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Abstract

This thesis presents a unified approach to modeling of parallel architectures and
algorithms with special emphasis on estimation of obtainable performance. A mod-
eling language and simulator Transim is used for this purpose. Although Transim
was designed by its authors just as a transputer simulator for prototyping and per-
formance evaluation of message-passing programs, it is applied to simulations of
many different types of parallel architectures and programming paradigms, what is
far beyond the originally anticipated applications.

The approach is demonstrated on simulations of abstract machine models like
PRAM or APRAM as well as commonly used parallel architectures like symmetri-
cal multiprocessors, clusters of workstations and their combinations. Performance
tuning of parallel algorithms is undertaken and results of simulations are compared
to results obtained on real parallel computers. Presented simulation models also in-
clude various synchronization operations found in many parallel algorithms. These
models can be used as building blocks of more complex models.

Finally performance tuning of communication algorithms has been undertaken,
because of the dramatic impact of these algorithms on the overhead of parallel
computing. Communication is an indispensable part of any parallel computation and
the results are therefore applicable to a wide class of parallel applications running
on distributed machines with irregular network topology.

Keywords: modeling, simulation, parallel performance, performance prediction,
performance tuning, parallel computing, parallel architectures, parallel algorithms,
genetic algorithms.
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Chapter 1

Introduction

Parallel processing is as old as computers themselves. At the beginning it was
motivated purely by unreliability of first computers. The same computations were
run on more than one computer to increase probability of obtaining correct results.
As reliability of computers increased, this sort of parallelism survived only in mission-
critical applications, where very high reliability and availability are desired. In these
applications, redundant systems, or their parts, are used to obtain a certain degree
of fault tolerance.

The concept of parallel computing in the sense in which it will be understood in
the remainder of this thesis refers to the use of multiple processors operating together
on a single problem, which potentially provides significantly higher performance
than using a single processor. The problem at hand has to be split into parts (code,
data, or both), each of which is solved by a separate processor. The computing
platform, which is referred to as a parallel computer, could be a specially designed
computer system containing multiple processors or several independent computers
interconnected in some way.

Parallel computing has been forced by increasing demand for faster computer
systems. The idea is that P computers could provide up to P times the computa-
tional power of a single computer, no matter what is the power of a single computer,
with the expectation that the problem would be completed in 1/P th of the time or
a much larger problem would be solved in the original time. Of course, this is an
ideal situation that is rarely achieved in practice. Problems often cannot be divided
perfectly into independent parts. Some interaction is necessary between the parts,
both for data transfer and for synchronization of computations. However substantial
speedup of a solution may be achieved depending upon the problem and the amount
of parallelism in the problem.

Even though speed of processors, as well as performance of other computer de-
vices, has raised almost exponentially during the last decades [1] and this tendency
can be expected to hold also for some years to come, there is a constant demand
of new applications for more computational power than uniprocessor systems can
deliver. What also makes parallel computing timeless is that the continual im-
provements in execution speeds of single processors simply make parallel computers
even faster and there will always be problems that cannot be solved in a reasonable
amount of time on current computers — not only grand challenge problems, but
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also signal and image processing in real time, robotics, knowledge mining and even
consumer electronics.

Apart from obtaining the potential for increased speed on an existing problem,
the use of multiple computers/processors often allows a larger problem or a more
precise solution of a problem to be solved in a reasonable amount of time. For
example, computing many physical phenomena involves dividing the problem into
discrete solution points. Forecasting the weather involves dividing the space into
a three-dimensional grid of solution points. Two- and three-dimensional grids of
solution points occur in many other applications. A multiprocessor solution will
often allow more solution points to be computed in a given time, and hence a
more precise solution. A related factor is also that multiple computers often have
more total main memory than a single computer, enabling solution of problems that
require larger amounts of main memory to store data structures.

The idea of using parallel computing to improve performance is not new. Articles
about parallel computers appeared already in 1950s. For example, Gill writes about
parallel programming in 1958 [2] and Holland writes about a “computer capable of
executing an arbitrary number of sub-programs simultaneously” in 1959 [3]. Despite
its relatively long history, parallel computing is still an active research area with
large potential for improvements. At present we are witnessing a rebirth of parallel
processing on a single chip [4].

1.1 Parallel Architectures

One of fundamental taxonomies of computer architectures proposed already in 1966
by Flynn [5], but still useful today, is a model of categorizing all computers into
four classes according to parallelism at the instruction stream and data stream
levels. These categories combine single/multiple data streams and single/multiple
instruction streams. From the four possible combinations, the only category, which
emerged as the parallel architecture of choice for general-purpose multiprocessors,
is MIMD (multiple instruction streams, multiple data streams). This is primarily
due to two reasons:

1. MIMDs offer flexibility. With the correct hardware and software support,
MIMDs can function as single-user multiprocessors focusing on high perfor-
mance for one application, as multiprogrammed multiprocessors running many
tasks simultaneously, or as some combination of these functions.

2. MIMDs can build on the cost-performance advantages of off-the-shelf micro-
processors. In fact, nearly all multiprocessors built today use the same micro-
processors found in workstations and single-processor servers.

Existing MIMD multiprocessors fall into two classes, depending on the number of
processors involved, which in turn dictate a memory organization and interconnect
strategy. The first group, called centralized shared-memory architectures, usually
does not have more than a few tens of processors. The second group, which con-
sists of multiprocessors with physically distributed memory, scales to hundreds or
thousands processors.
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Fig. 1.1: Basic structure of a shared-memory multiprocessor

For multiprocessors with small processor counts, it is possible for the proces-
sors to share a single centralized memory and to interconnect the processors and
memory by a bus. With large caches, the bus and the single memory, possibly with
multiple banks, can satisfy the memory demands of a small number of processors.
By replacing a single bus with multiple buses, or even with a switch, a centralized
shared-memory design can be scaled to a few tens of processors. Due to a single
main memory that has a symmetric relationship to all processors and uniform access
time from any processor these multiprocessors are often called symmetric (shared-
memory) multiprocessors (SMPs), and this style of architecture is sometimes called
uniform memory access (UMA). Figure 1.1 shows what these multiprocessors look
like.

To support a larger processor count, memory in parallel architectures must be
distributed among the processors rather than centralized; otherwise the memory
system would not be able to support the bandwidth demands of a larger number
of processors without incurring excessively long access latency. The larger number
of processors raises the need for a high bandwidth interconnect. Both direct inter-
connection networks (with each router switch connected to at least one CPU) and
indirect networks are used. Basic structure of these multiprocessors is depicted in
Figure 1.2.

There are two alternative architectural approaches that differ in the method used
for communicating data among processors in a distributed-memory system: single
address space and multiple address spaces.

In the first method, physically separate memories can be addressed as one logi-
cally shared address space, meaning that a memory reference can be made by any
processor to any memory location, assuming it has the correct access rights. These
multiprocessors are called distributed shared memory (DSM) architectures. The
term shared memory refers to the fact that the address space is shared; it does
not mean that there is a single, centralized memory. In contrast to the symmet-
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Fig. 1.2: Basic structure of a distributed-memory multiprocessor

ric shared-memory multiprocessors, also known as UMAs (uniform memory access),
the DSM multiprocessors use NUMA (nonuniform memory access), since the access
time depends on the location of a data word in memory.

Alternatively, the address space can consist of multiple private address spaces
that are logically disjoint and cannot be accessed by a remote processor. In such
multiprocessors, the same physical address on two different processors refers to two
different locations in two different memories. Each processor-memory module is es-
sentially a separate computer; therefore, these parallel processors have been called
multicomputers. A multicomputer can even consist of completely separate comput-
ers connected on a local area network. It is now widely recognized that a cluster
of workstations (COW) or network of workstations (NOW) offers a very attractive
alternative to expensive supercomputers and parallel computer systems for high-
performance computing. Using a cluster of workstations has a number of significant
and well-enumerated advantages over specially designed multiprocessor systems [6].
Key advantages are as follows:

1. Very high performance workstations and PCs are readily available at low cost.

2. The latest processors can easily be incorporated into the system as they become
available.

3. Existing software can be used or modified.

Networks of workstations use standardized or customized interconnect, depend-
ing on performance and cost requirements. Two standards are in widespread use,
10Mbits/sec and 100Mbits/sec Ethernet (IEEE 802.3), which use coax wire or
twisted pair wire interconnects. In addition, a Gigabit Ethernet (1000Mbits/sec) has
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been developed (IEEE 802z). Although a traditional bus topology used in past has
been overcome by a star topology with high performance and cost-effective switches,
message latency of Ethernet is still very significant, especially with the additional
overhead caused by some message passing software. Because the Gigabit Ethernet
latency using TCP/IP is about 100µs [7], such systems are especially suitable for
coarse-grained parallel algorithms. Fine-grained algorithms require interconnects
with lower latency, such as Myrinet [8].

