the interesting findings of SUPERB is the ability
of such models to encode speaker and emotion information

†Equal contribution

in the intermediate layers. The models are trained using an
implicitly phonetic loss (typically a masked-language model
style loss over quantized vector representations). It means
that speaker and emotion modeling is not directly encour-
aged. However, the models must be performing some kind of
speaker and emotion modeling in the intermediate layers, in
order to suppress this nuisance variability in the output layer.

For those tasks requiring utterance-level classification or
representation learning, the SUPERB benchmark employs a
lightweight trainable classifier incorporating pooling. The
pooling methods used are (a) mean pooling, and (b) statis-
tics pooling (concatenated mean and standard deviation, std,
vectors) in speaker verification (SV), which is the standard
pooling method for x-vectors [5].

Although mean pooling typically yields good perfor-
mance in several speaker and emotion modeling tasks [6], we
should emphasize a crucial difference between these mod-
els and the SUPERB setup [4]; the fact that the models are
frozen, after being pretrained using a loss function that does
not directly encourage speaker or emotion modeling. As a
result, methods using mean pooling make simplifying as-
sumptions about the way the information is encoded into the
network’s internal representations.

Mean pooling, including the statistics pooling variant, as-
sumes that the correlations between different feature dimen-
sions (or channels) are of little or no importance. This might
be true if the model is trained or finetuned this way, i.e. with
a classifier that extracts fixed-length representations via mean
pooling (e.g. using a softmax classifier with cross-entropy
loss). After all, deep neural networks have the capacity to ex-
tract information relevant to the task in a useful form. How-
ever, in the case of pretrained models, such an assumption is
at least questionable, and methods that take into account cor-
relations between feature channels should be considered.

In this paper, we focus on three SUPERB tasks that re-
quire sentence-level representations, namely speaker verifica-
tion and identification, and emotion recognition. We show
that a significant portion of the information related to speaker
and emotion is encoded in the channel-wise correlations of
the intermediate layers. The idea is based on the correlation

978-1-6654-7189-3/22/$31.00 ©2023 IEEE 1136

20
22

 IE
EE

 S
po

ke
n 

La
ng

ua
ge

 T
ec

hn
ol

og
y 

W
or

ks
ho

p 
(S

LT
) |

 9
79

-8
-3

50
3-

96
90

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
SL

T5
48

92
.2

02
3.

10
02

33
45

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 30,2023 at 12:52:42 UTC from IEEE Xplore.  Restrictions apply. 



pooling method originally introduced in [7]. However, the
network in [7], apart from having a very different architecture
(2D-ResNet), was not pretrained and/or frozen, but trained
from scratch for the speaker recognition task.

2. RELATED WORK

Correlations between channels have been explored in com-
puter vision, as a means to extract and/or modify the style and
the texture of images. The work of L.A. Gatys et al. [8] intro-
duced neural-style transfer, showing that such image charac-
teristics are captured by channel-wise correlations from Deep
Convolutional Nets (ConvNets) trained for object recognition
using ImageNet. Their method was adapted to speech gener-
ation and voice conversion system in [9], where the authors
demonstrated that intermediate layer representations encode
speaker characteristics.

The proposed pooling method was first introduced in [7].
It was shown that 2D Deep Convolutional Nets (ResNet-34)
can be trained from scratch while using channel-wise cor-
relation pooling for frequency ranges, and the experiments
on VoxCeleb demonstrated improvements over the standard
statistics (mean-std) pooling. In this work, we extend this
method to pretrained self-supervised transformer models
(which are 1D since self-attention operates only across the
temporal axis) and we also test it on an emotion recognition.

3. SENTENCE-LEVEL REPRESENTATIONS IN
SUPERB

In this section, we describe the proposed correlation pooling
as well as several details related to the SUPERB challenge.

3.1. Transformer-based architectures

The most powerful self-supervised models follow the trans-
former architecture. The input features are extracted from
the waveform (at a rate of 50 fps) via a ConvNet, which is
trained jointly with the transformer. The ConvNet is typi-
cally frozen even in cases where the model is finetuned, as
it can easily overfit. A transformer layer follows the encoder
block architecture defined in [10]. It consists of a multi-head
self-attention layer, followed by a feed-forward layer, while
layer-normalization is added in both layers. Critically, skip
connections are added between these layers, as in ResNets.
An interesting property of architectures equipped with skip
connections is that the correspondence between units of the
representations of different layers is preserved (i.e. the rep-
resentations are aligned). Each layer adds further contextual-
ization (via self-attention in the case of transformers) and de-
tails needed for optimizing the task defined by the loss func-
tion (e.g. modeling and subsequently suppressing nuisance
variabilities, such as speaker, noise, channel, and emotion).

