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Abstract—Conventional keyword search systems operate on au-
tomatic speech recognition (ASR) outputs, which causes them to
have a complex indexing and search pipeline. This has led to inter-
est in ASR-free approaches to simplify the search procedure. We
recently proposed a neural ASR-free keyword search model which
achieves competitive performance while maintaining an efficient
and simplified pipeline, where queries and documents are encoded
with a pair of recurrent neural network encoders and the encodings
are combined with a dot-product. In this article, we extend this
work with multilingual pretraining and detailed analysis of the
model. Our experiments show that the proposed multilingual train-
ing significantly improves the model performance and that despite
not matching a strong ASR-based conventional keyword search
system for short queries and queries comprising in-vocabulary
words, the proposed model outperforms the ASR-based system for
long queries and queries that do not appear in the training data.

Index Terms—Keyword search, spoken term detection, end-to-
end keyword search, asr-free keyword search, keyword spotting.

I. INTRODUCTION

K EYWORD search (KWS) is one of the technologies that
arose out of the need to efficiently index and search

the ever-growing catalog of spoken content online. Known
alternatively as spoken term detection (STD), it entails locat-
ing short query phrases within large speech archives. Given a
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written query, which may or may not have been encountered
at training time, a KWS system is expected to return which
utterances in the archive, if any, contain the query, the time
stamps within those utterances hypothesized to correspond to
the query and scores indicating the system’s confidence in each
hypothesis.

Conventional KWS involves using an automatic speech recog-
nition (ASR) system to decode the archives, constructing an
inverted index from the resulting lattices and searching the query
therein [2]. The inverted index is typically implemented as a
timed factor finite-state transducer (FST) [3], [4], which is con-
structed offline and composed with an FST of the query. While
this approach has proven quite successful, operating downstream
of ASR has its pitfalls.

One such pitfall is that indexing any utterance involves full
ASR decoding, which incurs a nontrivial computational cost.
Furthermore, since the lattices of ASR systems can only contain
tokens in the training vocabulary, ASR-based KWS systems
with words as the ASR units cannot naturally retrieve out-of-
vocabulary (OOV) queries, such as proper nouns and rare mor-
phological inflections, and therefore have to resort to a host of
other methods such as subword indexing or query expansion for
retrieval [5], [6], [7], [8], [9]. Therefore, it is natural that recent
research has focused on ASR-free KWS systems with a simpler
indexing pipeline and natural handling of OOV queries [10],
[11]. Since KWS is open-vocabulary and cannot therefore be cast
as a keyword classification problem, these approaches typically
feature a pair of encoders for speech and text trained to classify
whether or not the text is spoken in speech segment under
consideration.

In our recent conference article [1], we proposed a dual-
encoder-based keyword search model trained to predict frame-
wise probabilities of existence of a query in an utterance. It
significantly outperformed other neural approaches in literature
in terms of search accuracy, while also improving the search
efficiency by using dot-products for search instead of more
complicated feedforward neural networks. This article extends
that preliminary work:
� We conduct more comprehensive analysis of the model

with experiments measuring the impacts of various com-
ponents and parameters of the models as well as the per-
formance of the models for various kinds of queries.

� We show that with slight modifications, the model can
be trained multilingually and that finetuning such a
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multilingually-pretrained model significantly and consis-
tently improves performance across target languages.

The rest of the article is organized as follows: Section II
covers previous related work and highlights their differences
and, where appropriate, their similarities to our method; Sec-
tion III describes the proposed model; Section IV details the
experiments conducted and discusses the results of those ex-
periments; Section V concludes the article with a summary and
future research directions.

II. RELATED WORK

A. Open-Vocabulary ASR-Based KWS

Since ASR language models are trained with a limited number
of words due to computational and data availability constraints,
the ASR output is limited to the closed vocabulary used in train-
ing. However, user queries can—and often do—include words
that are not part of this limited vocabulary. Therefore, dealing
with the challenge of seamlessly searching such OOV queries
has been studied extensively within the context of ASR-based
KWS systems. The solutions in literature generally fall into two
categories: using subword units and query expansion.

Based on the rationale that the words in a language—even
OOV ones—can be composed from a limited set of subword
units, using subword-based ASR has been the cornerstone of
KWS in morphologically-rich languages [7], [12], as well as
open-vocabulary search in other languages [6], [13], [14], [15].
Most works use linguistic units such as syllables, morphs and
phones, while others use data-driven units like graphones and
multigrams [12], [16], [17]. Although subword units increase the
recall of the model, this comes at the cost of larger lattices which
are more costly to index and search, as well as lower precision
for in-vocabulary (IV) queries. Therefore, it is common to use
a hybrid of word lattices for IV queries and subword lattices
for OOV ones. This has the drawback of incurring the cost of
double-indexing for every new utterance. This drawback can be
partly reduced by converting word lattices into subwords ones
for OOV search [5], [18], an approach limited in that it can
only generate phone sequences which are substrings of some IV
words.

