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Abstract—An ever increasing impact and amount of net-
work attacks have driven many organizations to deploy various
network monitoring and analysis systems such as honeypots,
intrusion detection systems, log analyzers and flow monitors.
Besides improving these systems a logical next step is to collect
and correlate alerts from multiple systems distributed across
organizations. The idea is to leverage a joint effect of multiple
monitoring systems to build a more robust and efficient system,
ideally, lacking the shortcomings of the individual contributing
systems. This paper presents an analysis of alert reports gathered
from several such detectors deployed in national research and
education network (NREN). The analysis focuses on the corre-
lations of reported events in temporal domain as well as on the
correlations of different event types.

I. INTRODUCTION

Blacklists are often used to collect and distribute informa-
tion on misbehaving entities. However, the blacklists include
very coarse information (usually only the identifier). Also, the
spatio-temporal incident characteristics that are prerequisite to
blacklist usage have not been studied thoroughly. Moreover,
the blacklists contain only the most visible misbehaving enti-
ties reported by a particular detection system. An attacker who
attacks multiple targets but with lower intensity might evade
being reported in the blacklist despite being detected due to a
high risk of a false positive.

To this end, this paper contributes by an assessment of data
(in Sec. IIT) gathered on suspicious events detected by various
detection systems deployed in CESNET (Czech NREN) over
a period of 6 months. In particular, the data analysis in Sec. IV
aims to answer two questions. Whether it is usual that IP
addresses appear in collected alerts repeatedly and whether
there are correlations between sources of different kinds of
malicious traffic.

II. RELATED WORK

It is a common expectation that incidents exhibit some
spatio-temporal correlations but the amount of literature to
document these correlations is surprisingly low. The largest
portion of the literature discusses spam characteristics, e.g. [9].
We are aware of only few works that do not focus solely on
spam and include also other types of malicious traffic. The
author of [7] focuses primarily on spatial correlations of spam
and SSH bruteforce attacks. His work shows that there are
“Internet bad neighbourhoods” which are application specific
and may be observed on various scales such as prefixes, ISPs
and countries. Subsequently, he elaborated the concept of bad
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neighbourhoods on spam in [1], [2], [8]. A thorough study [4]
focusing exclusively on SSH bruteforce attacks shows that
some attacks are distributed as well as stealthy.

A work studying botnet spatio-temporal behavior [6] in-
troduces a network quality termed uncleanliness to estimate
future botnet addresses. They analyzed several internal and
external alert sources (e.g. blacklists). Their results demon-
strate the evidence for both spatial and temporal correlation of
uncleanliness and relationship between botnet membership and
spamming and scanning activities. On the other hand, in [3]
the authors show that there is an overlap of blacklists of the
same type whereas only little overlap of different types within
a period of one week.

Most of the related works utilize already preprocessed data,
i.e. blacklists, as the major source of input data. The blacklists
are usually constructed using data from many sources located
at various places all over the world. In contrast to this, our
work is based on alerts of various detection systems deployed
at a single NREN network. We thus investigate whether the
correlations in malicious traffic discovered in the global data
are observable locally as well. Moreover, our analysis focuses
on different types of malicious events than those studied
before. We are not aware of any work mutually analyzing
spatial and temporal correlations of alerts about port scanning,
bruteforce password guessing, unauthorized web accesses and
TCP SYN flood attacks, which are the types of events studied
in this work.

III. DATA SETS

For the analysis presented in this paper we gathered alert
data from a diverse range of detection systems — honeypots
as well as flow-based traffic analysis systems'. These detec-
tors are based on diverse software and deployed in various
campus networks connected to CESNET or in the CESNET
network itself (with one exception). We do not have direct
control over most of the detectors since they are operated by
administrators of the campus networks and we only get results
through CESNET’s alert sharing system called Warden. The
dataset is thus very heterogenous, with data from sources with
different characteristics and configurations. While this might
not be ideal for analysis, we argue that such a non-uniform
deployment is common in many real networks and therefore
valid for analysis. Also, we do not aim at characterizing

IThe dataset is available in an anonymized form at:
http://www fit.vutbr.cz/~ibartosv/alert_dataset/



TABLE I: Datasets used for the analysis.