However, the ith unit of the lth layer’s representation captures
a similar characteristic with the ith unit of all other layers.

3.2. Layerwise pooling

The alignment between representations from different layers
permits an easy way of extracting information relevant to the
downstream task from all (i.e. both output and intermediate)
representations, by collapsing them into a single one via a
weighted average. The weights are learned jointly with the
task-specific classification network. More concretely, the av-
eraged representation for a transformer with L layers is ex-
pressed as

ht =

L∑
l=0

γlht,l, (1)

where the weights
∑L

l=0 γl = 1, γl ≥ 0 are implemented
with a learnable vector of size L+1, followed by the softmax
function, and ht,l is the representation of the lth layer at time
t (ht,0 is the output of the ConvNet).

Note that collapsing all L+1 representations into a single
one via a simple weighted averaging would not make sense
for networks without skip connections, even if their sizes
were the same, unless the models were trained with a loss
defined on layerwise-averaged representation (which is not
the case here, since the loss of the self-supervised models
is applied to the output layer). Exploring all representations
would require either concatenation along the feature dimen-
sion (increasing the size of the latter by a factor or L+1) or an
exhaustive search (i.e. training a different classifier for each
of the L + 1 layers) for finding the single most informative
representation for each task.

The SUPERB protocol suggests the weighted-average
type of layer-wise pooling for evaluating different models
and tasks, and so do we in this work. Note that this type
of layer-wise pooling was also used in ELMo, a bidirec-
tional LSTM-based language model with skip connections,
designed to extract deep contextualized word representa-
tions [11].

3.3. Mean pooling

Tasks requiring a sentence-level classification typically em-
ploy a pooling method, such as mean, max or attentive pool-
ing. Mean pooling, which is employed in SUPERB is defined
as

r = h̄ =
1

T

T∑
t=1

ht, (2)

where T is the number of acoustic features of an utterance
extracted by the ConvNet, r is the resulting pooled represen-
tation, while ht are the representations at time t after layer-
wise pooling. Concatenating the pooled representations with
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std features (statistics pooling) is in general helpful in speaker
recognition [6], and is implemented as

r =

h̄;( 1

T

T∑
t=1

(ht − h̄)2

)1/2
 , (3)

where [·; ·] denotes vector concatenation and the exponents
should be considered as element-wise operators.

The representation r is optionally projected onto a lower-
dimensional space via a learnable linear layer resulting in an
internal representation (or embedding) w. What follows is a
classification head, composed of a linear layer with an output
size equal to the number of classes (speaker identities, emo-
tion types), and the softmax function.

4. CORRELATION POOLING

4.1. Motivation

A drawback of mean pooling is that it ignores correlations be-
tween different dimensions (channels) in h. Research in com-
puter vision has demonstrated that certain characteristics of an
image, such as style and texture, are better captured by these
correlations, especially when the model is trained to predict
other characteristics such as objects (e.g. ImageNet) [8]. By
analogy with computer vision, we speculate that utterance-
level characteristics, such as speaker, emotion (but also chan-
nel, noise, a.o. not considered in SUPERB) are to a large
extent encoded in channel-wise correlations in speech mod-
els, which are trained with an objective that encourages sup-
pressing them in the output layer. Note that in HuBERT and
WavLM, the discrete acoustic units are highly correlated with
phonemes (as shown in [1]) while the output layer carries lit-
tle or negligible speaker information in Wav2Vec 2.0 and Hu-
BERT [12, 13].

4.2. Implementation

We re-implement the pooling method introduced in [7], by
adapting it to 2D tensor representations (i.e. channel and
time) as opposed to 3D (i.e. channel, frequency, and time).
We first project h onto a lower-dimensional space via a linear
projection, and then apply mean and variance normalization
over time (i.e. standarization) resulting in o. We then calcu-
late the outer products and apply mean pooling, resulting in
the correlation matrix of o, i.e.