Query expansion is an alternative approach to OOV search in-
volving searching for phrases that are acoustically-similar to the
query to account for ASR errors [9], [19], [20] This is typically
implemented by composing a query FST with an FST of phone
confusions, before composing the expanded query FST with the
index. While query expansion can be used with subword indices,
it can be leveraged to avoid double indexing by composing the
expanded-query FST with the decoder vocabulary, resulting in
acoustically-similar IV “proxy” queries which can be searched
in a word-based index.

While these approaches alleviate ASR-based KWS’ inability
to handle OOV queries, they invariably further complicate either
the indexing or the search for the already complex ASR-based
KWS system. Our proposed method, on the other hand, not only
offers simpler indexing and search than ASR-based KWS, it
makes no distinction between IV and OOV queries.

B. End-to-End Keyword Search

Leveraging the ability of neural networks to model complex
relationships, KWS traditionally comprising several disparate,
separately-optimized, modules can now be simplified by for-
mulating and optimizing appropriately designed neural archi-
tectures and objectives. One such simplification involves using
end-to-end ASR models to construct the KWS index as in [21],
[22], [23], [24]. While these works simplify ASR training, they
still have complex KWS indexing pipelines since the simpler
decoding algorithms for end-to-end ASR do not readily yield
the timing and confidence information necessary for KWS.
Therefore, another direction, in which our work falls, involves
training a model able to avoid the ASR decoding entirely while
indexing or searching.

The authors of [10] propose a Siamese neural architecture
which jointly learns a distance metric for speech documents
represented as phone posteriorgrams along with a query rep-
resentation and conduct search with subsequence dynamic time
warping (DTW). The method was extended in [25] to account for
query dynamics and in [26] to learn better document represen-
tations. While it showed impressive search accuracy, especially
for OOV queries, this approach is limited in practice by the
significant computational cost of DTW.

The authors of [27] similarly proposed a Siamese architecture
which learns text and speech representations for the related task
of open-vocabulary hotword spotting.1 Since the task there does
not involve localization of the keywords, there is no associated
cost of DTW. In [28], a meta-network was proposed that, for a
given query, generates the parameters of a model to classify
whether or not a speech segment contains that query. Thus
the parameters of the model grow with the number of queries,
which makes the model more suitable for limited, but adaptable,
query sets as opposed to the unlimited vocabulary as in KWS.
Moreover, like the model featured in [27], it also lacks the
ability to localize the queries, which makes both approaches
unsuitable for keyword search where the timestamps of each
query’s occurrence are required.

In [11], a model was proposed with a pair of encoders for
computing fixed-length representations of speech utterances and
text respectively, and a feedforward search network classify-
ing whether or not the encoded text occurs in the encoded
utterance. While the model was innovative in showing that
the open-vocabulary search pipeline can be greatly simplified
with this dual-encoder structure, it was limited to the utterance
classification task where the probability of existence of a query
was artificially set to 0.5 (by sampling positive and negative
test utterances with equal probability at test time) and could
not work in the highly imbalanced scenario of realistic KWS,
where the number of negative trials far outnumber the number
of positive ones. Moreover, since the speech encoder outputted
a fixed-length representation of each utterance, the model could
not temporally localize the keywords, although the authors did

1Hotword spotting involves spotting a limited set of phrases and has also been
referred to as keyword spotting in some literature. We avoid that term to avoid
confusion as some other literature use keyword spotting to refer to keyword
search of the kind that we tackle.
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experiment with a coarse form of localization by classifying
whether the query occurs in the first or second half of the
utterance. This method was improved in [29] by using better
pretraining objectives, although it still had the limitations of [11]
with regards to handling realistic KWS settings.

The most relevant related work to ours are those in [30]
and [31] who contemporaneously with us proposed dual encoder
architectures capable of open-vocabulary keyword search in
realistic settings, complete with the ability to temporally localize
the queries. Like us, they ensure that the speech encoders do not
lose temporal information, and use forced alignment to obtain
the query locations at training time.

In [30], the authors extend their prior work on closed-set key-
word detection and localization [32] to cover open vocabularies.
A feedforward network takes the speech and text encodings
from a pair of convolutional and recurrent encoders and returns
a vector to be compared with the text encoding to determine
whether that text occurs in the utterance, as well as a pair of
floating points corresponding to the hypothesized locations of
the query. By directly predicting the temporal locations, they
avoid the need to have any post processing step. This however
comes at the cost of having to run the feedforward network
for every query-utterance pair at search time, as opposed to
the simpler matrix-vector product that we use for the query-
utterance interaction. Therefore, the search can become orders
of magnitude slower since each feedforward layer with output
dimension of F is a matrix-matrix product having F times the
cost of matrix-vector product.