dataset attack type detector dettye;ftzor (I)Bsg::gg # alerts s#fn;lrr:eqllllgs date range
scanl scan LaBrea honeypot 512 843911 416035 | 2013-08-01 — 2014-01-31
scan2 ! scan honeyd honeypot 2048 309190 27524 | 2013-08-01 — 2014-01-31
scan3 scan HostStats | flow-based ~1M 201848 75565 | 2013-08-01 — 2014-01-31
scan4 2 scan honeyscan | hybrid 256 126169 49456 | 2013-08-01 — 2014-01-31
scan5 scan Dionaea honeypot 7 16082 8454 | 2013-08-01 — 2014-01-31
scan6 scan Dionaea honeypot 1 7007 4252 | 2013-08-01 — 2014-01-31
scan7 3 scan LaBrea honeypot 256 1274 511 | 2013-08-01 — 2014-01-31
scan8 scan (SSH) SSHCure flow-based ~1M 23959 4901 | 2013-10-01 — 2014-01-28
scan-ext scan (SSH) SSHCure flow-based 65536 7116 2290 | 2013-10-01 - 2014-01-19
sshbfl BF (SSH) Kippo honeypot 1 2832 1525 | 2013-08-01 — 2014-01-31
sshbf2 BF (SSH) Kippo honeypot 7 2218 1035 | 2013-08-01 — 2014-01-31
sshbf3 BF (SSH) SSHCure | flow-based ~1M 24281 6573 | 2013-10-01 — 2014-01-28
sshbf-ext | BF (SSH) SSHCure | flow-based 65536 3699 2167 | 2013-10-01 — 2014-01-19
webbf1 BF (web login) | HIHAT honeypot 1 11684 4640 | 2013-08-01 — 2014-01-31
webl web access Dionaea honeypot 7 1799 1093 | 2013-08-01 — 2014-01-31
web2 web access Dionaea honeypot 1 1473 1182 | 2013-08-01 — 2014-01-31
synfloodl | SYN flood HostStats | flow-based ~1M 207 155 | 2013-08-01 — 2014-01-31

! Some TCP ports are blocked by university’s main firewall so scans of these ports do not reach the honeypot.
2 Only scans targeting both the honeypot segment and some other address in the same /16 network are reported.

3 Only scans from Czech networks are reported.

malicious traffic itself but rather at analysing alerts generated
by a typical set of detection systems. Which we believe is
exactly what is needed for developing good alert aggregation
and reputation modelling techniques.

We split the alerts by their source and attack type into
individual datasets summarized in Tab. I. There are several
attack types reported. Scan refers to port scanning activity, a
large number of connection attempts from a single address
to distinct addresses. BF stands for bruteforce and denotes
attempts to log in via SSH or a Web form by automated
password guessing. Web accesses are trials to access some
of the predefined URLs on a honeypot. A SYN flood attack is
reported when a single address is sending a huge amount of
TCP SYN packets to another address.

For each dataset, we also indicate the size of IP range
the corresponding detector observes. The flow-based systems
observe either traffic at an organization gateway (/16 IP prefix)
or traffic on all border links of the CESNET backbone network.
Sum of all address ranges which CESNET connects to the
Internet is approximately one million. In case of honeypots,
the indicated range is the number of IP addresses the honeypot
is listening on.

The only detector outside the CESNET network (and also
outside the Czech republic and quite far in the IP space)
is SSHCure [5] deployed at the University of Twente, the
Netherlands. Datasets from this detector are labeled by -ext
suffix.

The columns # alerts and # unique source IPs indicate
number of alerts and number of unique source IP addresses
in each dataset. The column date range shows the range from
which we have the data. Most of the datasets span 6 months.

We are aware that the datasets may contain false alerts.
However, honeypots report accesses to IP address ranges where
no legitimate traffic should appear and it is a common practice

to consider all such traffic malicious. In this work, all flow-
based systems utilize very strict detection policy, e.g. a scan-
ning is reported only if the scanning IP address generates more
than 200 connection attempts to different targets. Therefore we
assume that the number of false alerts is negligible.

Besides information on the alert type and the reporting
detector, each alert includes source IP address and timestamps
of the beginning and the end of an attack. However, not all
detectors report start and end times of attacks. Therefore we
merge all alerts on the same source IP address reported by
the same detector within 2 hours. That is, if the time interval
between two consecutive alerts reporting the same address is
longer than 2 hours, the alerts are considered to represent two
distinct attacks. Otherwise the alerts are merged together. Tab. I
depicts the numbers of alerts after this aggregation process.