1.2 Parallel Programming Models

Applications running on parallel computers are written in a certain programming
model. In the simplest case, the model consists of multiprogramming a large number
of independent sequential programs; no communication or cooperation takes place
at the programming level. The more interesting cases include true parallel pro-
gramming models, such as shared address space, message passing, and data parallel
programming. We can describe these models intuitively as follows:

• Shared variable programming uses shared data structures, which can be ac-
cessed by any processes cooperating on a given task. Individual activities can
be orchestrated by accessing the shared data structures.

• Message passing is akin to telephone calls or letters, which convey information
from a specific sender to a specific receiver. There is a well-defined event
when the information is sent or received, and these events are the basis for
orchestrating activities performed by individual processes. However, no shared
location is accessible to all processes.

• In data parallel programming, several processes perform an action on separate
elements of a data set simultaneously and then exchange information globally
before continuing. The global reorganization of data may be accomplished
through accesses to shared addresses or messages since the programming model
only defines the overall effect of the parallel steps.

There are several alternatives for implementing these models:

1. Designing a special parallel programming language. An example is a recent
project Orca [9] or a classical CSP-based programming language Occam [10].

2. Modifying an existing sequential high-level language. Common representatives
of language extensions are standards High Performance Fortran (HPF) [11]
and Open Multi Processing (OpenMP) [12], although OpenMP is a hybrid
approach, which belongs also to the next category.

3. Using library routines with an existing sequential language. Libraries for mes-
sage passing are defined for example by standards Parallel Virtual Machine
(PVM) [13] and Message Passing Interface (MPI) [14]. There are several
thread libraries used for shared memory programing, e.g. POSIX standard
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1003.1c, Java threads and native libraries of some operating systems, but pro-
grams usually use these libraries to obtain concurrency for different purposes
than achieving speedup in parallel processing.

1.3 Performance Factors

1.3.1 Granularity

To achieve an improvement in speed through the use of parallelism, it is necessary to
divide the computation into tasks or processes that can be executed simultaneously.
The size of a process can be described by its granularity. In coarse granularity, each
process contains a large number of sequential instructions and takes a substantial
time to execute. In fine granularity, a process might consist of a few instructions,
or perhaps even one instruction.

Sometimes granularity is defined as the size of the computation between commu-
nication or synchronization points. Generally, we want to increase the granularity to
reduce the costs of process creation and interprocess communication, but of course
this will likely reduce the number of concurrent processes and the amount of paral-
lelism. A suitable compromise has to be made.

For message passing, it is particularly desirable to reduce the communication
overhead because of the significant time taken by intercomputer communication.
This is especially true for networks of workstations, where the communication la-
tency can be really high. As we divide the problem into more and more parallel
parts, at some point the communication time will dominate the overall execution
time due to very frequent message passing. The ratio

Computation/communication ratio =
Computation time

Communication time
=

tcomp

tcomm

(1.1)

can be used as a granularity metric. It is very important to maximize the compu-
tation/communication ratio while maintaining sufficient parallelism.

1.3.2 Speedup and Its Limitations

Two basic parallel performance measures, which are also used in this thesis, are
speedup factor and efficiency. Speedup S(P ) is a measure of relative performance
between a multiprocessor system with P processors and a single processor system.
It is defined as:

S(P ) =
ts
tp

(1.2)

where ts is the execution time on a single processor and tp is the execution time on
a multiprocessor.

The (system) efficiency E gives the fraction of the time that the processors are
being used on the computation. It is defined as

E =
ts

tp × P
(1.3)
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which leads to

E =
S(P )

P
× 100 % (1.4)

when E is given as a percentage.
There are several factors that appear as overhead in parallel programs and limit

the speedup and efficiency, notably

1. Periods when not all the processors perform useful work and are simply idle
(e.g. inherently serial parts of the computation).

2. Extra computation in the parallel version not appearing in the sequential ver-
sion.

3. Communication time for sending messages in message passing programs.

4. Creation, grouping and management of processes

5. Synchronization of processes.

The simplest performance models take into consideration only the overhead
caused by idling (waiting) processors. The fixed workload model, also known as
Amdahl’s law [15], assumes constant serial execution time and is given by the fol-
lowing equation:

S(P ) =
ts

fts + (1− f)ts/P
=

P

1 + (P − 1)f
(1.5)

where f is a fraction of the computation that cannot be divided into concurrent
tasks. Such assumption severely limits the potential speedup — its maximum value
according to the equation 1.5 is:

lim
P→∞

S(P ) =
1

f
(1.6)

On the other hand, a fixed execution time model assumes that a problem size in-
creases with the number of processors. It defines speedup as:

Ss(P ) =
s + Pp

s + p
= s + Pp = P + (1− P )s (1.7)

where s is the time for executing the serial part of the computation and p the time
for executing the parallel part of the computation on a single processor. s and p
also fulfill a condition s + p = 1 The equation 1.7 is called Gustafson’s law [16].

1.4 State of the Art

The need of multiprocessor performance prediction arises not only in computational
science in connection with many challenging problems of contemporary science,
but also in decision making around multiprocessor software/hardware architecture
for embedded systems, recently on a chip [17, 18]. Sound performance evaluation

7



methodology is essential for credible computer architecture research to evaluate
hardware/software architectural ideas or tradeoffs. Performance modeling has to
take characteristics of the machine (including an operating system, if any) together
with the application software and predict the execution time.

We can classify the different approaches to performance modeling in three cate-
gories: analytic modeling, simulation modeling and measurement.

Analytic models are fast and efficient since the behavior is described through
mathematical equations. Unfortunately, even if it were possible to have an accurate
analytic model of a computer, it would be too complicated. Memory hierarchies,
asynchronous events and embedded processor (instruction level) parallelism make
it difficult to conceive the model. On high performance computers, which exploit
process parallelism, this problem gets even worse, as the performance of the network
and the actual communication patterns have often a non-negligible unpredictable
effect [19, 20]. In fact, the two often used parallel performance analytic models,
BSP [21] and LogP [22] simplify the parallel architecture to four or five parameters.

A general approach for analytic performance prediction of iterative algorithms
running on shared memory systems has been proposed in [23]. Although the model is
computationally simpler than many queuing or simulation models [24], unlike them
it represents a parallel computation as a sequence of identical loop iterations and
does not account for randomness in loop iteration times. It also makes certain
assumptions about the modeled architecture, e.g. circuit-switching networks are
assumed. Another example of analytic performance prediction technique, which
is based on the approximation of parallel flow graphs by sequential flow graphs can
be found in [25].

The above approaches require users to explicitly model the application along
with the entire system. A source code based analytic performance prediction model
for Data-parallel C has been developed by Clement et al. [26]. The approach uses a
set of assumptions and specific characteristics of the language to develop a speedup
equation for applications in terms of system costs.

Performance prediction of a Fortran program based on source code interpretation
has been proposed in [27]. The approach achieves high accuracy of prediction, but
it requires the whole program to be implemented, which may demand too much
effort in cases when approximate results are sufficient. Moreover, it is restricted to
a single programming model and language.

Simulation modeling constructs a reproduction not only of the time behavior of
the modeled system but also its structure and organization. It plays an important
role in architecture design. Simulation modeling can be more accurate than ana-
lytic modeling but is more expensive and time consuming and can be unaffordable
for large systems. Therefore, less-detailed simulations that still provide reasonable
relative accuracy are required.

As noted in [28], current research of computer architectures tends to simulation-
based quantitative evaluation. The authors state that papers on simulation now
constitute 80 to 90 percent of the total presented at the International Symposium
on Computer Architecture. By comparison, papers based on direct measurements
of real systems or on mathematical models have fallen to less than 10 percent from
almost 35 percent during the last two decades. Despite this fact, the other methods
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still play an important role in computer architecture design. Analytic models, for
instance, can help to understand a system in ways that simulation does not provide.
They can also be used to validate a simulation-based model.

Generally, it is much more difficult to simulate performance of an application in
shared address space than in message passing, since some events of interest are not
explicit in the shared variable program (e.g. cache misses requiring bus or network
transactions) [29]. In the shared address space, performance modeling is compli-
cated by the very same properties that make developing a program easier: naming,
replication and coherence are all implicit, i.e. transparent to the programmer, so it
is difficult to determine how much communication occurs and when, e.g. when cache
mapping conflicts are involved.

There exist various tools for simulation and prototyping of parallel computations,
especially on message passing (MP) systems. Commonly used shared-memory (SM)
simulators rsim, Proteus, Tango, limes or MulSim [30] are not adaptable for MP,
although having a single approach, which combines the ability of modeling shared-
memory as well as message-passing systems would be undoubtedly valuable.

