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ABSTRACT
Transfer learning from large multilingual pretrained mod-
els, like XLSR, has become the new paradigm for Automatic
Speech Recognition (ASR). Considering their ever-increasing
size, fine-tuning all the weights has become impractical when
the computing budget is limited. Adapters are lightweight
trainable modules inserted between layers while the pre-
trained part is kept frozen. They form a parameter-efficient
fine-tuning method, but they still require a large bottleneck
size to match standard fine-tuning performance. In this paper,
we propose ABSADAPTER, a method to further reduce the
parameter budget for equal task performance. Specifically,
ABSADAPTER uses an Adaptive Bottleneck Scheduler to
redistribute the adapter’s weights to the layers that need adap-
tation the most. By training only 8% of the XLSR model,
ABSADAPTER achieves close to standard fine-tuning per-
formance on a domain-shifted Air-Traffic Communication
(ATC) ASR task.

Index Terms— ASR, XLSR, Adapters, ATC

1. INTRODUCTION

Finetuning large pretrained models to a downstream task has
become the new paradigm of Natural Language Processing
(NLP) and Automatic Speech Recognition (ASR). The per-
formance on the downstream task scales well with increasing
model capacity [1], hence new state-of-the-art (SOTA) mod-
els keep increasing in model size. Standard fine-tuning be-
comes then impractical when the compute budget is limited.
Additionally, fine-tuning all the model’s weights is time con-
suming and memory inefficient as it results in a copy of the
model for each downstream task. Recent works showed that
standard fine-tuning tends to overfit in low-resource situation
[2] and it is prone to catastrophic forgetting [3]. Lastly, these
large SOTA models are massively over-parameterized and the
same performance can be obtained with a subset of the pa-
rameters trained [1, 2].
Parameter-efficient tuning (PET) consists in freezing the pre-
trained parameters and train lightweight modules injected in

the model. This results in the addition of only a small num-
ber of task-specific trainable parameters. A large variety of
PET methods have been proposed in the literature; we re-
fer to [1] for a unified overview. Many of these methods
have been applied to Natural Language Processing (NLP) [4]
and more recently to speech processing [2]. Among them,
adapters [5] present an attractive trade-off between parameter
efficiency and performance. Adapters are lightweight train-
able modules inserted between layers while the pretrained
part is kept frozen. They have been successfully integrated
in ASR systems using the wav2vec2.0 model [6] and the con-
former model [7, 3, 8, 9]. Adapters have been used to train
multilingual ASR models [10, 11], where each adapter serves
one language. They have been applied to the XLSR model
[12] for language adaptive training [13]. In [14], they were
used to adapt the ASR model to accents unseen during train-
ing. The authors in [3] show that adapters enable to over-
come catastrophic forgetting. In [15], adapters are exploited
for cross-lingual low-resource ASR.

In this paper, we investigate adapters in the context of
domain-shifted adaptation of the XLSR model for Air Traffic
Communication (ATC) ASR. ATC speech is noisy, accented
and often pronounced at high speech rate. Hence it constitutes
a significant domain shift compared to the pretraining data of
XLSR. ATC can contain very specific jargon so we adopt a
hybrid ASR approach to allow contextual boosting [16]. To
the best of our knowledge, we are the first to study adapters
in a hybrid ASR framework that employs large pre-trained
models.