In [31], the authors propose a very similar structure to our
model. The main difference is that, instead of acoustic features,
they use phonetic confusion networks output from an external
ASR system as the speech representation. This allows language
model information to be indirectly incorporated into the KWS
model. However, it also means that creating the document
representation requires full ASR decoding. Note that while we
also use bottleneck features (BNF) obtained from an external
ASR model, extracting BNF only incurs the cost of passing data
through the acoustic model and not the costs of searching the
ASR decoding graph.

C. Multilingual Data for KWS

Using multilingual data to improve KWS has been explored
in prior work in the context of both ASR-based and ASR-free
KWS. In the context of ASR-based KWS systems, a common
recipe is to improve the ASR, and consequently KWS, in
low-resource settings by training the acoustic model multilin-
gually [33], [34], [35], [36], [37]. This generally entails sharing
the lower layers of the acoustic model and using either a shared
output layer [38], [39], [40] or separate output layers for each
language [41], [42], [43], [44].

In [26], a joint metric and representation learning method
is used to incorporate multilingual bottleneck features into
dynamic-time-warping-based KWS. Multilingual bottleneck
features and posteriorgrams have also been used for query-by-
example (where both query and audio are spoken) with [45],
[46], [47] or without [48] dynamic time warping. While these

Fig. 1. Flowchart illustrating the proposed system. A keyword search model,
comprising a query encoder and a document encoder, is trained on forced-aligned
speech and text data. The document encoder is used to encode spoken archives
for efficient search, and the query encoder converts each query into a vector form
which is searched by computing frame-wise inner products with the document
representation.

works use multilingual data to train the feature extractor for
ASR-free search, they do not train the search model itself
multilingually.

III. METHODS

In this section, we describe the method we have proposed for
keyword search. The method, illustrated in Fig. 1, involves a
soft-indexing and matching approach. Where ASR-based KWS
methods index a spoken archive by decoding it into a graph
of symbolic units and conduct search by matching with a
corresponding graph of the query, our approach uses a dense
representation in a vector space and conducts search by matching
the query with dot-products, for which modern CPUs, GPUs and
linear algebra libraries have efficient implementations.

Sections III-A to III-D replicate the model definition, training
and search procedures from [1] for completeness and readers’
convenience. Section III-E describes multilingual training.

A. Problem Formulation

We formulate keyword search as the task of classifying
whether a keyword occurs at any given location in the document.
Given a query phrase q =

(
q1, q2, . . . , qK

)
where each qk is a

letter, and an utterance represented as a sequence of acoustic fea-
tures X =

(
x1, . . . ,xNx

)
, we seek the sequence of occurrence

indicators y(q,X) = (y1, . . . , yNx
) ∈ {0, 1}Nx such that:

yn =

{
1, if q is spoken in X in a time span including n

0, otherwise.

(1)

Given a training set of utterances X = {X(1),X(2), . . . ,X(S)}
and query phrases Q = {q(1),q(2), . . . ,q(L)}, we train a neu-
ral network with parameters θ to minimize the negative log-
likelihood of the occurrence indicators:

θ∗ = arg minθ

L∑
l=1

S∑
s=1

Nx(s)∑
n=1

− log pθ

(
yn|q(l),X(s)

)
. (2)
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Fig. 2. Overview of the neural keyword search model. The document encoder
is a bidirectional recurrent neural network which outputs a subsampled represen-
tation of the spoken document. The query encoder is a recurrent neural network
which outputs a fixed length representation of the written query. A dot-product
between the two representations gives logits which are passed through a logistic
sigmoid to predict the likelihood of the query occurring at each subsampled time
frame.

Note that training requires timing information of the phrases in
the training set. We obtain it by training an HMM-GMM-based
ASR system on the training data and using it to generate the
required word-level forced alignments.

B. Model Definition

Our keyword search model, depicted in Fig. 2, comprises a
recurrent document encoder and a recurrent query encoder. We
conduct the search via a matrix-vector multiplication between
the outputs of the encoders. We apply the logistic sigmoid
function to the resulting vector of logits to obtain frame-wise
posterior probabilities pθ(yn| . . . ) which we post-process to de-
tect the locations of each keyword. Since the document encoder
is intended to act as an offline indexer, while the query encoder
must be called whenever a query is received, we ensure that
the query encoder is a much smaller neural network than the
document encoder.

1) Query Encoder: The input to the query encoder is a se-
quence of letters q = (q1, . . . , qK) that constitute the query and
the output is a fixed-length representation eq ∈ RD. A trainable
input embedding layer converts the sequence of letters into a
sequence of vectors that are input into a stack of bidirectional
gated recurrent unit (GRU) layers. The GRU outputs another
sequence of vectors V = (v1, . . . ,vK). The final query repre-
sentation is then computed from the sum of these GRU output
vectors along the sequence axis:

eq =

K∑
k=1

W1vk + b1, (3)

where W1 and b1 are the weight and bias of a trainable affine
transform that changes the dimensionality of the query represen-
tation to ensure it matches the output of the document encoder.
The affine transform also ensures that the dynamic range of the
query encoding is not limited by the hyperbolic tangent output
of the GRU to (−1, 1).