IV. ANALYSIS RESULTS

We analyze the datasets from two perspectives — time
correlations of alerts and correlations between individual types
of alerts.

A. Temporal correlations

In the analysis of temporal correlations we ask whether
is it usual that the same IP address is detected and reported
as malicious repeatedly and how long does it take for such
address to be reported again. More precisely, for an attack
detected at time ¢ we estimate the probability that there will
be another attack from the same address in a time window
(t,t + 1], where [ is the length of the time window. We label
that probability P(l).

Fig. 1 shows the probability P(l) for [ ranging from 3
hours to 30 days. Each line in the plot corresponds to a dataset
containing one type of alerts, i.e. datasets labeled with the same
prefix (such as scan) merged together. We do not plot a line
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Fig. 1: Probability of a repeated detection of the same address
for individual types of attacks.

for all datasets combined since it is almost the same as the
one for scans.

As can be seen, around 55% of addresses performing
scans are detected as scanning again within the next 24 hours
by some of the detection systems. And if we store reports
about scanning for a month, almost 70% of detected scans
will originate from addresses already known. Just a little
lower number of repeated detections can be seen in the case
of bruteforce attacks. 27% of machines trying to log in by
guessing passwords try this activity again within the next 6
hours and half of them try it again in two days.

On the other hand, malicious web accesses and SYN
floods are not detected repeatedly from the same address
often. Only 37% of alerts reporting the web accesses and
22% of SYN floods are followed by another such alert from
the same address in a month. In the case of web attacks,
this can be due to small number of detectors which monitor
just a few addresses and thus see just a small fraction of all
real attacks. The same explanation can not be used for SYN
flood attacks since they are reported by a detector observing
all communication going to and from the CESNET network.
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the same address for individual detectors.

However, SYN flood attacks are not very frequent, so the low
repeatability of SYN flood alerts is better explained simply
by small number of such alerts in the dataset. Also, source
addresses may be easily spoofed in the case of SYN flood
attacks.

No line in the plot shows a steep increase between two
lengths of time windows?. This means that the delays between
consecutive alerts reporting the same address are distributed
quite evenly and that there is no common interval in which the
attackers would usually repeat their attacks against the same
network.

When we merge all datasets into one, 68% of alerts are fol-
lowed by an alert with the same source address within 30 days.
However, these 68% of alerts accounts for 30% of all addresses
in the dataset only. As much as 70% of addresses appear in
the data only once. It may partially be caused by spreading
attacking activities throughout the whole Internet so there is
low chance that an attack hit some of the addresses monitored
by our detection systems more than once. Another reason is
the utilization of IP address as an identifier. The IP address of
a host may be assigned dynamically, moreover, mobile devices
connect to the Internet from many places and thus having
different IP addresses each time. It may therefore happen that
a single physical machine performing scans or other malicious
activities (e.g. due to infection by some malware) appears as
several sources as its [P address changes. It would therefore be
useful to have possibility to automatically detect which address
ranges are used for dynamic assignment since it is not useful
to store alerts about such addresses for a long time. It would be
even better if there would be a possibility to reliably identify
individual machines and track them as they move in the IP
address space. We encourage more research on this topic.

Fig. 2 shows the same information as Fig. 1 but for
individual datasets which were previously merged. Fig. 2(a)
shows data on scans, Fig. 2(b) shows data on SSH bruteforce

20nly the SYN flood line has a little different shape from the others. We
beleive this is just a statistical anomaly caused by the small number of alerts
and their specific distribution in our particular dataset.
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Fig. 3: Probability of a repeated detection of the same /24
prefix for individual types of attacks.

attacks. These plots show, that the extent to which addresses
are detected repeatedly by a single detector varies greatly
among different detectors. It might depend on the detection
capabilities of the detectors, but since most of our data sources
are honeypots which rarely miss a connection attempt, the most
important characteristics are the amount of traffic and the size
of the IP address space a detector observes.

This explanation fits well on scan2 which exhibits higher
chance to report the same address in short time window than
the other detectors. Scan2 observes much larger number of IP
addresses than any other honeypot in our datasets. The reason
why it does not also report the highest number of alerts is due
to a firewall protecting the organizational network including
the honeypots (blocking some of the most often scanned TCP
ports).