Previous works have shown that lower layers (close to the
input signal) extract generic speech features, while higher
layers encode more phonemic information [7, 17]. Hence,
for transfer learning from self-supervised speech models to
downstream ASR, bottom layers require less adaptation than
top layers. For NLP, dropping the adapters in the bottom lay-
ers has shown to be a simple and effective method to further
reduce the parameter budget with minimal performance loss
[5, 18, 19]. Recently, this has been successfully transferred to
ASR [7, 9]. Other works [17] suggest that the adapter weights
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can be pruned for equal performance, supporting the fact that
there is room for further parameter budget reduction. Based
on these findings, we propose ABSADAPTER, a simple, yet
effective approach to redistribute the adapter’s weights to
the layers that need adaptation the most. ABSADAPTER
relies on an adaptive bottleneck scheduler (ABS), based on
the adaptation importance of each transformer layer. In this
work, we employ a simple linear scheduler that we hope
can be a baseline for future work. A recent work in NLP,
named AdaLoRA [20], builds upon the low-rank adapta-
tion method LoRA [21], and proposes to adaptively allocate
budget among weight matrices according to their importance
score. This method assigns a higher rank to the critical matrix
increments. Since LoRA can be seen as a special variant of
the adapter (scaled and in parallel insertion) [1], our proposed
method can be viewed as a simplified version of this recent
work, without the need to add additional computation such as
singular value decomposition.
The contributions of this paper are:

• First time integration of adapters in a hybrid ASR
framework that employs the large pretrained XLSR
model. Are the design elements for adapters trans-
ferrable to this architecture?

• Insights on the adaptation to domain shifted data:
which layers need more adaptation?

• We propose ABSADAPTER: a parameter-efficient tun-
ing method based on adaptive bottlenecks.

2. ADAPTER IN XLSR-TDNNF-LFMMI

Following [22], we fine-tune the wav2vec2.0 models with
the E2E-LFMMI criterion [23]. In this architecture, the out-
put of wav2vec2.0 is passed to a multi-layer factorized time-
delay network (TDNNF). In [22], it was shown that finetuning
wav2vec2.0 with CTC or LF-MMI results in similar perfor-
mance. In our case, the LF-MMI based hybrid model allows
us to boost words directly in the decoding graph [16]. This is
interesting for the ATC domain because each airport can have
a specific set of words that need to be properly detected. [24]
gives baseline results for XLSR-TDNNF-LFMMI on similar
ATC data.
Figure 1 depicts how we insert adapters in the XLSR-
TDNNF-LFMMI architecture. We follow the standard ap-
proach to insert the adapter in the transformer layers, as pro-
posed in [15]: one adapter after the attention block (ATTN)
and another after the feed-forward network (FFN). We did not
observe any improvement by inserting the adapters in paral-
lel, as suggested in prior work [9]. The adapter consists of a
down-projection, a Gelu non-linearity [25], an up-projection,
layer normalization and a skip-connection that adds the input
to the output. In the remaining of the paper, we refer to the
intermediate projection dimension as the adapter’s bottleneck
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Fig. 1. Adapters in the XLSR-TDNNF-LFMMI framework.
The adapters are inserted sequentially after the attention block
and the feed-forward network of the transformer layer.

size. The Parameter Efficient Tuning (PET) method refers
to training the adapters while keeping the rest of the XLSR
model frozen.

3. EXPERIMENTS

3.1. Datasets

We train and evaluate the ASR models on Air Traffic Com-
munication (ATC) speech data. ATC ASR is challenging:
the speech data is generally noisy, accented and has a high
speaking rate. Also the vocabulary is very specific to the do-
main. Hence, the fine-tuning data can be considered out-of-
distribution compared to the pretraining data in XLSR [12].
We follow the experimental setup in prior work [26]. We
group three public datasets to form a training set with man-
ually annotated data. The language is English with various
accents. The test set, referred to as NATS [24], contains air-
craft approach communication between the controller and the
pilot from an airport in London. The datasets are summarized
in Table 1.
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Table 1. Air traffic control communications datasets.
Database Accents Hrs

Training datasets
ATCOSIM [27] de, fr, de-CH 10
UWB-ATCC [28] cs 13
LDC-ATCC [29] en-US 26
Total (after cleaning) 41