SystemC modeling environment developed recently [31] is an open initiative
directed to specification, simulation and optimization of complex hardware/software
systems at higher levels of abstraction. It is a C++ class-based approach that
adds multiple concurrent processes, communication and timing to C++ language.
SystemC is more like VHDL, suitable for cycle-accurate simulation including some
details unnecessary for performance prediction.

System-level modeling and simulation using time-annotated SDL specification
was attempted in [32] with extra annotations for architecture modeling and the
assessment of performance. It enables an exploration of a large number of multi-
processor architecture solutions from the very start of the design process, but it
considers only one performance factor and lacks accuracy when execution on mod-
ern microprocessors with advanced features (pipelining, internal parallelism,. . . ) is
simulated.

The Unified Modeling Language (UML) is emerging as a de-facto standard that
is widely used for modeling object oriented sequential applications. However, it has
also been recently applied to modeling of parallel architectures and programs. An
object oriented UML description of the BSP model of parallel computation has been
developed [36]. The model can be used for various disciplines of parallel computing
research such as parallel architecture, parallel algorithm development, and object
oriented implementations of the BSP model on parallel computing machinery.

Extensions to UML which support modeling of performance-oriented parallel
and distributed applications were presented in [37]. The project includes a set of
UML building blocks that model the most important constructs of message passing
and shared memory parallel paradigms. The UML models support further annota-
tion with performance information, which can be used for performance prediction.
However, a performance estimation tool based on the UML models [38] is still under
development.

Performance analysis is another important activity that requires parallel pro-
gram code already running on a target platform. Empirical experimentation is an
irreplaceable task in any science. Measurement methods allow to identify bottlenecks
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of a real parallel system performance. This approach is often expensive because it
requires special purpose hardware and software. Performance measurement can be
highly accurate when a correct instrumentation design is carried out for a target
machine. It is a cyclic process of measuring and analyzing performance data, which
is driven by the programmer’s hypotheses on potential performance problems. But,
as in any science field, real systems are not always available.

Various tools for automatic performance analysis and tuning have been devel-
oped. A recently suggested approach based on performance property specification
language [33] formalizes performance bottlenecks and the data required to detect
them. It has been used to formalize properties of parallel programs using various
programming paradigms such as OpenMP [34] and MPI [35]. The specification
language is similar to Java but uses only single inheritance and does not require
methods. It uses a special syntax to specify performance properties. The mod-
els are highly dependent on a target architecture’s support for performance data
measurement (e.g. counters of cache misses, remote page accesses, etc.). The ap-
proach is general enough to support various programming models and architectures.
An automatic system that provides automatic performance analysis based on the
specification language is currently being developed.

1.5 Dissertation Goals and Used Methods

A primary goal of this thesis is development of a unified approach to modeling of
parallel architectures and algorithms with special emphasis on estimation of obtain-
able performance. The modeling language and simulator Transim [39] has been
chosen as a base tool. Although it was designed by its authors just as a transputer
simulator for prototyping and performance evaluation of message-passing programs,
the goal was to apply it to simulations of many different types of parallel architec-
tures and programming paradigms. This goes far beyond the originally anticipated
Transim applications.

The selected approach should be able to provide means for simulating theoreti-
cal parallel machine models like PRAM or APRAM as well as real shared-memory
and distributed-memory machines with various underlying communication architec-
tures (memory hierarchy, direct and indirect interconnection networks). It should
also support simulation of different types of parallel programming models (message-
passing, shared-variable, data-parallel). Development of a uniform description of
parallel software and hardware on distributed- as well as shared-memory architec-
tures would allow fair performance comparison, especially when message passing and
shared variable programs may run on either architecture. Moreover, the approach
should achieve acceptable relative accuracy of simulation, which can be proved by
comparison of simulation results with real executions on available architectures.

1.5.1 Transim Description

Transim is based on a formal approach to concurrency known as Communicating
Sequential Processes (CSP), originally devised by Prof. C. A.R.Hoare [40], which
can be used for modeling computer hardware. Hardware modules are represented
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as sequential processes executing in parallel, and their interaction is described by
passing messages among them. Unidirectional point-to-point static communication
channels are defined in CSP together with basic channel operations receive, send,
select (?, !, ALT). The CSP is also used in teaching concurrency [41, 42]. A well-
known implementation of CSP is Occam language [10], which was developed in
concert with a transputer processor. The Transim language is a subset of Occam
with certain extensions required for performance evaluation.

The Transim simulator runs under Unix or MS DOS. Simulation is based on
accumulation of time intervals tcompi

of useful computations (which are not in fact
carried out) and separately time intervals toveri

of nonproductive overhead activities
(idling, communication, waiting for a partner or for a timer). Since parallel time
TP is the same for all P processors and sequential time TS is taken as a sum of all
periods of useful computation in all processors, the simulator derives speedup S and
average efficiency E as

S(n, P ) =
TS

TP

=
1

TP

P∑
i=1

tcompi
=

P∑
i=1

tcompi

(tcompi
+ toveri

)
=

P∑
i=1

Ei (1.8)

E =
S

P
(1.9)

The Transim language used to write input files for the simulator is not a full-
fledged programming language, but only a descriptive language suitable for specifi-
cations of parallel software, hardware and mapping to one another. It contains only
predefined procedures and functions and limited data types. Software description
contains all point-to-point channel communications and control statements, whereas
the sequential code is replaced by timing constructs SERV(). An argument of SERV()
specifies the number of CPU cycles taken by the task. Data-dependent computations
can also use a random INT value in a certain interval RAND(low, high). Integer
computations can be carried out, but are timeless. Often they can be used for small
demonstration examples running simultaneously with simulated parallel execution of
a much larger problem. Real data types are not supported at all. Explicit overhead
can be represented directly by WAIT() construct.

Process creation is done either by replicating the same code in a subset of pro-
cessors using replicated PLACED PAR construct (SPMD model), or using different
codes for processes running on different processors (MPMD model). Several par-
allel processes on one CPU are created by PAR construct. Using macros and C
preprocessor can avoid copying the same code many times (e.g. barrier code). Some
features of a distributed kernel are also built in Transim, namely process priorities
and scheduling. Processes in Transim are static, each process code is denoted by SEQ

| process.name. Two priorities, high and low, are defined for processes running on
the same processor. Whereas the low priority processes are timesliced, high priority
processes run until blocking condition occurs (communication, waiting for a timer,
etc.). Timers can be declared with two resolutions according to the priority level.
Transim process state and transition diagram is shown in Figure 1.3.

As far as communication is concerned, unidirectional point-to-point channels (de-
clared as CHAN OF ANY channel.name) are used. Communication overhead based
on a linear communication model (set-up time and transfer time proportional to the
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Legend

Inac Inactive processes
Split A parent process that executed the PAR statement
RQ Ready Queue — processes ready for execution
Exec Currently executing process
S-ALT A process waiting for a partner in the ALT statement
I/O ext A process communicating with a process running on a different

processor
S-com A process waiting for communication
I/O int A process communicating with a process running on the same pro-

cessor
S-tim A process suspended for a time interval determined by a timer

Fig. 1.3: State diagram of process transitions in Transim

message length) can be defined by the user. The simulated messages can be of ar-
bitrary length (up to MAXINT bytes). The length of the message in bytes is specified
in the output statement, but only a single INT is actually transferred in a channel.
This is not as restrictive as it seems; longer messages may be put in a shared mem-
ory and retrieved in no time by the receiver process. Interprocess communication
in Transim is unbuffered and uses implicit synchronization: both the partners (pro-
cesses) wishing to communicate must be ready, i.e. synchronization is achieved at
each communication. Other types of communications (non-blocking, asynchronous,
collective, WH routing, etc.) can be built up using available primitives receive, send,
select (?, !, ALT).
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The architecture and CPU parameters are specified by NODE construct in hard-
ware description (clock speed, link speed, communication latencies etc.), otherwise
the default values are used. Any piece of hardware, not only CPU, can be simulated.
Channel placement on physical links, two bi-directional channels per link, is done
automatically, the simulator extracts topology from the Transim file. The number
of physical links per processor is not limited. Only if different speeds are required
on different channels, then topology must be described by LINK statements. The
mapping between software and hardware is made through the MAP construct, several
processes can be mapped on one CPU and will run in parallel.

Transim simulator generates quite a few output files, various statistics on uti-
lization of processors, time spent by processes and channels in all possible states.
Average processor utilization and speedup are given first, equations 1.8 and 1.9.
Processors can send messages/data to a report during simulation, either by using
NOTE(note.text) which prints a message, a process id and simulated time, or by
predefined channel OUTSTRM (one per processor) e.g. OUTSTRM ! data1, data2,...

which will print intermediate results.
A further reference to Transim language constructs, which may be useful for

better understanding of code examples in this thesis, can be found in appendix A.