The measured repeatability of alerts is however not strictly
proportional to the size of observed IP space. Detectors scan3
and scan8 observes much larger IP space than the others
but they do not report much more repeated alerts. This is
because of discrepancy in the scale of an event necessary
for detection by a flow-based system and by a honeypot. A
honeypot can report even a single connection attempt on some
of its addresses, a flow-based detection system must however
see a lot of unsuccessful connection attempts before it can be
sure enough that it is not a legitimate traffic.

The situation is different for SSH bruteforce attacks. These
must consist of a lot of connections by definition, so all of them
can be captured by a flow-based detection system as well as
a honeypot. And since sshbf3 monitors much larger IP space
than the other detectors, it is much more likely that it detect
the same address attacking more than once within a short time.

In summary, regardless of the detector, P(l) always grows
as [ increases with growth rate slowly decreasing. This is a
common trend. The absolute percentage of repeated detections
is however heavily dependent on a particular detection system
and the environment it is deployed in.

So far we have analyzed the probability that an alert will
be followed by another alert with exactly the same address.
We can relax this condition and look for alerts with addresses
with the same prefix. Fig. 3 shows P(l) distribution after
such modification for prefix length of 24 bits. It thus shows

the probability that an alert will be followed by another alert
with an address from the same /24 subnet. Comparison with
Fig. 1 reveals that repeatability of SYN flood and web access
alerts does not increase significantly when /24 prefixes are used
instead of full addresses. This is because there are quite low
number of sources in these datasets and they rarely have a
common /24 prefix.

However, the use of prefixes have very significant impact
on other types of alerts. The increase of P(l) ranges from 5%
to almost 20%. In the case of scans and web bruteforce attacks
the increase is significantly higher for longer time windows
that for the short ones, resulting in less curved lines than
those in Fig. 1. This may be explained by misbehaving hosts
changing their addresses in the order of days, but only in small
IP range, so they stay in the same /24 prefix. Such behavior
is common in environments with dynamic assignment of IP
addresses.

Taken all datasets together, only 40% of /24 prefixes
appears only once (compare to 70% of alerts not repeated when
considering individual addresses). These results suggest that it
might be useful to model reputation not only for addresses
but also for prefixes. It however needs more in-depth analysis
which we leave for future work.

In summary, this subsection shows that a significant frac-
tion of detected malicious events are done by addresses re-
ported previously and that this behavior is well observable
even when only a small part of the Internet (a single NREN)
is monitored. The results of the analysis may be useful for
development and tuning of alert correlation methods and
reputation modelling systems as it gives clues on how long is it
useful to store alerts in order to detect the addresses attacking
repeatedly.

B. Correlations between individual datasets

In this section we look at correlations between sources of
different types of malicious traffic, i.e. how many addresses
from one dataset group can be found in another group as well,
where datasets are grouped by their type of malicious traffic.
Datasets with SSH scans only (scan8 and scan-ext) are put
into its own group here in order to study correlations of these
scans with SSH bruteforce attacks.

The correlations are shown in Tab. II. A number at row
r and column c tells a percentage of addresses in dataset
r that are also present in dataset c. For example, 44% of
the addresses performing bruteforce attacks on SSH (sshbf)
were also reported as scanners (scan). Numbers in parentheses
represent the count of unique addresses in each dataset.

The highest correlation is between scans reported by sys-
tems observing SSH traffic only and other scan reports. This
is not surprising since it is expected that scans of SSH are
captured by generic systems, too. In fact, it tells us that 17%
of SSH scanners would be undetected without the sensors
specialized to SSH traffic.

Very high correlation is also between web attacks and
scans. More than 80% of addresses attacking web services
were also reported as scanners. Most of them probably scanned
port 80 only, but 5% of them were also reported by SSH-only
detectors as scanners and 4% as originators of SSH bruteforce



TABLE II: Percentage of addresses common to pairs of dataset
groups.
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attacks. This means that there is a small part of attacking
IP addresses which performs very different kinds of attacks.
Similar results can be observed for SYN flood attacks where
45% of attackers were also reported as scanners.

Another case is correlation of scanning and bruteforce
attacks on SSH. It is known that SSH bruteforce attacks are
usually preceded by scanning of TCP port 22 from the same
source [5]. Our results however show that it is not so common
— only 30% of attacking addresses were also detected as
scanners. This might suggest that some attackers get their lists
of addresses to attack by another way than by scanning the
network themselves.