Evaluation datasets
NATS [24] en-GB 2

3.2. Experimental setup

The input to the XLSR is raw speech sampled at 16kHz. The
output is passed into a three layered factorized time-delay
network (TDNNF). We fine-tune the XLSR together with
TDNNF layers using flat start LFMMI (E2E-LFMMI) for 5
epochs. We use a batch size of 8. The E2E-LFMMI is trained
with biphone units. We do 3-fold data augmentation using
speed perturbation with 0.9 and 1.1 speed rates.
We use a tri-stage learning schedule; the learning rate follows
a linear increase to 3e−5 over 10% of the updates, remains
constant for 40% of the updates, and then linearly decreases
for the remaining 50% of the updates. For the TDNNF model
parameters, the learning rate is set to 20 times the current
learning rate used for XLSR model updates. Additionally, we
employ the natural gradient update method for training with
the E2E-LFMMI objective, as described in [30].
All models are trained using PyTorch [31]. For fine-tuning
with E2E-LFMMI we rely on the Espresso toolkit [32], which
implements the LFMMI loss using PyChain [33]. The Py-
Torch implementation from [34] is used for the natural gradi-
ent update. For decoding we use a WFST decoder from Kaldi
[35] with beam width 15.

3.3. Adapters vs finetuning

In this section, we show the effectiveness of adapters in
the XLSR-TDNNF-LFMMI framework and compare them
to standard fine-tuning (FT) with respect to parameter effi-
ciency and Word Error Rate (WER). Inspired by other works
[36], we explore their variants where only the feed-forward
network in the transformer layer (Figure 1) is fine-tuned or
adapted.
The XLSR model (wav2vec2.0 Large) accounts for 316M pa-
rameters and the subsequent TDNNF layers for 12M param-
eters. During standard finetuning, all the model weights are
trained, as described in Section 3.2. The adapter-based PET
consists in training the adapters and TDNNF layers while
keeping the wav2vec2.0 model frozen (the CNN-based fea-
ture extractor and the transformer layers). Since the TDNNF
layers are trained in any case, we will refer to the percent-
age of trained parameters with respect to the wav2vec2.0

Fig. 2. Trade-off between trained parameters (percentage of
wav2vec2.0 model) and WER. FT refers to standard fine-
tuning, FT ffn to fine-tuning the transformer’s feedforward
network only, Adapter to the baseline PET method described
in Section 2 and Adapter ffn to a model where adapters are
inserted solely after the feedforward network, as proposed in
[36].

model only. Figure 2 shows the parameter budget saving
using Adapters (bottleneck size 256): by training only 8% of
the wav2vec2.0 model, we achieve 10.3 WER, which is an
8% relative WER increase (∆WER) compared to standard
fine-tuning (FT).
Previous work [36] showed that it is sufficient to insert the
adapter after the feedforward network (FFN) module only
for transfer learning to a downstream task. We refer to this
model as Adapter ffn and we compare it to fine-tuning the
FFN only, referred to as FT ffn. As illustrated in Figure 2,
FT ffn achieves similar performance to full fine-tuning FT ffn
(slight improvement). However, because of the high interme-
diate dimension, the FFN still accounts for a large amount of
the total number of parameters (67%). On the other hand, the
adapter variant (Adapter ffn) halves the number of trained pa-
rameters compared to the baseline Adapter, resulting in only
4% of the wav2vec2.0 model being trained. If we set a max-
imum relative WER increase ∆WER compared to standard
fine-tuning at 10%, the Adapter ffn method is unsatisfacotry
(18%∆WER). In the next sections, we investigate design ele-
ments to improve the trade-off between parameter budget and
performance.

3.4. Bottleneck size

In this section, we investigate how the adapter’s bottleneck
size affects the ASR performance. Figure 3 shows the WER
on NATS when we vary the adapter’s bottleneck size from 32
to 512 by doubling it at every step. Doubling the bottleneck
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Fig. 3. The WER decreases with increasing adapter’s bot-
tleneck size. The marker size indicates the parameter bud-
get. Using a bottleneck size of 512 results in close to full
fine-tuning performance while training 16% of the model’s
weights.

size doubles the trained parameters in wav2vec2.0. Overall,
The ASR model improves with increasing bottleneck size and
achieves close to standard fine-tuning performance with bot-
tleneck size 512. Those observations are in accordance with
findings in prior works [9, 17].