We use summation instead of taking the output of the GRU at
the final step, i.e., instead of setting eq = W1vK + b1, because
we empirically found it to be better. We also experimented

with having a unidirectional query encoder but we found the
bidirectional encoder to be superior.

2) Document Encoder: The input to the document encoder
is the sequence of speech features X of length Nx. First,
X is passed through a stack of bidirectional long short term
memory (BLSTM) layers which output U = (u1, . . . ,uN̂x

) of

length N̂x. We down-sample the hidden representations between
some of the BLSTM layers so that N̂ =

⌊
N
4

⌋
. This decreases

the computational cost of storage and search, and we found
empirically that it improves the search accuracy as it reduces
the durations processed by higher layers, making it easier to
model long-range dependencies. The final encoder output is then
HX = (h1, . . . ,hN̂x

), such that for each n̂:

hn̂ = W2un̂ + b2, (4)

where W2 and b2 constitute an affine transformation similar to
that at the output of the query encoder.

We choose to make the query encoder a GRU instead of an
LSTM in order to reduce its computational cost since, unlike
the document encoder which we expect to operate as an offline
indexer, the query encoder would be run whenever a user queries
the system. Moreover, in preliminary experiments, we found
using a GRU as the query encoder performs as well as an LSTM
with the same dimensions while having three-quarter the size and
computational cost of the latter. However, using a GRU as the
document encoder instead of an LSTM significantly degrades
search performance.

3) Search Function: The search output is given by multiply-
ing the encoded document matrix with the encoded query vector,
followed by a logistic sigmoid, resulting in the desired vector of
per-frame occurrence probabilities z(q,X) = (z1, . . . , zN̂ ) ∈
(0, 1)N̂ , where zn := pθ

(
yn|q,X

)
:

z(q,X) = σ(H�
Xeq). (5)

Since the document and query representations only interact
through this product and are otherwise independent, we can
pre-compute and store the encodings of the documents. Thus, at
search time, only the cost of computing the query representation
(from the much smaller query encoder) and the cost of the dot
product is incurred.

As the only interaction between the query and a time frame
of the document is this inner-product, which is independent of
other time frames at the encoding level, the document encod-
ing at each frame clearly needs to encode enough information
to disambiguate between similar queries. For example, if the
document contains the word “predict”, the encodings of each
frame corresponding to “pre-” need to be distinguishable from
the encodings of “pre-” in, say, “prelude” or “preface”. Similarly,
the encodings corresponding to “-sion” in “confusion”, need to
be distinguishable from those in “television” and “intrusion”.
Therefore the document encoder needs to be bidirectional be-
cause the LSTM’s forward direction is needed to disambiguate
between shared suffixes, while the reverse direction is necessary
for separating phrases with shared prefixes. In other words, the
reverse direction controls when occurrence probabilities should
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start spiking and the forward direction controls when they should
stop spiking.

C. Model Training

Training the model involves optimizing (2) with gradient
descent. However, doing so directly is impractical as computing
the gradient involves summation over all phrases and utterances
in the training set. A corpus of S utterances with W words each
has O(SW 2) elements in the double summation. Therefore, we
approximate this large sum with a smaller sum whose gradi-
ent approximates the gradient of the original and optimize the
approximate sum instead:

θ∗ ≈ arg minθ

Lb∑
l=1

M∑
m=1

Nx(m)∑
n=1

− log pθ

(
yn|q(l),X(m)

)
, (6)

where Lb � L is the mini-batch size for each training step, and
M = |Xq(l) | � S is the number of utterances sampled for each
training phrase.

When looping over the phrases in the training data, we only
consider such ls that q(l) is either a unigram, bigram or trigram.
When sampling the utterances Xq(l) for each step, we ensure
that at least one of them is a “positive” utterance, i.e., it contains
the training phrase q(l), while the others are sampled truly
randomly. While this constraint biases the gradient, without
it, an overwhelming majority of mini-batches would be “nega-
tive”, i.e., have all-zero labels, which would make optimization
impossible.

For each query-utterance training pair (q(l),X(m)), we min-
imize an objective function J(q(l),X(m)) between the sigmoid
outputs z(q(l),X(m)) and the labels y(q(l),X(m)):

J
(
q(l),X(m)

)
= −

N̂x(m)∑
n=1

(
1zn>1−φ · (1− yn) log(1− zn)

+ 1zn<φ · λ · yn log zn
)
, (7)

where the labels have been down-sampled to match the output
frame rate of the document encoder. This objective function
extends the binary cross-entropy objective with the hyper-
parameters λ and φ. When both are set to 1, the loss reduces
to the binary cross-entropy. λ controls the relative importance
of frames labeled 1 and frames labeled 0, i.e., the relative cost
of misses to false detections; as λ increases, frames labeled 1
contribute more to the total loss.φ is a strictness term controlling
the sensitivity of the loss function to easily classified frames;
frames labeled 1 with sigmoid outputs above φ and frames
labeled 0 with sigmoid outputs below 1− φ do not contribute to
the loss. This prevents the model from learning to better classify
frames that are already well classified at the expense of learning
to classify difficult frames.