An interesting case of low correlation is the webbf dataset.
Although bruteforce attempts to log in via SSH and via Web
forms exhibit similar characteristics with respect to repetition
of alerts (as shown in Fig. 1), source addresses of these types
of attacks are completely different. In fact, the webbf dataset
have almost no addresses common with any other dataset. This
means that addresses trying to login to web services using brute
force are rarely involved in other types of malicious activities
and vice versa.

V. CONCLUSION

We have shown that known characteristics of malicious
traffic found previously in data from blacklists and from glob-
ally deployed arrays of sensors are valid when observing traffic
in a local network as well. Also, we show it on a different
kinds of attacks than those studied before. Knowledge of
these characteristics is important when designing IP reputation
systems

The analysis of temporal characteristics of alerts shows that
some IP addresses can be detected as malicious repeatedly if
the information about previously reported attacks are stored
long enough. However, around 70% of addresses were reported
only once throughout all our datasets. We believe that that
portion will be lower if we observe larger part of the Internet.
This may be achieved by sharing incident reports among
network operators, for example. Also, the chance to see more
than one report from the same address is probably significantly
affected by dynamic address assignment, which causes that a
single malicious host may have many different IP addresses
(usually in small range) over time. This theory is supported
by the fact, that if we consider /24 prefixes only instead of
full addresses, the number of non-repeated alerts lowers to

40%. Ability to identify individual hosts regardless of their
current I[P address would therefore be very useful (although
it may pose privacy issues). Or at least an ability to detect
prefixes with dynamic address assignment might be of use —
such addresses should be kept on blacklists for shorter time
than those assigned statically, for example.

Many characteristics shown by our analysis might be
expected. However, we also found some surprising ones. For
example, while it is common to expect that bruteforce attacks
on SSH are usually preceded by a network scan from the same
source, our data show that it is true in 30% of cases only.
70% of password-guessing addresses were never detected as
scanners.

While the analysis is based on data mostly from the
CESNET NREN, we believe the results are valid for other
networks of similar size as well.

As our future work we plan to compare the data from
our local detectors and honeypots with data from publicly
available global blacklists. We also plan to analyze distribution
of sources of malicious traffic by their geographic location and
by their autonomous systems.

ACKNOWLEDGMENTS

This work was supported by the IT4Innovations Centre
of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the
European Regional Development Fund and the national budget
of the Czech Republic via the Research and Development for
Innovations Operational Programme, as well as Czech Ministry
of Education, Youth and Sports via the project Large Research,
Development and Innovations Infrastructures (LM2011033).
Also, this research has been partially supported by the CES-
NET Large Infrastructure project no. LM2010005 funded by
the Ministry of Education, Youth and Sports of the Czech
Republic.

We also want to thank to operators of the detection systems
in the CESNET network and to developers of the Warden
system. Special thanks goes to Rick Hofstede from University
of Twente for sharing results of their deployment of SSHCure.

REFERENCES

[1] G. C. M. Moura et. al. Internet bad neighborhoods: The spam case. In
Proceedings of CNSM, 2011.

[2] G. C. M. Moura et. al. Internet bad neighborhoods aggregation. In
Proceedings of NOMS 2012, pages 343-350, USA, 2012.

[3] J. Zhang et. al. Characterization of blacklists and tainted network traffic.
In PAM, volume 7799 of LNCS, pages 218-228. 2013.

[4] M. Javed and V. Paxson. Detecting stealthy, distributed ssh brute-forcing.
In Proceedings of SIGSAC CCS, pages 85-96, USA, 2013.

[5] L. Hellemons et. al. SSHCure: A Flow-Based SSH Intrusion Detection
System. In Proceedings of the 6th AIMS, Luxembourg, volume 7279 of
LNCS, pages 86-97, Berlin, 2012.

[6] M. P. Collins et.al. Using Uncleanliness to Predict Future Botnet
Addresses. In Proceedings of IMC, IMC ’07, pages 93—104, USA, 2007.

[71 G. C. M. Moura. Internet bad neighborhoods. In Ph.D. dissertation.
University of Twente, 2013.

[8] G. C. M. Moura, R. Sadre, and A. Pras. Internet bad neighborhoods
temporal behavior. In Proceedings of NOMS, 2014.

[91 A. Ramachandran and N. Feamster. Understanding the network-level
behavior of spammers. SIGCOMM Comput. Commun. Rev., 36(4):291—
302, Aug. 2006.