3.5. Domain adaptation vs task adaptation

Prior works in NLP suggest that top layers (closer to the en-
coder output) are more important to finetune [19] and conse-
quently adapters in the bottom layers (closer to the input sig-
nal) can be dropped without significant loss of performance
[5, 18]. This has been confirmed for wav2vec2.0+CTC based
and conformer based ASR [7, 9]. We investigate if this obser-
vation conveys to domain-shifted transfer learning.
We fine-tune the bottom quarter (first 6 layers), the bottom
half (first 12 layers) and the bottom three quarters (first 18
layers) of the XLSR layers, while keeping the remaining lay-
ers frozen. Similarly, we fine-tune the top quarter, the top half
and the top three quarters of the XLSR layers. The resulting
WERs are depicted in Figure 4 (right). We conduct similar
experiments with adapter-based parameter-efficient tuning by
increasing the number of adapters inserted in a top-down and
bottom-up fashion (Figure 4 left).The results are consistent
with both tuning methods; with this setup, it is more impor-
tant to adapt the bottom layers. Dropping the top 6 layers,
reduces the trained parameters in XLSR from 8% to 6%, for
only a small performance loss (less than 2% relative ∆WER).
One may think that due to the large speech domain shift in this
setup between unsupervised (pretraining) data [12] and super-
vised (fine-tuning) data (ATC), the bottom layers - which are

Fig. 4. PET: Parameter-efficient tuning using adapters. FT:
standard Fine-tuning. Top-down refers to tuning the top
layers first and sequentially tune additional lower layers.
Bottom-up refers to tuning the bottom layers first and sequen-
tially tune additional higher layers. the XLSR model has 24
layers and we use 6 layers steps, thus 4 data points per curve.

commonly associated with the extraction of generic speech
features - require significant adaptation.
In order to acquire better insight, we compare the WER evo-
lution during training of the model, in which on one side only
the 6 top layers are fine-tuned and on the other side only the
6 bottom layers are finetuned.The WER curves - as function
of hours of speech data - are illustrated in Figure 5. We con-
duct this experiments both on the domain-shifted ATC setup
and on in-domain Swahili speech data from the Babel dataset
[37], that has been used for self-supervised learning (SSL)
during the pretraining stage of XLSR [12]. We observe that
for both tasks, the model adapts faster to the new task (ASR
as opposed to SSL) when we fine-tune the top layers only.
In the in-domain case (Babel Swahili), eventually both fine-
tuning methods converge. However, in the domain-shifted
case (ATC), fine-tuning the bottom layers prevails over fine-
tuning the top layers. This example confirms that the bot-
tom layers are the important layers to adapt in domain-shifted
transfer learning setup. More broadly, it supports the theory
that domain adaptation is done by the lower layers and task
adaptation is done by the higher layers.

3.6. Adaptive bottlenecks

In the previous sections, we concluded that increasing the
adapter’s bottleneck size improves the downstream ASR per-
formance, with the downside of increasing the total parameter
budget. We also concluded that dropping a few adapters can
reduce the parameter budget with a minimal loss in perfor-
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Fig. 5. Tuning (standard FT and adapter-based PET) the 6
bottom layers versus the 6 top layers. The models are evalu-
ated on NATS. Tuning the top layers learns faster the down-
stream task but tuning the bottom layers is better on the long
run.

model bn WER ∆WER % params
FT - 9.3 0% 100%

Adapter 256 10.5 +13% 8%
Adapter 512 9.8 +5% 16%

ABSADAPTER 512-32 10.0 +7% 8%

Table 2. Trade-off between parameter saving and perfor-
mance loss for the baseline adapters and the proposed AB-
SADAPTER. bn refers to the bottleneck size.