1.6 Overview of the Following Chapters

The first part of this chapter presented an introduction to parallel processing and its
overhead, which determines a resulting performance. A short description of widely
used parallel architectures and programming models was given in sections 1.1 and
1.2. Next, the overview of a state of art in the specified research area was given
and, finally, goals of this thesis were introduced together with methods how to fulfill
them.

Simulation of theoretical models of parallel systems is described in chapter 2.
Features and limitations of the most frequently used abstract models are given first.
Then, simulation of a finite size problem execution in Transim is described. The
approach taken is demonstrated on an example of tuning performance of a parallel
sorting algorithm.

Chapter 3 describes cache-coherent bus-based symmetric multiprocessors. De-
scriptions of models of most frequently used synchronization primitives like various
locks and barriers are also given. Models of these primitives can be used as building
blocks of more complex shared-variable algorithms. Achieved accuracy of simulation
is demonstrated by comparison of simulation and real execution of a parallel Fast
Fourier Transform algorithm.

Modeling of cluster computations is presented in chapter 4. At first, descriptions
of various cluster interconnections like Omega network, fat tree, crossbar switches
and different switching techniques are given. Then, a model of a SMP cluster is in-
troduced in section 4.2. It combines the cluster interconnection models with a SMP
model described in chapter 3 to form a more complex model of an architecture suit-
able for a hybrid message-passing/shared-variable programming paradigm. Results
of simulations are again compared to real executions on a cluster of workstations.
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Gauss-Jordan elimination method for solving large systems of linear equations is
used as a benchmark algorithm.

Performance modeling and design of iterative and optimization algorithms is de-
scribed in chapter 5. The developed iterative algorithm GAroute is intended for
optimization of group communication on irregular topologies. Design of both se-
quential and parallel versions is presented together with simulation-supported per-
formance tuning of the parallel implementation. Presented results indicate ability
of the designed algorithm to provide results useful also in other areas of parallel
computing.

Finally, chapter 6 summarizes main contributions of the thesis and proposes
possible directions of future research.

Appendix A contains a short reference of the most frequently used Transim
commands. It can be useful for better understanding to code examples presented in
the thesis.
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Chapter 2

Abstract Models of Parallel
Systems

Significant variety of parallel computer architectures caused that several mathemat-
ical models of parallel computer systems have been developed to aid in easier design
of algorithms and theoretical analysis of behavior, complexity and correctness of par-
allel computations. Suggested models include e.g. PRAM, APRAM or BSP abstract
machines [44].

Performance analysis of algorithms designed for such models is oriented mainly
to asymptotic complexity in time or space and it may not often reflect properties of
finite size of problems on real machines with limited resources and many sources of
overhead, which are difficult to include in the theoretical models. Theoretical study
of performance oriented only to asymptotic complexity has not much in common
with real machine performance. There are two reasons for that: an arbitrarily
large hidden multiplicative constant in asymptotic time complexity expressions and
a requirement that problem size n > n0, n → ∞. An asymptotically superior
algorithm may often be worse than the one asymptotically inferior for the whole
range of n of practical interest.

Features and limitations of the theoretical models are discussed in the following
sections. Then, it is shown how execution of algorithms designed for the abstract
models can be simulated in Transim to find out their performance for a given problem
size. Performance tuning of a parallel sorting algorithm is also undertaken, using
two modifications of the basic algorithm. The real-time performance of PRAM
programs is evaluated directly by Transim simulator based on timing constructs in
software description.

2.1 PRAM

Parallel Random Access Machine (PRAM [43]) is a simple model of a single in-
struction/multiple data symmetric multiprocessor computer (SIMD SMP). It is an
extension of a classical model of a sequential computer Random Access Machine
(RAM [44]).

The RAM model consists of a computing unit, input tape and output tape.
There is no limitation on number and/or sizes of memory cells. Time complexity
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is defined as a number of executed instructions since execution of all instructions
takes a unit time regardless to lengths of its operands. Space complexity is defined
as a number of accessed memory cells.

A parallel model (PRAM) consists of an arbitrary number of processors con-
nected to a common memory. All processors are implicitly synchronized. Every
processor can access any cell of the shared memory in a unit time. Processors com-
municate only by means of the shared memory. Parallel time complexity is equal to
the time of execution of a program. Space complexity equals to a number of accessed
shared memory cells.

PRAM contains many simplifications of parallel computers, which make it at-
tractive to parallel algorithm designers, but which, at the same time, make the model
too unrealistic for reliable prediction of performance of the parallel algorithms on
real machines. The limitations and details of lower levels of architectures ignored
by the model includes e.g. conflicts and overhead of accesses to a shared memory,
synchronization overhead, connectivity, speed limits and bandwidth capacity of in-
terconnection network’s links etc. To bring the model as near to real architectures
as possible, finite number of memory cells and finite word length of PRAM were
assumed in simulations. Moreover, the most restricted model of concurrent access
to shared memory, EREW (Exclusive Read, Exclusive Write), was used.

2.2 Asynchronous PRAM (APRAM)

Real computers differ from PRAM models in several properties. Most of MIMD
computers and their processors do not run synchronously. Beside that, access to
shared memory takes longer than local operations on registers. Therefore, parallel
models which better reflect properties of real computers with shared memory were
designed. An elegant model is APRAM, which differs from PRAM in several points:

• Processors work asynchronously ; there is no central clock.

• Processors must explicitly synchronize.

• Memory access time is not unit.

Explicit synchronization is performed by barrier operations, which are logical
points in code of a given set of processes. Every process stops at this point until
other processes reach the point. Then all of them continue.

The computation on an APRAM computer is defined as a sequence of global
phases, in which processors work asynchronously, divided by barrier synchronization.
A state of computation (contents of shared memory) can only be determined at the
place of a barrier. The state cannot be determined at any place between barriers
because it depends on relative speeds of processes, which are neither defined nor
determinate. Therefore, every APRAM algorithm is constrained with an important
condition:

Rule 1
If a memory cell is written by a certain processor in a given global phase, it must
not be accessed by any other processor in the same phase.
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2.3 Bulk Synchronous Parallel (BSP) Model

BSP is a more realistic model of a MIMD computer with distributed memory [21]. It
is very similar to APRAM, except that collective communication operations are used
instead of reads and writes from/to a shared memory. A computation consists of so
called supersteps. A superstep is defined as a set of independent local computations
followed by a global communication phase and a barrier synchronization step. The
model consists of:

• A set of processor-memory pairs.

• A communication network that delivers messages in a point-to-point manner.

• A mechanism for the efficient barrier synchronization for all or a subset of the
processes.

• There are no special combining, replicating, or broadcasting facilities.

Some of BSP’s fundamental properties are that programs are simple to write,
the model is independent of target architectures, and the performance of a program
on a given architecture is predictable. This is achieved by considering computation
and communication at the level of the entire program and the executing computer.

2.4 Simulating PRAM Algorithms with Transim

The main shortcoming of the PRAM model lies in its unrealistic assumption of zero
memory latency and instruction-level synchrony. Nevertheless, there were several
attempts to develop PRAM simulator, especially at universities, enabling practical
PRAM programming. One of such examples is a simulator and language Fork as
reported in [45].

An alternative approach described in this section and published in [63] is based
on the Transim simulator. This approach has been chosen because it supports
comparison of finite problem size PRAM simulations to simulations of real machine
executions with reasonable processor count P . In addition, it leaves the speed vs.
accuracy tradeoff on the user, who can control the level of detail and accuracy of
simulation.

In order to make the PRAM model resemble more closely to modern RISC
processors in real machines, the most constrained variant EREW APRAM has been
chosen for simulation and load and store instructions are separated from compute
instructions, which operate on register operands only. Each register instruction
executes in one clock cycle, and all processors synchronize at instruction level. This
corresponds to IPC = 1, which is used in simulation of real architectures, too.

The simulated algorithm was the bitonic sort, for more than 20 years the best
sorting algorithm for hypercubes, with time complexity O(log2 n) when sorting
n keys on P = n processors. The algorithm is implemented as a single pro-
gram/multiple data (SPMD) application. In general, shared memory access can take
more than 1 clock cycle (actually the first access in a block of data d clocks, other
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accesses 1 clock, since a pipelined load/store unit is assumed) and a MPMD model
of processing can also be used, in which case synchronizing barriers are needed. All
these generalizations lead to the APRAM model and are easily described in Transim.

Although Transim is naturally intended for message-passing distributed memory
systems, it supports also shared variables. This property enables successful simula-
tion of a PRAM model as well. Communication operations are not needed for this
model at all.

