Článek ve sborníku konference

ŠÁTEK Václav, VEIGEND Petr a NEČASOVÁ Gabriela. Taylor Series Based Solution of Nonlinear-quadratic ODE Systems. In: MATHMOD VIENNA 2018 - 9th Vienna International Conference on Mathematical Modelling. Vienna: ARGE Simulation News, 2018, s. 99-100. ISBN 978-3-901608-91-9.
Jazyk publikace:angličtina
Název publikace:Taylor Series Based Solution of Nonlinear-quadratic ODE Systems
Strany:99-100
Sborník:MATHMOD VIENNA 2018 - 9th Vienna International Conference on Mathematical Modelling
Konference:MATHMOD 2018
Místo vydání:Vienna, AT
Rok:2018
ISBN:978-3-901608-91-9
DOI:10.11128/arep.55
Vydavatel:ARGE Simulation News
Klíčová slova
Continuous systems, Ordinary di erential equations, Initial value problems, Taylor series, MATLAB
Anotace
The paper deals with possibilities of numerical solution of special type of nonlinear-quadratic systems of Initial Value Problems of Ordinary Di erential Equations (ODEs). The research is focused on higher order and variable step size method based on Taylor series
computation. Taylor series method for solving di erential equations represents a non-traditional way of a numerical solution.
The e ffective implementation of Modern Taylor Series Method (MTSM) in MATLAB software is introduced. The MTSM is based on automatic and recurrent calculation of higher Taylor series terms. The computation time and accuracy of our approach are compared with that of MATLAB ode solvers on a set of nonlinear-quadratic ODE systems coming from real world technical problems.
BibTeX:
@INPROCEEDINGS{
   author = {V{\'{a}}clav {\v{S}}{\'{a}}tek and Petr Veigend
	and Gabriela Ne{\v{c}}asov{\'{a}}},
   title = {Taylor Series Based Solution of
	Nonlinear-quadratic ODE Systems},
   pages = {99--100},
   booktitle = {MATHMOD VIENNA 2018 - 9th Vienna International Conference on
	Mathematical Modelling},
   year = {2018},
   location = {Vienna, AT},
   publisher = {ARGE Simulation News},
   ISBN = {978-3-901608-91-9},
   doi = {10.11128/arep.55},
   language = {english},
   url = {http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11544}
}

Vaše IPv4 adresa: 54.163.20.123
Přepnout na https