D. Post-Processing for Keyword Search

Having obtained the vector of probabilities from (5), we still
need to post-process them to obtain the timestamps in the docu-
ment hypothesized to contain the query, and the corresponding
confidence scores. The procedure is as follows:

1) We zero-out the probabilities (zn) below some threshold
α. This thresholding is a necessary first step because it is
otherwise impossible to determine discrete values, {0, 1},
of yn since sigmoid outputs are strictly non-zero. We treat
α as a hyper-parameter which we tune on development
sets to select from among {0.2, 0.4, 0.6}.

2) We pick the resulting “islands” of non-zero elements as
our system hypotheses. Each hypothesis’ confidence score
is computed as the median probability in its interval. We
also experimented with the mean and max operations but
found median to be better.

E. Multilingual Training

Neural approaches, in KWS and otherwise, generally struggle
in low-resource settings since they require large amounts of
data to train. We therefore explore multilingual pretraining to
improve the performance of the proposed model in low-resource
settings. To do this, we pretrain the model with data pooled from
several letter-based languages, and then finetune it on the target
language.

During multilingual training, the entire model is shared by
all languages, with the exception of the query encoder’s input
embedding layer. The model is trained with the same objective
as in the monolingual setting. The negative utterances sampled
for each training phrase can come from any language; we exper-
imented with enforcing that the negative utterances come from
the same language but found that this did not lead to consistent
improvements.

When finetuning to a new language, we transfer only the
pretrained document encoder and reinitialize the entire query
encoder with random weights, then train the entire model on the
target language’s training data. We experimented with transfer-
ring the multilingually-pretrained query encoder as well with
only the embedding layer reinitialized, but found this to result
in significantly worse performance. We also experimented with
initially freezing the transferred document encoder for a few
epochs so that the query encoder gets trained to a reasonable
degree before finetuning the whole model, but we found doing
so also worsened performance and made training unstable.

IV. EXPERIMENTS

In this section, we conduct experiments to analyze various
components of the proposed model. First, we describe experi-
ment setup: the datasets, metrics and default hyper-parameters
for the proposed model. Then we analyze how various param-
eters affect the model performance. Finally, we analyze how
the performance of the model changes with different keyword
properties and compare and contrast to how those same keyword
properties affect a conventional LVCSR-based model.
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TABLE I
DISTRIBUTION OF IN-VOCABULARY AND OUT-OF-VOCABULARY QUERIES IN

EACH TEST LANGUAGE

A. Experimental Setup

1) Dataset: We conduct all experiments on data from the
IARPA Babel corpus.2 We use the limited language packs of
Pashto, Turkish and Zulu for KWS experiments. Each of these
comprises 10 hours of transcribed data for training, a 10-hour
development set for hyper-parameter tuning and a 5-hour evalu-
ation set.3 Table I shows the distribution of queries for each lan-
guage’s development and evaluation sets. We use the transcribed
data from 16 other Babel languages—totaling 170 hours—for
multilingual pretraining of the KWS model in IV-D. We also
use this dataset to train a multilingual acoustic model which
contains a bottleneck layer for extracting 42-dimensional bottle-
neck features. The BNF extractor has language-specific output
layers trained to predict the pretraining languages’ senone labels,
where each language’s context dependent triphones clustered to
around 2000 such senones.

2) Metrics: We report results in terms of the variants of the
term weighted value (TWV) [49]. The actual term weighted
value (ATWV) is a measure of weighted precision and recall at a
single predefined threshold. For a set of queries Q and threshold
ξ, the ATWV is defined:

ATWV(ξ,Q) = 1− 1

|Q|
∑
q∈Q

(Pmiss(q, ξ) + βPFA(q, ξ)),

(8)
where Pmiss(q, ξ) is the probability of misses, Pfa(q, ξ)) is the
probability false alarms, and β is a parameter that controls the
relative weights of false alarms and misses. Following the NIST
STD evaluations [50], we set β = 999.9. On the development
set, we report the maximum term weighted value (MTWV)
which is the TWV at the threshold that maximizes it. This
threshold is then used to compute the actual term weighted value
(ATWV) for the evaluation set.

Since different queries tend to have different score distribu-
tions and term weighted value requires setting a single global
threshold, it is necessary to normalize scores per query. To this
end, we adopt the keyword specific thresholding normalization
method from [51].

We also report the optimum term weighted value (OTWV)—
the upper-bound MTWV computed with query-specific thresh-
olds. OTWV gives a measure of term weighted value without
the effects of inter-query score mis-calibration.

Finally, we measure the supremum term weighted value
(STWV)—the OTWV with the cost of false alarms set to zero.

2[Online]. Available: https://www.iarpa.gov/index.php/research-programs/
babel

3The full evaluation set used for Babel challenges is 15 hours, of which the
references for only 5 hours are openly available.