A multi-port shared memory read or write by client processes is simulated by
read or write by one process at a time. Unless two or more processors write into
the same memory location, we do not have ambiguity. We must therefore make sure
that this situation does not occur, because simulation would not stop in this case,
leaving in a memory location the value written last.

PRAM machine synchrony at instruction level is obtained using SERV() or
WAIT() statements with correct arguments inside a (conditional) code. In case
of APRAM, a simple model of a sense-reversal barrier (Figure 3.6) as described in
section 3.2.2, was used for synchronization. The model is suitable for repeated use
in loops and the synchronization overhead can be set explicitly.

2.4.1 Performance Tuning of a Sorting Algorithm

Sorting of n keys using compare-and-exchange operations has sequential complex-
ity O(n log n) and belongs to NC-class of problems solvable in polylog time on
PRAM [46]. In what follows we will consider the bitonic sort only, which can sort
n keys in O(log2 n) steps.

If the number of keys n is larger (sometimes by several orders of magnitude)
than processor count P , then each processor does local sort of n

P
keys followed by

the repeated bitonic merge and split of 2 sorted sequences. The length of the working
sequence handled by each processor in every step is thus constant and equal to n

P
.

Bitonic merge and split is done (1+2+3+. . . +log P ) times. In each merge operation
two sorted sequences of n

P
items (blocks of consecutive data in a temporary array of

n elements in a shared memory) are merged into one sorted sequence, which is then
split into upper and lower parts. The two parts are rearranged within the temporary
array. Complexity of this bitonic sort of n keys on P processors is thus:

O(n, P ) =
n

P

(
log

n

P
+ log2 P + log P

)
(2.1)

But the hidden multiplicative constant in big O notation can be large or small
depending on a particular implementation.

The decision which two sequences are merged by each processor in each step is
made according to rules of the bitonic sorting algorithm. However, implementations
can differ. The straightforward naive approach (denoted sort in further paragraphs)
is e.g.:

1. Node i and node j exchange copies of sorted subsequences.

2. Each node merges its subsequence with the received one.

3. Each node keeps its half and throws away the other half.
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Fig. 2.1: Bitonic sort algorithm

If the merging is done by one node only and then a relevant half of the resulting
merged sequence made available to another node (that was idling during the merge
operation), no time will be saved.

A performance of the algorithm can be improved if one of the processors i and j
starts merging from the top, whereas the other one from the bottom and each does
exactly one half ( n

P
keys) of the resulting sequence. No processor will throw away a

half of its work, and each processor will do a lower or an upper part depending on
which part it is going to keep. The length of communicated sequences will remain
the same as in the original algorithm, n

P
keys in each step. This variant of the bitonic

sort will be denoted sort+.
Another version of a faster bitonic sort reduces the number of shared-memory

communications (when one process writes a shared data object and another pro-
cess reads it) [47]. This communication can be very time-consuming in case of real
shared-memory computers due to frequent cache misses. The reduction of commu-
nication is achieved by keeping one half of a merged sequence in a local memory
(supposing the local memory is large enough to hold the sequence) and storing only
the other half in a shared memory.

In contrast to the straightforward algorithm, 2P sequences (each of size n
2P

ele-
ments) are merged by P processors instead of former P sequences (each of size n

P
).

At first, each processor sequentially sorts two of the sequences. Because the sorted
sequences are now shorter, bitonic merge and split is done (1+2+3+ . . . + log 2P )
times, which is more times than before. Since one of the two sequences produced
by the merge and split operation in each step can be used by the same processor for
merge and split also in the next step, it can be kept in a local memory.

Figure 2.1 illustrates how the merge and split operations are arranged. The
example shows sorting a sequence of n elements by P = 4 processors. The input
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Fig. 2.2: Simulated run time and efficiency of 3 variants of bitonic sort

sequence is divided into eight short sequences of size n
8
, which are represented by

horizontal lines. Thick lines denoted SM represent sequences stored in a shared
memory and thin lines denoted LM represent sequences stored in local memories of
processors. The distinction is performed according to a parity strategy: a sequence
whose binary index (shown in parentheses in the figure) has an even number of 1’s
is stored in a local memory, others are stored in a shared memory.

Dotted lines in Figure 2.1 depict three different stages of the algorithm and steps
performed in each stage. The four pairs of sequences which are merged in each step
are designated by vertical lines. Arrows point to locations where higher halves of
the merged sequences are stored.

2.4.2 Results of a Simulation

Figure 2.2 shows time complexity and efficiency of the three mentioned algorithms
simulated in Transim. Sorting of 1024 32-bit integers was simulated for a processor
count varying from 8 to 64. The only source of inefficiency in APRAM processing
is load imbalance — the fact that not all processors are busy all the time. The cost
of message passing or shared memory communication and of other overheads in real
machines is not taken into account.

It can be seen that Transim approach aids prototyping parallel algorithms as
well as their performance evaluation, so that comparison of time complexities of
various versions of an algorithm can be easily performed. In each simulation run,
the small size demonstration example is running simultaneously with a full-scale
simulation. This is made possible by the fact that simulated time is advanced only
by user inserted constructs SERV() and WAIT(). The execution of a demonstration
program does not consume any simulated time at all.

To demonstrate how assumptions of abstract models can differ from properties
of real machines, another simulation was performed. Two simulation models were
compared: PRAM model and a bus-based shared-memory multiprocessor (bb-SMP).
The bb-SMP model will be described in more detail in chapter 3, where attainable
accuracy of simulation will also be demonstrated by comparison of a simulated and
real execution.
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Fig. 2.3: Comparison of simulated run time and efficiency of sort++ on PRAM and
a bus-based SMP

Parameters of the bb-SMP were similar to PRAM, but instead of the assumption
that access to any shared memory cell takes a unit time, cache misses together with
corresponding communications (bus transfers) were simulated. Execution of the
third variant of bitonic sort (sort++ as described above) was simulated with both
models. Results of the simulations are plotted in Figure 2.3. It is apparent that
the bb-SMP machine suffers from considerably worse scalability than the PRAM
model. It is due to finite bandwidth of the shared bus, which is already saturated
when more than 16 processors are used for the given task.

2.5 Conclusions

This chapter presented an innovative application of APRAM model. Instead of
studying asymptotic complexity (problem size n → ∞), which is a common ap-
plication of abstract machine models, prediction of execution times of real parallel
programs was performed with realistic numbers of processing units and parameters
of modern microprocessors.

Results of simulations indicate that the used approach can be useful not only to
design and tune performance of a given algorithm on an abstract machine, but also
to evaluate what performance can be expected when the implemented program is
run on a real machine. Since the algorithms can be simulated not only on APRAM,
but also on many real architectures like hypercubes, symmetrical multiprocessors,
clusters etc., this approach makes comparison of practical computations on abstract
and real machines possible.
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Chapter 3

Bus-based Symmetrical
Multiprocessors

Parallel computer systems are at present dominated by shared memory (SM) mul-
tiprocessors and by clusters of workstations or PCs. Recently, the convergence
of these systems has led to scalable distributed SM architectures supporting both
shared variable and MP programming models [29]. This fact makes it reasonable
and useful to develop a single simulation system for both kinds of architectures and
programming paradigms.

Although there have been several tools developed, which support performance
analysis of a variety of programming paradigms and architectures, e.g the APART
project [33], they are determined for analysis of performance data obtained from
executions on target architectures. Since they require an algorithm to be fully
implemented in a given programming language and executed in the chosen environ-
ment, such tools are not suitable for performance prediction of algorithms in early
design stages. Moreover, it is not possible to make a comparison of a program’s
execution on parallel architectures, which are not available.

This chapter presents an approach to shared memory architecture modeling
which is based on the Transim simulation tool and language. At first, an active
monitor-like model of a cache-coherent bus-based (CCBB) multiprocessor is intro-
duced. Then, modeling of synchronization primitives like locks and barriers, which
are used as building blocks of many shared variable programs, is described. Finally,
accuracy of the model is illustrated by comparison of data from simulated and real
execution on a shared memory machine.

3.1 Modeling CCBB Multiprocessors

When a shared memory multiprocessor is simulated, several parameters of the ar-
chitecture which influence its performance must be considered depending on a level
of detail of the simulation. They include e.g. bus width and frequency, type of
transactions (connected or split), memory update policy, cache coherence protocol,
etc.

A system with a connected (atomic) transaction bus allocates the bus for a next
transaction only after a previous transaction finished. On the other hand, split
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Legend

R Read request
W Write request

WB Write back request
index L Request issued by the local CPU
index R Request issued by any remote CPU

f Sharing detection function: returns true if a valid copy of the requested
block exists in a cache of any remote CPU.