mance on the ASR task. In our ATC ASR setup, these layers
corresponded to the top layers. Based on these takeaways,
we propose ABSADAPTER: a parameter-efficient tuning
method based on adaptive bottlenecks. By allowing different
bottleneck sizes depending on the layer depth, we redistribute
the adapters’ weights where adaptation is needed the most. In
our ATC setup, this corresponds to attributing a high bottle-
neck size to the bottom layers - for better domain adaptation
- and a low bottleneck size to the top layers. The goal is to
reduce the parameter budget for equal performance, or equiv-
alently, increase the performance for equal parameter budget,
compared to a constant bottleneck method. As described
in Section 1, we propose a simple yet effective approach to
schedule the bottleneck size: a linear decrease with the layer
depth. We set a maximum bottleneck size for the first layer,
a minimum bottleneck size for the last layer, and decrease
the size linearly along the layers. This method is simple, and
does not require any additional computation as in [20].
Table 2 compares the relative WER increase (∆WER) and
the amount of trained parameters (%params) for the proposed
method and the two best performing adapter-based methods

discussed in this work. We set the maximum and minimum
bottleneck sizes to 512 and 32, respectively. ABSADAPTER
performs better than the adapter using 256 bottleneck size,
with a similar amount of trained parameters: 8% of the XLSR
model. It slightly underperforms the Adapter with 512 bottle-
neck size while having half its number of parameters. These
preliminary results show the effectiveness of the method and
drives us to further investigate on broader setups.

4. CONCLUSIONS AND FUTURE WORK

In this work, we studied lightweight trainable modules -
called adapters - in a hybrid ASR framework that employs
large pre-trained models. We investigated design elements
such as the bottleneck size choice and the adapter’s position
to find the best trade-off between parameter budget and ASR
performance. Our study on adapters applied to Air Traf-
fic Communication gave insights on domain-shifted transfer
learning from self-supervised speech models to downstream
ASR. We proposed a simple method to adapt the bottleneck
size based on the layer adaptation importance. Results on
ATC show that the method improves ASR performance while
keeping the same parameter budget. In future work, we would
like to apply the proposed ABSADAPTER to a larger bench-
mark that involves more in-domain data. We suspect the
benefits of the method are limited in the current setup, as the
large pretrained XLSR needs to do both speech domain adap-
tation in the lower layers and task adapatation in the higher
layers. Another investigation direction would be to explore
more complex schedulers than the linear one, potentially
adressing the domain-shifted transfer learning better.
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“Comparing ctc and lfmmi for out-of-domain adapta-
tion of wav2vec 2.0 acoustic model,” arXiv preprint
arXiv:2104.02558, 2021.

[23] Hossein Hadian, Hossein Sameti, Daniel Povey, and
Sanjeev Khudanpur, “End-to-end speech recognition us-
ing lattice-free mmi.,” in Interspeech, 2018, pp. 12–16.

Authorized licensed use limited to: Brno University of Technology. Downloaded on February 07,2024 at 18:05:11 UTC from IEEE Xplore.  Restrictions apply. 



[24] Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmat-
ulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert,
Hartmut Helmke, Oliver Ohneiser, and Qingran Zhan,
“How does pre-trained wav2vec2.0 perform on domain
shifted asr? an extensive benchmark on air traffic con-
trol communications,” IEEE Spoken Language Technol-
ogy Workshop (SLT), Doha, Qatar, 2023.

[25] Dan Hendrycks and Kevin Gimpel, “Gaussian error
linear units (gelus),” arXiv preprint arXiv:1606.08415,
2016.

[26] Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmat-
ulina, Petr Motlicek, and Matthias Kleinert, “A vir-
tual simulation-pilot agent for training of air traffic con-
trollers,” Aerospace, vol. 10, no. 5, pp. 490, 2023.

[27] Konrad Hofbauer, Stefan Petrik, and Horst Hering, “The
ATCOSIM corpus of non-prompted clean air traffic
control speech,” in Proceedings of the Sixth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’08), Marrakech, Morocco, 2008, European
Language Resources Association (ELRA).
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