This gives a measure of overall recall. We however limit our
use of STWV except when comparing two systems with similar
ATWV because without such a constraint, STWV can be inflated
by simply “detecting” the query everywhere.

Term weighted values so defined have a theoretical maximum
value of 1. In our results, we multiply all term weighted values
by 100 to get scores that can go up to 100.

3) Model Configuration and Default Hyper-Parameters: In
general, we base our default architecture off that described
in [1]. The document encoder has 6 BLSTM layers with 512
output units, followed by an affine projection layer with output
dimension of 400. We apply dropout of 0.4 between successive
BLSTM layers and down-sample by a factor of 2 after the
first and fourth BLSTM layers. The query encoder has a 32-
dimensional input embedding layer, 2 bidirectional GRU layers
with 256 units each and a projection layer to match the output
of the document encoder. This is almost identical to the setup
in [1] except that we remove all Batchnorm layers, as we found
finetuning multilingual models trained with Batchnorm to be
unstable. Moreover, in the monolingual setting, we did not notice
any performance deterioration from excising the Batchnorm
layers.

We use graphemes as the query input representations instead
of phonemes as they remove the need to train any grapheme-to-
phoneme (G2P) converters to use for OOV queries. Moreover,
we found them empirically superior to phonemes in terms of
KWS performance. We do however concede that different rep-
resentations would be required for languages that have orthogra-
phies with no phonetic correspondence.

Except where stated otherwise, we set λ = 5 and φ = 0.7 in
(7) and use 3 negative examples per positive at training time,
i.e., M = 4 in Section III-C.

B. Effect of Loss Function Parameters

In this section, we analyze the impact of the hyper-parameters
of the loss function, φ and λ from (7). Remember that λ is the
weight given to positive training frames (frames which contain
the training phrase), while φ controls the allowable margin
beyond which no loss is incurred. When both values are set to 1,
the objective becomes the classic binary cross-entropy objective.
All models here use bottleneck features as input without any
pretraining or speed perturbation.

First we vary the tolerance (φ) of the loss function with λ fixed
to 5. Fig. 3 depicts the output of models trained with various
values of φ on an example from the Turkish dev set. All settings
of φ track the correct shape, outputting high values where the
ground truth is 1 and low values where the ground truth is 0.
However, the degrees with which they do so vary, with increasing
φ expectedly resulting in more extreme separation of positives
from negatives.

Fig. 4 shows the ATWV asφ changes. We observe that ATWV
does not vary much with the choice of φ except when it is set to 1
where we observe significant ATWV degradation. This implies
that the exact value of φ is not as important so long as we have
some tolerance. Although we do not report those results here,
we found that setting higher values of φ allows us to use lower
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Fig. 3. Outputs from the KWS model for an example query-utterance pair
from the Turkish development set under various settings of the training objective
tolerance (φ).

Fig. 4. ATWV on the evaluation sets as the strictness term φ in the training
objective is varied.

Fig. 5. ATWV on the evaluation sets as the weight of positive frames λ in the
training objective is varied.

sigmoid thresholds than 0.5, resulting in higher STWV without
sacrificing ATWV.

Fig. 5 shows the ATWV as λ is varied with φ fixed to 0.7.
The ATWV increases with λ until around 5 where it peaks, and
then falls off as λ is further increased. This indicates that the
decrease in precision that accompanies increasing λ starts to hurt
the overall ATWV. Thus, the correct setting of λ seems tied to
the relative costs of false alarms to misses and must be set based
on the task at hand. However, we note the recall, as measured by
STWV—which is not in the figure—increases monotonically
with λ, which is expected as increasing λ makes the training
objective prioritize detecting positive locations over suppressing
negative ones.

C. Effect of Down-Sampling

Our document encoder features a pair of down-sampling
steps after the first and fourth BLSTM layers. Thus, the output

Fig. 6. ATWV on the evaluation sets as the down-sampling rate is varied.

Fig. 7. Average difference in ATWV of systems with various down-sampling
factors when compared to the system with no down-sampling. DS=* denotes
down-sampling factor of *.

document encodings are down-sampled by a factor of 4, resulting
in smaller document storage and computational requirements. In
this section, we analyze the effect of down-sampling on keyword
search performance.

Fig. 6 shows the ATWV as the total down-sampling factor
varies between 1 (-), 2 (4), 4 (1, 4), 8 (1, 3, 4) and 16 (1,
3, 4, 5) where the numbers in the parentheses denote which
layers’ outputs are down-sampled by 2. We note that the ATWV
improves as we introduce down-sampling, decreases slightly as
the down-sampling factor is increased from 2 to 4, and starts to
degrade upon further down-sampling—with a down-sampling
factor of 16, the ATWV gets worse than not having any down-
sampling at all.