Fig. 3.1: MSI and MESI cache coherence protocols

transactions used in some high performance systems allow multiple bus masters at
a time. They achieve a higher throughput at a cost of higher latency due to multiple
bus arbitration.

Coherence actions in a cache coherent system can be performed in different ways.
A write invalidate method, which transfers data in whole blocks, is more popular
than write broadcast, which works with individual words. The memory update can
be performed either immediately after a write operation (write through method) or
as late as possible to achieve better performance (write back method).

A cache coherence protocol determines when bus transfers in a shared memory
system occur. State diagrams of two popular protocols MSI and MESI are depicted
in Figure 3.1. The diagrams determine how states of a data block in local cache of
a particular processor change. Due to an extra state Exclusive, the MESI protocol
provides better performance than MSI when write hit occurs, since no data trans-
fers/invalidate commands occur if the block to be written is exclusively owned by
the cache of the local CPU.

In further paragraphs we will consider updating SM by the write back method
and the write invalidate variant of a cache coherence protocol. Other alternatives
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Fig. 3.2: Clients/SM server model of a cache-coherent, bus-based, SM multiprocessor

(write through, write broadcast) can be dealt with similarly. A main multiprocessor
memory and the bus (in the case of an atomic bus) are shared resources that have
to be exclusively allocated to a client process running on a certain CPU. Further
we will describe a model of an atomic bus, which could be extended to support also
other possibilities like pipelined or split-transaction buses.

We can find some resemblance in behavior of shared memory and a bus with
behavior of monitors used for communication and synchronization in concurrent
programs written e.g. in Java [48]. Monitor procedures (methods) execute in mutual
exclusion and the same is true about data requests (dr) or write back (wb) requests
generated by individual processors. We do not need to treat read and write misses
in local caches differently in simulation, because both of them are satisfied with data
requests; the read as well as write operations are always carried out in a local cache
after a valid copy of the block is obtained. If a cache is full, and if a modified block
is selected for replacement, it has to be written back to the main memory before it
is overwritten.

Using duality between monitors and message-passing [49], we can simulate a mo-
nitor by a client and a server, with operations dr and wb as shown schematically in
Figure 3.2. A simplified Transim code of the model is in Figure 3.3. We will refer to
our active monitor as to the SM server. There are still some missing features in it.
A write hit to a shared copy by one CPU must generate invalidate messages on the
bus, which should reach relevant processors simultaneously. Bus occupancy by the
invalidation message is easily represented by a special invalidation request (ir) to SM
server, which blocks bus utilization for an appropriate number of cycles. Broadcast
of invalidation is ensured by incrementing a shared variable (block state) by SM
server. Processors can recognize an obsolete copy of the block if the just visible
value of the shared variable block state differs from the local copy of the same
variable.
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[P] BOOL busrq; INT nowserving: -- shared variables
-- array of channels from cpu[] and to cpu[]
[P] CHAN OF ANY fcpu,tocpu:

PLACED PAR
INT x,j,q,ptr:
SEQ | SMserver -- SM server and bus arbitration process

WHILE TRUE
SEQ

IF
arbitration = a_fair

j := (q+1) REM P -- fair bus arbitration everytime
arbitration = a_fair_P

j := (j+1) REM P -- fair bus arbitration for P requests
arbitration = a_priority

j := 0 -- multiple requests, fixed priority
arbitration = a_random

j := RAND(0,P-1) -- multiple requests, random selection
-- In fact replicated ALT is not supported by Transim.
-- It should be expanded to individual branches.
PRI ALT i = 0 FOR P

fcpu[(j+i) REM P] ? x
q := i -- client’s ID

IF
x = dr -- data request

tocpu[q] ! block_state | blocksize -- data response
x = wb -- write back request

WAIT(smtime)
x = ir -- invalidation request

WAIT(itime)

PLACED PAR d = 0 FOR P -- P client processes
INT copy:
SEQ | client

PRI PAR
SEQ | high -- in high priority atomically

fcpu[d] ! wb | wbsize -- replace old data to SM if necessary
fcpu[d] ! dr | drsize -- request new data
tocpu[d] ? copy -- receive new data

SEQ | low
SKIP

Fig. 3.3: Clients and SM server with three operations, software description
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Transim as an extended subset of Occam 2 supports synchronous channel com-
munication (a linear time model) and is naturally intended for message-passing
distributed memory systems. If it is used for simulation of CCBB systems, then bus
transactions modeled as communications between node processes and a central SM
server process running on an extra processor have to be of equal duration as message
passing communication. This can be easily arranged by selection channels’ speed
and setup time and/or using additional delays smtime, itime as in Figure 3.3.

3.1.1 Fairness and Overhead of ALT and Arbiters

Another feature of the SM server which deserves more comments is a bus allocation
strategy — in other words, a model of a bus arbiter. Implementation of a bus
arbiter in software should be flexible enough to allow fair, priority, random or other
arbitration strategies. The bus arbiter should process pending requests for the bus
according to a selected strategy.

The code of a bus arbiter (SMserver process) in Figure 3.3 contains an ALT

statement. It is used in a replicated form for simplicity although Transim supports
only expanded forms, so that all inputs would be enumerated in an actual simula-
tion model. The main function of the ALT statement is serialization of bus requests.
Unlike an implementation of ALT in Occam, which has an implicit overhead depend-
ing on a number of inputs, in Transim the statement does not have any implicit
overhead. Nevertheless an overhead of a hardware arbiter can be added explicitly
by using a WAIT statement.

Although inputs of a PRI ALT statement used in the model in Figure 3.3 are
always checked in textual order for readiness to communication, the actual order of
channels can be modified by changing an indexing scheme. This is performed by
the addition of variable j value. The variable is assigned a new value in every loop
iteration depending on the actual arbitration policy. Increasing the value by one
as sometimes mentioned in literature may provide fair bus arbitration but only in
the case when all P processors request the bus. When only a subset of processors
continuously request the bus, some of them might succeed more often than others.
This variant is denoted a fair P in the figure.

The approach was modified to provide a model of a truly fair bus arbiter. It is
denoted as a fair variant. Instead of skipping only the first channel, it also skips
all following channels to avoid reading from the same channel more than once in
a sequence when other channels are ready as well. Although this model already
guarantees fairness of arbitration it could be further extended to maintain requests
in the order in which they are issued. This requires use of a circular queue of
requests. Each requester would write its index to the tail of the queue and a bus
arbiter would serve requests from the head of the queue.
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3.2 Models of Synchronization Primitives

There are three basic synchronization mechanisms in shared variable programs:

• atomic sequences

• critical sections with mutual exclusion

• condition synchronization.

Atomic sequences are not directly supported in a typical processor hardware. For
very short atomic sequences one can use either atomic instructions of the type
read-modify-write or pairs of atomic instructions LL-SC (Load Locked-Store

Conditional). Longer atomic sequences can be sometimes implemented as high-
priority processes or, not the best way, by mutual exclusion. Critical sections are
executed atomically, but atomic sequences do not require exclusive access. Critical
sections are typically implemented by locks, condition synchronization by shared
flags or counters in case of two processes and by barriers in general case.

The models developed for simulation of shared variable programs and published
in [64] include the most frequently used types of locks and barriers:

• simple locks based on atomic read-modify-write instructions

• array lock

• ticket lock

• centralized sense-reversal barrier

• butterfly barrier

• dissemination barrier.

3.2.1 Locks

Simple lock implementations assume a hardware support (atomic Test & Set,
LL-SC instruction pair), yet they create a huge traffic on the bus because of per-
petual effort to get the exclusive copy of the lock for modification, which leads to
bus congestion. Testing a copy of a shared lock variable in a local cache using a
load instruction only and trying Test & Set as soon as the lock copy becomes invalid
reduces the bus traffic since invalidation messages are not generated during every
access to the shared cache block (so called Test-and-Test & Set operation). De-
spite this improvement, the overhead is still large (proportional to P 2) when several
processes want to acquire the lock simultaneously [29].