C =
1

T

T∑
t=1

oto
′
t, (4)

where o′
t is the transpose of ot (note that ot is a column vec-

tor). Since the matrix is symmetric and its diagonal elements
are equal to 1, we vectorize the elements above the diagonal
and optionally project them onto a linear layer, resulting in
the embedding w.

As a regularization method, we use channel dropout, i.e.
we zero out whole channels (with probability equal to 0.25)
before estimating the correlation matrix. It results in zero
rows and columns in C. This method appears to be effective
in SV, where the goal is generalization to unseen speakers [7].

5. EXPERIMENTS

We conducted experiments in speaker identification (SID),
speaker verification (SV), and emotion recognition (ER) us-
ing the SUPERB protocol, while all experiments and imple-
mentations are based on the s3prl toolkit1. It is worth noting
that contrary to other SUPERB systems, no data augmenta-
tion was applied during training. Tasks, models, and results
are described in detail in the next subsections.

5.1. Speaker identification (SID)

The first utterance-level task we examine is speaker identifi-
cation (SID). As opposed to speaker verification (SV), SID
focuses on closed-set speaker classification.

5.1.1. Architectural details

We note that we follow the architecture of the SID model de-
fined by the s3prl toolkit. Per-layer representations are aggre-
gated by a weighted average, where the weights are optimized
along with other parameters during training. Obtained frame-
level features are projected to a 256-dimensional space. What
follows is pooling over time. The SUPERB benchmark sug-
gests employing mean pooling. In contrast, motivated by a
common practice in SV, we also experiment with statistics
pooling. As a last method, we employ correlation pooling.
The resulting utterance-level representation is an input to a
classification head. A standard cross-entropy (CE) is opti-
mized during training.

To regularize correlation pooling we employ dropout,
which we apply before normalization and the pooling it-
self with a probability of 0.25. As opposed to the standard
dropout, entire channels are dropped (also used in [7]).

5.1.2. SID Dataset

For both training and evaluation of SID systems, we utilize
the VoxCeleb 1 dataset [14]. It comprises 1,251 identities.
The number of utterances totals 153,516. We follow exactly
the partitioning to training, development, and test sets defined
by the authors2 which is also adopted by the s3prl toolkit. Out
of all VoxCeleb 1 recordings, 90.1% are allocated for training,
4.5% for development, and 5.4% for testing.

1https://github.com/s3prl/s3prl
2www.robots.ox.ac.uk/˜vgg/data/voxceleb/vox1.

html
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Table 1. Results in SID and SV following the training and
evaluation protocol defined by SUPERB.

HuBERT Large
Pooling method SID [acc. %] SV [EER %]
mean 89.3 –
meanstd 90.6 6.2
correlation 95.5 5.3
corr. w/ dropout 95.3 4.8
mean+correlation 96.2 –
meanstd+correlation 96.3 5.1
meanstd+corr. w/ drop. 96.3 4.8

WavLM Large
Pooling method SID SV
mean 93.0 –
meanstd 94.9 4.8
correlation 97.7 4.5
corr. w/ dropout 97.7 4.1
mean+correlation 97.7 –
meanstd+correlation 98.2 4.0
meanstd+corr. w/ drop. 98.6 3.8

5.1.3. SID Results

The results are given in Table 1 (SID column). When Hu-
BERT is used as a backbone network, correlation pooling
yields about 5% absolute improvement compared to mean-std
pooling and about 6% compared to mean-only pooling (i.e.
the one used in the SUPERB challenge). A similar boost in
performance is observed when WavLM is used, where corre-
lation pooling attains 97.7% accuracy, as opposed to 93.0% of
mean and 94.9% mean-std pooling. In other words, correla-
tion pooling yields an approximate 50% relative improvement
in classification error. Finally, further improvements can be
attained when correlation pooling is fused with mean and/or
mean-std pooling (by averaging the logits of the two models).
In Fig. 1, we demonstrate learned layer weights for all the
pooling methods.

In addition to the superior evaluation accuracy of mod-
els utilizing correlation pooling, the training converges much
faster (requires about 60% of the epochs needed for mean
pooling), making the proposed method attractive also w.r.t.
the computational cost.

