Článek ve sborníku konference

ONDEL Lucas, ANGUERA Xavier a LUQUE Jordi. MASK+:Data-Driven Regions Selection for Acoustic Fingerprinting. In: Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. South Brisbane, Queensland: IEEE Signal Processing Society, 2015, s. 335-339. ISBN 978-1-4673-6997-8.
Jazyk publikace:angličtina
Název publikace:MASK+:Data-Driven Regions Selection for Acoustic Fingerprinting
Název (cs):MASK+: Regiony určené pomocí dat pro tvorbu akustických otisků
Strany:335-339
Sborník:Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
Konference:40th International Conference on Acoustics, Speech and Signal Processing is starting
Místo vydání:South Brisbane, Queensland, AU
Rok:2015
ISBN:978-1-4673-6997-8
Vydavatel:IEEE Signal Processing Society
URL:http://www.fit.vutbr.cz/research/groups/speech/publi/2015/ondel_icassp2015_0000335.pdf [PDF]
Klíčová slova
Audio fingerprinting, content recognition
Anotace
Článek pojednává o optimální struktuře MASK+: Regiony určené pomocí dat pro tvorbu akustických otisků.
Abstrakt
Acoustic fingerprinting is the process to deterministically obtain a compact representation of an audio segment, used to compare multiple audio files or to efficiently search for a file within a big database. Recently, we proposed a novel fingerprint named MASK (Masked Audio Spectral Keypoints) that encodes the relationship between pairs of spectral regions around a single spectral energy peak into a binary representation. In the original proposal the configuration of location and size of the regions pairs was determined manually to optimally encode how energy flows around the spectral peak. Such manual selection has always been considered as a weakness in the process as it might not be adapted to the actual data being represented. In this paper we address this problem by proposing a unsupervised, data-driven method based on mutual information theory to automatically define an optimal MASK fingerprint structure. Audio retrieval experiments optimizing for data distorted with additive Gaussian white noise show that the proposed method is much more robust than the original MASK and a well known acoustic fingerprint
BibTeX:
@INPROCEEDINGS{
   author = {Lucas Ondel and Xavier Anguera and Jordi Luque},
   title = {MASK+:Data-Driven Regions Selection for Acoustic
	Fingerprinting},
   pages = {335--339},
   booktitle = {Proceedings of 2015 IEEE International Conference on
	Acoustics, Speech and Signal Processing},
   year = {2015},
   location = {South Brisbane, Queensland, AU},
   publisher = {IEEE Signal Processing Society},
   ISBN = {978-1-4673-6997-8},
   language = {english},
   url = {http://www.fit.vutbr.cz/research/view_pub.php.cs?id=10958}
}

Vaše IPv4 adresa: 3.80.60.248
Přepnout na https

DNSSEC [dnssec]