The model of this lock with fair bus allocation strategy uses a buffer [P] BOOL

busrq to register bus requests. The buffer is scanned in circular fashion until the
first request is found. A requester is notified through a shared variable nowserving.
Its request is serviced right away and then the next request is found and serviced,
etc. When the process loads a fresh copy of the lock, three situations may occur, as
shown in a simplified code for the lock in Figure 3.4:
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INT lock, -- shared, equal to free/busy, modified by a client
nowserving: -- shared, modified by SMserver, read by clients

-- create P processes pid[d] competing for a lock
PLACED PAR d = 0 FOR P

INT copy:
BOOL active:
SEQ | pid

busrq[d]:= TRUE -- want to use a bus
active := TRUE
WHILE active

SEQ
WHILE d <> nowserving -- wait for your turn

WAIT(1) -- (simulates a fair bus arbiter)
PRI PAR

SEQ | high -- Load Locked(LL)
fcpu[d] ! dr | rrsize -- lock request
tocpu[d] ? copy -- lock copy into a local cache

SEQ | low
SKIP

IF
(copy = lock) AND (copy = free)

SEQ -- reaching the free lock first
busrq[d] := FALSE
lock := busy -- successful Store Conditional (SC)
SERV(critical) -- duration of critical section
lock := free -- unlock
SERV(noncritical) -- duration of noncritical section
active := FALSE -- termination of an outer WHILE loop

(copy = lock) AND (copy = busy)
SEQ -- someone was much quicker

WHILE copy = lock -- valid local copy of a busy lock
WAIT(1) -- wait for invalidation

(copy <> lock) -- invalid copy, get the fresh one
SKIP -- someone was quicker,is still using

-- the lock or released it already

Fig. 3.4: The essential part of Test-and-Test & Set lock model

1. A valid copy of a free lock is received and Store Conditional instruction
succeeds. The successful process performs a critical section and then unlocks
the lock.

2. A valid copy of a busy lock is received. The process waits until the copy is
invalidated.

3. The Store Conditional instruction fails since the local copy has already been
invalidated. A fresh copy must be obtained.

The ticket lock [49] uses two shared variables (ticket and nowserving) and a
single atomic primitive Fetch & Increment. Each process uses the primitive when it
first reaches the lock operation to obtain its ticket number from a shared counter.
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[P] INT lock: -- shared, initialized to busy except lock[0] = free
PLACED PAR d = 0 FOR P -- create P processes worker

INT copy:
BOOL active:
SEQ | worker

active := TRUE
WHILE active

SEQ
-- read miss for lock[d], request a fresh copy
fcpu[d] ! dr | drsize
tocpu[d] ? copy -- lock[d] in a local cache
IF

copy = free -- it is my turn
SEQ

SERV(critical) -- duration of CS in CPU cycles
lock[d]:=busy
lock[(d+1)REM P] := free -- next process can go to CS
active := FALSE -- I have finished this time

TRUE
WHILE copy=lock[d] -- correct copy,

WAIT(1) -- wait for invalidation in a local cache

Fig. 3.5: Array lock — Transim code

Then it busy-waits for the nowserving to reach the ticket number. The release
method is to increment nowserving. Performance of the algorithm is similar to
simple locks but its key advantage is fairness since processes are serviced in the
order of their requests. On the contrary, simple locks do not provide any means
for maintaining order of requesters and may therefore cause starvation of some
processes.

The array lock [29] further reduces synchronization overhead since only one pro-
cess incurs a read miss when a lock is released. If there are P processes that might
possibly compete for a lock, then the lock data structure contains an array of P
locations that processes can spin on, ideally each on a separate memory block to
avoid false sharing. A process first uses a Fetch & Increment operation to obtain
the next available location in this array (with wraparound) and then spins on this
location. A process releasing a lock writes a value denoting unlocked to the next
location in the array (after the one that the releasing process was itself spinning
on). Only the process that was spinning on that next location has its cache block
invalidated at the release. A sample Transim code for the array lock is given in
Figure 3.5.

3.2.2 Barriers

Barriers are higher-level synchronization primitives often used in iterative algo-
rithms. They are implemented with locks and additional shared variables and coun-
ters. Only barriers suitable for repeated use in loops are of interest.
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-- local variable = shared flag at this point in each process
NOTE(reaching.barrier) -- message to simulation report
barcnt := barcnt+1
IF

barcnt=P
SEQ

-- In timeless execution the process cannot be suspended,
-- and therefore update of shared flag is safe.
flag:= 1-flag -- this makes local <> flag
barcnt := 0

TRUE
SKIP

WHILE local=flag
WAIT(1)

-- Processes waiting for the last one are released here.
local := 1-local -- makes local=flag again
NOTE(leaving.barrier) -- message to simulation report
WAIT(1) -- deschdules this process, so other processes can also

-- see local=flag and leave the WHILE loop
-- Barrier overhead model may be put here
-- (a time delay as a function of P).

Fig. 3.6: Transim code for a sense-reversal barrier with an explicit overhead model

Centralized Barrier

A simple type of barrier is a centralized sense-reversal barrier [29]. Its implementa-
tion uses only three shared variables (lock, flag and counter) and performs syn-
chronization of P processes in P steps. An implementation of the barrier’s model is
shown in Figure 3.6.

To obtain better accuracy of simulation in some cases, it is sometimes advanta-
geous to use such a simple timeless barrier model with no overhead and insert an
explicit overhead model (obtained by measurement) in front or behind it. The bar-
rier overhead can mostly be approximated by a logarithmic or a polynomial function
of P . The model uses only two shared variables (barcnt and flag) and one local
variable named local. As noted in the code in Figure 3.6, a simulated process is
descheduled only when timing statements (SERV or WAIT) are executed. Therefore
atomic updates of shared variables can be easily modeled without a need of any
special constructs.

Butterfly and Dissemination Barrier

To avoid contention for the same lock and flag variables by all processors in a
centralized barrier, butterfly and dissemination barriers use software combining trees
for synchronization [49]. Both barriers perform synchronization in dlog P e steps
and achieve better performance than a centralized barrier especially on systems
with distributed networks and multiple parallel paths. However, since O(P ) bus
transactions are still required, performance on a bus-based system may be similar
to a centralized barrier because the bus transactions are serialized.
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[P] INT counters: -- shared array of counters
PLACED PAR d = 0 FOR P

INT stage,wait.partner,data:
SEQ | worker

counters[d] := 0
SEQ round = 0 FOR 3 -- barrier operation 3 times in a loop

SEQ
SERV(RAND(50,200)) -- random duration of tasks
NOTE(entering.barrier)
stage := 1 -- powers of 2
WHILE stage < P -- repeat in log P stages

SEQ
fcpu[d] ! dr | rrsize
tocpu[d] ? data
counters[d] := counters[d] + 1
fcpu[d] ! dr | rrsize
tocpu[d] ? data
wait.partner := (P+d-stage) REM P -- partner to wait for
WHILE counters[wait.partner] < counters[d]

WAIT(1)
stage := stage * 2 -- next power of 2

Fig. 3.7: A dissemination barrier — Transim code

Both barrier algorithms synchronize processors in pairs: each processor synchro-
nizes with a partner at distance 2s−1 in step s. In a butterfly barrier, the two partners
synchronize mutually and the algorithm therefore requires a processor count to be
a power of two (P = 2N) since P

2
log P distinct pairs must be arranged in total. On

the other hand, a dissemination barrier supports any number of processors: each
processor sets an arrival flag of a partner to its right (modulo P ) and waits for, then
clears, its own arrival flag. The code of a dissemination barrier model is given in
Figure 3.7.

3.2.3 Simulation of Synchronization Performance

It is not easy to assess and evaluate various types of locks with regard to overhead,
bus contention and scalability. Locks are used for exclusive access to critical code
sections (CS), thus enforcing sequential processing by processors. If a CS is in a
loop, then fairness means, that only after all processes have acquired a lock in the
first iteration, will processes start acquiring the lock second time, etc. The time
needed to obtain a lock k-times by all P processes will therefore always contain
a component k ∗ P ∗ TCS. Time of waiting for the access to CS may be more or
less overlapped with processing of non-critical code sections, so that the resulting
performance or overhead are application-dependent. It is therefore questionable if
duration of all critical sections and non-critical sections should be subtracted from
the total execution time to obtain an overhead as described in [29].

Instead, we have measured the total communication time, or the bus occupancy
time, Figure 3.8, which is application-independent. This bus communication may
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Fig. 3.8: A global time [µs] of bus transfers for various locks: 1) Test&Set, 2) Test-
and-Test&Set), 3) Array lock, 4) Ticket lock

go on in parallel with useful work of other processors, using data in local caches.
Nevertheless, during this work occasional read or write misses in shared variables
other than lock variables may occur and related data requests may have to wait for
free slots on a bus.

Bus busy times in Figure 3.8 have been measured on Transim models of locks
with k = 3, TCS = 100 clock cycles (= 0.5 µs), TnonCS = 0. The bus bandwidth was
set to 5 000Mbit/s what corresponds to a bus clock rate 50MHz for 100-bit wide
bus (32 address bits, 64 data bits). The results show the smallest bus traffic for
the array lock and no advantage in performance of the ticket lock in comparison to
the Test-and-Test & Set lock. For the simple Test & Set lock the bus utilization is
close to 100%.