5.2. Speaker verification (SV)

Given two recordings (or sets of recordings), the goal of
speaker verification (SV) is to determine whether the identi-
ties of the corresponding speakers match or not. As demon-
strated by a long history of the evaluation series organized by
NIST [15, 16], the SV is a significant utterance-level speech
processing task with numerous applications, such as call
center authentication, audio retrieval, forensics, and others.

State-of-the-art systems employ embedding extractors
providing summary utterance-wise speaker-descriptive vec-
tors given features (such as log Mel-filter bank energies)
extracted from the audio signal. The field of SV has been
increasingly embracing pre-trained models to provide frame-
level features [17, 18]. It has been shown that fine-tuning the
pre-trained model on Voxceleb 2, along with the embedding
extractor with a speaker-discriminative objective leads to un-
precedented performance [3] on standard benchmarks such
as the Voxceleb 1 test sets. [19].

It is worth stressing that we follow the SUPERB bench-
mark protocol in our study. Therefore, we keep the pa-
rameters of the pre-trained model frozen, we use only the
development set of VoxCeleb 1 for training, and we train a
TDNN using layer-wise aggregated features from the pre-
trained model. Here, we merely focus on the effectiveness of
the proposed correlation pooling w.r.t. the standard mean-std
pooling used in SUPERB.

5.2.1. Architectural details

As well as in the case of SID, the architecture follows the
SUPERB design. Per-layer representations are aggregated in
the same way as in SID. They are subsequently projected to
a 512-dimensional space. The frame-level features serve as
an input to the TDNN-based (x-vector-like) model [5]. As
in the original architecture (in which statistics pooling is em-
ployed), the last frame-wise layer produces 1500-dimensional
outputs. To overcome the unbearable increase of parameters,
we decrease the number of dimensions to 512 when using
the correlation pooling. The 512-dimensional outputs of the
first layer after pooling are used as speaker embeddings w.
The downstream network is trained with the additive margin
(AM) softmax objective [20], where a scale of 30 and a mar-
gin of 0.4 are used (i.e. the default loss and hyperparameters
of SUPERB without any optimization or data augmentation).

5.2.2. SV Dataset

As in SID, we utilize the VoxCeleb 1 dataset for SV. A stan-
dard verification split, adopted also by s3prl, is followed. An
original (i.e. not cleaned) version of a trial list is used for
evaluation.

5.2.3. SV Results

The results are given in Table 1 (SV column). With HuBERT,
correlation pooling yields a significant reduction in EER,
from 6.2% (attained with mean-std) to 5.3% and 4.8% with-
out and with channel dropout, respectively. When WavLM
is used, a 0.5% absolute improvement is attained. Finally, a
score-level fusion of the two pooling methods yields further
improvements. We should mention that these experiments
underline the importance of channel dropout as a means to
prevent overfitting to the training speakers. We also depict the
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Fig. 1. Learned weights per HuBERT-Large and WavLM-
Large layers for SID.
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Fig. 2. Learned weights per HuBERT-Large and WavLM-
Large layers for SV.

learned weights of the layer-wise pooling stage for each (out-
put frame-level) pooling and pretrained model in Fig. 2. As
we observe, the weights are similar for all pooling methods,
probably due to the use of a TDNN model in the back-end.

The faster convergence of models employing correla-
tion pooling observed in the SID experiments also holds for
speaker embedding extractors. Empirically, only two-thirds
of the training steps (compared to training with statistics pool-
ing) are required for the correlation-based model to reach the
plateau on the evaluation EER. As expected, the introduction
of the channel dropout increases the number of training steps
required to reach convergence. Overall, the training time
required for models with the statistics pooling and correlation
pooling with dropout are comparable.

5.3. Emotion recognition (ER)

Conveying emotions is an intrinsic aspect of human commu-
nication. This makes speech emotion recognition (ER) an im-
portant attribute for effective human-computer interaction and
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Fig. 3. Learned weights per HuBERT-Large and WavLM-
Large layers for ER.

for this reason ER has attracted increasing attention. Emo-
tional information resides beyond segmental productions and
in longer time scales that involve the construction of fine-
grained spectral cues across an utterance. As such, the perfor-
mance of an emotion recognition system greatly depends on
the representational capacity of engineered features to capture
such information from audio. This has been typically done
using a wide range of feature functionals such as eGeMAPS
but also using MFCCs and filterbanks [21, 22].