Overall, we infer that having down-sampling—within some
bounds—does not just maintain accuracy but actually improves
it, while being faster. We ascribe this improvement to the diffi-
culty of learning very long range dependencies within the model
encodings. For instance, to correctly localize a query of length
500 ms at a frame rate of 10 ms, each BLSTM hidden state
would have to contain information spanning at least 50 frames;
after down-sampling by a factor of 2, this burden reduces to 25
frames etc. Beyond the optimal down-sampling rate, the search
fidelity starts to degrade, ostensibly due to the excessive loss in
resolution.

These arguments are supported by the results in Fig. 7 which
shows the ATWV improvements or degradation for queries
of different length as the down-sampling rate is varied. The
systems with down-sampling generally perform better as the
query length increases supporting the hypothesis that without
down-sampling, the system struggles to model long-term de-
pendencies. On the other hand, as the rate of down-sampling
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TABLE II
TERM WEIGHTED VALUES ON THE VARIOUS DEVELOPMENT AND EVALUATION

SETS

is increased, the model struggles with detecting shorter queries
(see for instance the performance with down-sampling rate of
16), supporting the idea that loss of resolution eventually limits
feasible amount of down-sampling.

D. Impact of Multilingual Pretraining

In this section, we experiment with methods to increase the
effective training data by using speed perturbation [52] and
multilingual pretraining.

Table II shows the effect of speed perturbation on KWS
performance. As is common practice, we create two extra copies
of the training data by perturbing the speaking rates by factors of
0.9 and 1.1 respectively. The bottleneck feature (BNF) rows of
the table replicate the best results reported in [1]. We observe that
speed perturbation leads to significant improvements regardless
of input feature, with much higher relative improvements on
MFCC. Therefore, in subsequent experiments, we use speed
perturbation by default.

Table II also shows the effect of multilingual pretraining on
KWS performance. Here, we only use speed perturbation when
finetuning, and not when pretraining in order to limit com-
putational costs. We observe significant improvements on the
baseline, on top of the improvements from speed perturbation,
regardless of input feature type. This is despite the fact that the
BNF already contain multilingual information.

E. Effect of the Ratio of Negative to Positive Training
Utterances

In Section III-C, for each training phrase, we sample M
utterances, one of which is the utterance from which the current
training phrase is taken. The other M − 1 “negative” utterances

Fig. 8. ATWV on the evaluation sets as the ratio of negative training utterances
is varied.

TABLE III
TERM WEIGHTED VALUE AS THE NUMBER OF UTTERANCES PER TRAINING

STEP IS VARIED WITH OR WITHOUT MULTILINGUAL PRETRAINING

are sampled randomly. In the experiments so far, we have set
M = 4.

Fig. 8 shows the result of varyingM with BNF-based models.
Increasing M has two obvious effects on the optimization; it
reduces the approximation error due to the sampling process and
it inadvertently up-weights the contribution of negative samples
to the loss function (effectively reduces λ). We argue that the
ATWV improvements we observe are a result of the former,
since, as we have already seen in Section IV-B (and Fig. 5),
decreasing λ does not improve the ATWV and doubling (or even
quadrupling it) does not degrade the term weighted value to the
extent that settingM = 1 does. However, the latter has an impact
on STWV, which decreases strictly as M increases although we
do not report it here to reduce clutter. This is due to a “broken-
clock” effect, where models trained with lower M (similar to
models trained with smaller λ) have higher recall simply by
virtue of returning far more hits, whether spurious or correct, as
a consequence of seeing a lower number and diversity of negative
training utterances. Finally, we see that with M = 8, we get a
good enough approximation and that increasing M further does
not lead to significant improvements in term weighted value–
even slightly degrading the performance for Pashto.

Table III shows the results of increasing M from 4 to 8 for the
speed-pertubed BNF models with and without pretraining. We
observe that increasing M generally improves the performance,
with the only exception being the Turkish Dev MTWV with
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TABLE IV
EVALUATION SET IV AND OOV TERM WEIGHTED VALUES FOR THE PROPOSED SYSTEM, A HYBRID ASR-BASED KWS SYSTEM AND THE FUSION OF BOTH

SYSTEMS

pretraining and the Zulu Eval ATWV without pretraining. We re-
iterate here that the variation inM is only done for the finetuning.
Pretraining is always done with M = 4. We do not experiment
with higher M for pretraining due to the computational costs
that would be involved.

F. Performance of Queries With Various Properties

In this section, we analyze the performance of the proposed
model on queries of various properties. Specifically, we an-
alyze how the performance of the model changes depending
on whether the query in question is in-vocabulary or out-of-
vocabulary, as well as how the performance changes with length
of the query. We compare the result to how the same factors affect
conventional ASR-based systems.