5.3.1. ER Dataset

The Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) database consists of multi-modal recordings (speech
and video) by 10 actors carried out in dyadic sessions in En-
glish and has a total duration of approximately 12 hours [23].
The actors performed both improvised hypothetical scenar-
ios targeting the elicitation of specific emotions as well as se-
lected emotional scripts. The dataset is split in 5 dialogue
sessions, each including a pair of male and female speakers.
The emotions that the actors conveyed are happiness, anger,
excitement, sadness, surprise, fear, frustration, and a neutral
state. The dialogues were manually segmented at the speaker
turn level and emotional labels were assigned on the basis of
agreements from subjective emotional evaluations from hu-
man annotators. Similar to other studies, we follow the con-
ventional evaluation protocol and relabel excitement samples
as happiness and use 4 balanced emotional classes, namely:
anger, happiness, sadness, and neutral [4, 22, 24]. All other
classes are discarded. Similar to [4], we use Session1 for test-
ing and the remaining data for training and validation. This
approach leaves approximately 19% of the data for testing.

5.3.2. ER Results

An overview of the results is presented in Table 2. As we
observe, correlation pooling yields better accuracy compared
to mean pooling, which is the pooling method in SUPERB.
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Table 2. Unweighted accuracy (%) for the emotion recog-
nition task in IEMOCAP using HuBERT and WavLM self-
supervised representations.

Pooling method HuBERT
Large

WavLM
Large

mean 60.46 66.73
meanstd 68.57 69.86
correlation 68.21 71.43
corr. w/ dropout 69.95 71.43
mean+correlation 68.94 71.43
meanstd+correlation 69.22 70.41

When compared to mean-std pooling, the performance is sim-
ilar (better than mean-std with WavLM and slightly lower
with HuBERT; better than mean-std in both cases when corre-
lation is used with dropouts). Fusion is not harmful, although
the gains seem to be negligible. Finally, the learned weights
for each pooling method are shown in Fig. 3.

5.4. Complementarity of pooling methods

In the SV task, given the TDNN-based downstream model,
Fig. 2 suggests that learned layer weights are, to some extent,
agnostic to the type of pooling. Therefore, the inputs to the
downstream speaker extractors employing different informa-
tion pooling are similar. Since the SV results improve when
fusing systems with mean and correlation pooling, we argue
that the utilization of various pooling methods leads to models
exhibiting complementarity of predictions.

On the other hand, layer weights learned when using
mean- and correlation-based pooling in the context of SID
are significantly different (see Fig. 1). Hence, the improve-
ments provided by fusion may be attributed to the difference
between pooling methods as well as layer weights. To isolate
the effect of weights, we performed the following experi-
ment. The weights of the layer-wise pooling {γl}Ll=0 which
are estimated using the “SID model with correlation pooling
with dropout” are copied and used as frozen weights when
training the “SID model using mean pooling”. The results are
reported in Table 3, together with some fusion results with
the new models. We observe the following: (a) Correlation
pooling used during optimization can steer the training to-
wards finding more informative representations through layer
weights. Using such weights leads to better results (espe-
cially with WavLM Large) when subsequently training with
incorporated mean pooling. (b) Even though mean-pooling-
based models improved, they still do not outperform those
trained with the correlation pooling from scratch. (c) We con-
firmed the complementarity of the pooling approaches as the
fusion of different systems — with enforced identical inputs
— yields significant improvements (last row of Table 3).

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we developed and evaluated a pooling method
that uses correlations between channels to extract informa-

Table 3. Comparison of SID systems accuracy (%) employ-
ing mean pooling (mean); mean pooling and layer weights
discovered by correlation pooling with dropout (mean∗).

Approach HuBERT
Large

WavLM
Large

mean 89.3 93.0
mean∗ 91.7 97.2
corr. w/ drop. 95.3 97.7
mean + corr. w/ drop. 96.2 98.3
mean∗ + corr. w/ drop. 96.4 98.7

tion relevant to the task in hand. We followed the recently in-
troduced SUPERB benchmark, where the goal is to examine
the effectiveness of different self-supervised models in sev-
eral tasks. Among them, we chose SID, SV, and ER and
showed that (a) in speaker-related tasks, the proposed pool-
ing is clearly superior to mean-std (statistics) pooling, and (b)
in emotion recognition, the proposed method is superior to
mean pooling (used in SUPERB) and comparable to mean-
std pooling. Finally, we showed that fusion between different
pooling methods can yield further improvements.

These findings shed some light on the way self-supervised
architectures capture certain utterance-level characteristics of
speech, such as speaker, emotion, and potentially others. Note
that the correlation is complementary to the mean and std (e.g.
a Multivariate Normal Distribution can be parametrized using
these 3 statistical quantities). Therefore, the information cap-
tured by it cannot be captured by the other two quantities,
at least when the pretrained model is frozen. By exploring
the complementarity, we achieved the best results in SID with
WavLM Large and mean pooling, 97.2%, by using pretrained
and fixed layer weights estimated with correlation pooling
(the current best result in the leaderboard is 95.5%).

As future directions, we propose to combine correlation
pooling with attention, evaluate it on other tasks (e.g. channel
and spoken language recognition), employ the intrinsic geom-
etry of correlation matrices instead of the Euclidean (e.g. us-
ing methods proposed in [25]), and examine its performance
after fine-tuning the backbone network.

7. ACKNOWLEDGEMENTS

The work was supported by Czech Ministry of Interior project
No. VJ01010108 ”ROZKAZ”, Czech National Science
Foundation (GACR) project NEUREM3 No. 19-26934X,
Czech Ministry of Education, Youth and Sports project no.
LTAIN19087 ”Multi-linguality in speech technologies”, and
Horizon 2020 Marie Sklodowska-Curie grant ESPERANTO,
No. 101007666. Computing on IT4I supercomputer was sup-
ported by the Czech Ministry of Education, Youth and Sports
from the Large Infrastructures for Research, Experimen-
tal Development and Innovations project ”e-Infrastructure
CZ – LM2018140”. Sofoklis Kakouros is supported by the
Academy of Finland through project no. 340125.

1141

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 30,2023 at 12:52:42 UTC from IEEE Xplore.  Restrictions apply. 



8. REFERENCES

[1] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrah-
man Mohamed, “HuBERT: Self-supervised speech rep-
resentation learning by masked prediction of hidden
units,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 29, pp. 3451–3460, 2021.

[2] Zhiyun Fan, Meng Li, Shiyu Zhou, and Bo Xu, “Explor-
ing wav2vec 2.0 on speaker verification and language
identification,” arXiv preprint arXiv:2012.06185, 2020.

[3] Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al., “WavLM:
Large-scale self-supervised pre-training for full stack
speech processing,” arXiv preprint arXiv:2110.13900,
2021.

[4] Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang,
Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin, Andy T
Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al.,
“SUPERB: Speech processing universal performance
benchmark,” in Proceedings of Interspeech, 2021.

[5] David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur, “X-Vectors:
Robust DNN Embeddings for Speaker Recognition,”
in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2018, pp.
5329–5333.

[6] Shuai Wang, Yexin Yang, Yanmin Qian, and Kai Yu,
“Revisiting the statistics pooling layer in deep speaker
embedding learning,” in 2021 12th International Sym-
posium on Chinese Spoken Language Processing (ISC-
SLP), 2021, pp. 1–5.

[7] Themos Stafylakis, Johan Rohdin, and Lukas Burget,
“Speaker embeddings by modeling channel-wise corre-
lations,” in Interspeech, 2021.

[8] Leon A Gatys, Alexander S Ecker, and Matthias Bethge,
“Image style transfer using convolutional neural net-
works,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 2414–
2423.

[9] Jan Chorowski, Ron J Weiss, Rif A Saurous, and Samy
Bengio, “On using backpropagation for speech texture
generation and voice conversion,” in 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 2256–2260.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz

Kaiser, and Illia Polosukhin, “Attention is All you
Need,” in Advances in Neural Information Processing
Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
2017, vol. 30, Curran Associates, Inc.

[11] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer, “Deep Contextualized Word Representa-
tions,” in Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), New Orleans, Louisiana, June
2018, pp. 2227–2237, Association for Computational
Linguistics.

[12] Sergey Novoselov, Galina Lavrentyeva, Anastasia
Avdeeva, Vladimir Volokhov, and Aleksei Gusev, “Ro-
bust Speaker Recognition with Transformers Using
wav2vec 2.0,” arXiv preprint arXiv:2203.15095, 2022.

[13] Benjamin van Niekerk, Marc-André Carbonneau, Julian
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