For this comparison, we build a baseline KWS system based
on a TDNN-based [53] hybrid ASR model. To have a fair
comparison, the TDNN acoustic model is pretrained on the
same data we use for multilingual pretraining of the proposed
model, and finetuned on each target language with speed per-
turbation applied for both pretraining and finetuning. We use a
word-subword hybrid index where IV queries are searched in a
word-based index while OOV queries are searched in a syllabic
one. Both the word and the subword lattices are obtained using
respective word and syllabic trigram Kneser-Ney-smoothed [54]
language models which we found to perform better than higher
order language models in this low-resource setting. We use the
official lexicon to get IV word pronunciations and to train a
Sequitur grapheme-to-phoneme converter [55] for getting OOV
pronunciations.

1) IV vs OOV Queries: Table IV shows the performance
of the ASR-based KWS system and proposed system on IV
and OOV queries. We find that the proposed model has much
smaller discrepancy between IV and OOV performance than
the ASR-based system. With the exception of Pashto, the ATWV
difference between IV and OOV queries is always under 3 points.

In terms of ATWV, the proposed system slightly outperforms
the ASR-based baseline system for OOV queries but lags it sig-
nificantly for IV queries. This is somewhat expected, especially
in the low-resource settings, as the baseline has a strong guide
for IV queries in the word language model, an advantage that
is diminished for OOV queries, even with a subword language
model and index.

We also report the OTWV, which slightly favors the proposed
model compared to the baseline. For IV terms, the relative aver-
age degradation between the proposed system and the baseline

Fig. 9. Average difference in ATWV of various systems when compared to
the ASR-based baseline as query length varies.

is reduced from 34% in ATWV to 23% OTWV. For OOV terms,
the relative improvement is increased from 2% to 10%. This
suggests that although the overall trends stay the same, part of the
difference in performance is due to the score normalization being
better suited to the baseline rather than qualitative differences in
the model.

Finally, we report the results of fusion, where we combine
the hitlists from both systems by weighted summation of scores
with weights tuned on the development sets. We find that the
performance of the baseline is significantly improved by score
fusion; around 9% on IV and 36% on OOV ATWV, with similar
improvements in OTWV. This underscores the potential benefit
of deploying both systems in tandem where computationally
feasible.

2) Query Length: We have seen that while our approach
does not distinguish much between IV and OOV queries, its IV
performance trails that of a strong ASR-based KWS baseline.
To find the root of this difference, we compare the performance
of the systems on queries of various length.

Figs. 9 and 10 show the average (across languages) difference
in ATWV and OTWV respectively between the proposed model
and the baseline. Negative values indicate query lengths for
which the baseline is better and positive values indicate query
lengths for which the proposed system is better. Note that al-
though it is not conveyed in this figures, all systems—including
the baseline—have better performance as the query length in-
creases. Even so, we find that in general, the baseline performs
better for shorter queries, both systems perform comparably for
mid-length queries, and the proposed system performs better
for long queries (above 15 characters). Finally, we observe that
fusion outperforms the baseline regardless of query length.
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Fig. 10. Average difference in ATWV of various systems when compared to
the ASR-based baseline as query length varies.

Fig. 11. Cumulative distributions of query lengths for each evaluation set.

These results are not surprising as short queries are both easier
to miss and easier to falsely spot, and the ASR-based system
being able to leverage contextual information provided by the
language model helps it better find short queries. They also
explain why our model performs significantly worse for Pashto
than the other two languages. As Fig. 11 shows, the queries in the
Pashto evaluation set are quite short, with over 50% of queries
being less than 5 letters long.

V. CONCLUSION

In this article, we extend our recent work [1] on end-to-end
keyword search. Our model provides a simplified pipeline for
keyword search, comprising a pair of encoders: one for encoding
spoken archives, and a second for text queries. Keyword search is
then effected in the resulting vector-spaces by computing inner-
products between the document and query encodings. Compared
to [1], in this work, we explore multilingual pretraining and
conduct thorough analyses of various components, strengths and
weaknesses of the proposed model. Our experiments show that:
� Our model significantly benefits from multilingual pre-

training, with considerable increase in term weighted val-
ues without making the model more complex.

� Our model retrieves out-of-vocabulary queries almost as
well as it retrieves in-vocabulary ones, and slightly out-
performs a strong ASR-based keyword search system on
OOV queries.

� The simplicity of our model comes at the cost of worse
performance than the ASR-based system on IV queries
and short queries—two query types where the ASR-based

system benefits from contextual clues provided by the
language model.

� Our approach is complementary with the ASR-based sys-
tem, and combining the two improves the performance
of the ASR-based system, even for IV queries and short
queries.

Our model has two main limitations, which provide avenues
for future work:
� The model does not use linguistic context information,

making it worse that the ASR-based system on IV queries
and short queries. It would therefore be worth exploring
methods to incorporate external text without complicating
the inference, similar to joint text and speech training for
end-to-end ASR [56], [57], [58].

� The document representation grows linearly with the size
of the archive. Although inner-products can be efficiently
computed even for very large indices, storing those indices
in memory becomes untenable for archives larger than a
few hundred hours. Potential solutions include quantiza-
tion techniques such as binary hashing [59] and product-
quantization [60] to reduce both the storage and search
computation costs.
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