Barrier overhead, as shown in Figure 3.9, is easily measured if the duration of
all processes is exactly the same (argument of SERV in Figure 3.7). If we then
subtract the total useful computation time (a number of loop iterations times TCS)
from the processing time, we will get the overhead. According to the simulation the
dissemination barrier performs better than a simple counter-based barrier.

3.3 Parallel Benchmark Program

3.3.1 Algorithm Description

Simulation and performance prediction of bus-based shared memory multiprocessor
will be demonstrated on the problem of computing the one-dimensional N -point dis-
crete Fourier transform (DFT) on P processors. The sequential time complexity of
an efficient Fast Fourier Transform (FFT) algorithm is known to be O (N log N) [50].

There have been several parallel FFT algorithms developed, which are suitable
for different architectures. For example the binary exchange algorithm by Gupta
and Kumar [51] uses a message passing pattern which is efficient especially on hy-
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Fig. 3.9: Barrier-related overhead for a dissemination barrier (D-bar) and a counter-
based barrier (C-bar)

percubes. Further we will consider an algorithm that reduces communication to a
single transpose operation and is suitable for shared memory machines [52].

Let P divides N , N = 2q is a power of two and N ≥ P 2. Let the N -element input
vector ~x be represented by a matrix X

[
N
P
× P

]
in row-major order. One column

(N
P

elements) of the matrix X is first assigned to each processor. The algorithm is
then performed in the following three stages:

1. The first stage involves a local computation of a FFT of size N
P

in each pro-
cessor.

2. The second stage is a communication step that involves a transposition of the
matrix with intermediate results.

3. Finally, N
P 2 local FFTs, each of size P , are sufficient to complete the overall

FFT computations on N points.

The amount of computation work done by P processors for the FFT of an N -
element real vector is N

2
log N “butterfly” operations, where one butterfly represents

four multiplications and six additions/subtractions (twenty CPU clocks in simula-
tion). The work is divided into stage one and three (equation 3.1).

P
[

N

2P
log

N

P
+

N

P 2

P

2
log P

]
=

N

2
log N (3.1)

Parallelization of FFT is illustrated in Figure 3.10 for P = 4 and N = 16, with
the same work done in stage one and three. Each processor does one 4-point FFT
before a communication step and one 4-point FFT after it. Typically, however, the
work done in stage one proportional to (log N − log P ) will be much larger than
the work done in stage three, which is proportional to log P . The only overhead in
parallel implementation is due to a matrix transposition. The matrix transposition
problem requires P (P − 1) bus transactions on a bus.
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Fig. 3.10: Parallel FFT for N = 16 and P = 4

Processors write the results of the N
P

-point FFT computed in stage one into the
local caches and do the transposition at the same time. This means that consecutive
values of FFT will be stored with a stride required by the rule of matrix transpo-
sition. The following read requests by other processors at the start of stage three
will generate read misses: at cache block size 16 bytes, one miss always after three
hits in a sequence. Fresh cache blocks will be loaded into requester’s cache and
simultaneously into the shared memory.

FFT processing is continuous in real time. Therefore loading of the next input
vector from outside and writing the previous results from processors to environment
is carried out in the background, in parallel with the first stage of processing, using
double buffering scheme.

3.3.2 OpenMP Implementation

To test accuracy of simulation, an implementation of the described FFT algorithm
has been developed and executed on Sun Enterprise 450 server with 4 Sun Ul-
traSPARC II/400 CPUs at 400 MHz. The program was implemented in C with
OpenMP directives used for specification of parallel execution.

Parallelization of loops, the way as it is done in OpenMP [12], uses basically three
loop scheduling types, static, dynamic and guided scheduling. Their simulation in
Transim is straightforward. For example the guided scheduling is illustrated in
Figure 3.11. Initialization at the beginning of the code is done by the process that
has arrived to this point first, other processes skip over it. This kind of condition
synchronization (Eureka) is based on a shared integer flag.
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-- Guided Loop Scheduling
IF

flag = thispoint -- first CPU at this point does
SEQ

rest := itercount -- initialization
flag := flag + 1

TRUE -- other CPUs skip over
SKIP

WHILE rest > 0
SEQ

IF
rest > P

mychunk := rest/P
TRUE

mychunk := 1
base := base + mychunk
rest := rest - mychunk
SEQ h = 0 FOR mychunk -- process your chunk of iterations

SERV(RAND(low, high)) -- iterations of different duration

Fig. 3.11: The code for simulation of guided loop scheduling

3.3.3 Simulation Model Parameters

Performance prediction gives an estimate how many FFT operations can be done
per second. The simulated SMP has had the following features and parameters:

• an atomic bus

• fair bus arbitration policy

• 100MB/s bus bandwidth

• 50MHz bus clock

• a miss penalty of 20 CPU clocks

• a L1 cache block size 16 bytes.

The size of the cache is assumed to be sufficient to hold relevant segments of
input data (a real vector), intermediate data after the first stage of FFT (a complex
vector) as well as the results (a complex vector). In the worst case (P = 2) the size
of all these vectors will be around 10KB, if we use REAL32 format. We assume I/O
connected via a bus adapter directly to the cache. To avoid arbitration between
CPU and I/O, the next input and previous results are transferred in/out during the
first stage of the FFT algorithm. E.g. for N = 1024, P = 4, and CPU clock speed
400MHz, the simulation gives a duration of one FFT operation 759 µs.

Although only a single level of cache was simulated, the results presented in
section 3.4 indicate that this abstraction is sufficient to obtain reasonable accuracy.
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N 2048 1024 512 256 128 64 32

T [ms] (Transim) 1.445 0.759 0.424 0.261 0.181 0.142 0.123

T [ms] (Sun) 1.431 0.733 0.403 0.242 0.172 0.139 0.121

Difference [%] +1.0 +3.5 +5.2 +7.9 +5.2 +2.2 +1.7

Tab. 3.1: Results of real and simulated 1D N -point parallel FFT on 4 processors

Consideration of more levels of cache makes the model much more complex without
a significant improvement of accuracy, which could justify the complexity

Four barriers, some of them implicit in OpenMP directives, have been inserted in
Transim code. A data prefetch has not been supported by hardware and therefore
not considered in simulation. If it was available, it could improve performance
further.

3.4 Results And Conclusions

The model of SM architectures and synchronization primitives based on message
passing in the CSP style proved to be a valuable means of performance prediction.
The description of hardware architecture, software and mapping to one another
in Transim tool is very concise and directly executable. As for the accuracy of
performance prediction, it was better than 8% at the parallel FFT benchmark in
most cases. A Transim code had some 480 lines and simulation executed on the same
server as the real program took up similar times like real execution. The results of
real and simulated computations of 1D N -point parallel FFT on 4 processors as
published in [68] are given in Table 3.1.

Other algorithms have also been successfully simulated using the described mo-
dels of shared memory architectures and synchronization primitives. Results ob-
tained from simulation of a sorting algorithm PSRS (Parallel Sorting with Regular
Sampling) can be found in [64]. Simulated solution of large systems of linear equa-
tions on various architectures including shared memory multiprocessors is described
in [67].
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Chapter 4

Clusters of Workstations and
SMPs

4.1 Cluster Interconnection Models

Clusters are usually built of commodity hardware: personal computers or work-
stations and a standard communication infrastructure commonly used in local area
networks ( Ethernet, Token Ring, etc.). Dedicated clusters often use special-purpose
interconnections like Myrinet [8] designed especially to obtain low communication
latency.

A typical topology of an interconnection network used with slow 10Mbit/s Eth-
ernet was a bus. Due to its low bandwidth and shared communication medium,
this architecture is unsuitable for high performance computing and has already
been overcome by alternatives with higher performance. Nevertheless, simulation of
a bus interconnection can be accomplished as well by adapting the model described
in chapter 3.

The most common interconnections in today’s clusters are switched networks
with a star topology. Computers in such networks are directly connected to a high
speed hardware router usually by 100Mbit/s or 1Gbit/s Ethernet links. Since inter-
nal structure of routers varies, several models have been developed and are described
in the following sections.

4.1.1 Omega Network

Omega network is an example of a blocking multistage indirect network which has n
inputs and n outputs. There are several equivalent (isomorphic) networks (Omega,
Butterfly, Hypercubical, Baseline) that differ in permutation connection between
stages [54]. Omega network with n = 8 is depicted in Figure 4.1. The figure shows a
topology of the network and a process graph with channel connection of a Transim
model of one of its switch modules. The network has log2 n stages. Each stage
consists of n/2 switch modules. A single switch module is usually connected to
two input channels and two output channels (2 × 2 switches), even though k × k
switches are possible as well. Interconnection between stages uses a perfect shuffle
permutation.
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Fig. 4.1: Omega network topology and a process graph of one of its switch modules

INT position,t,x:
SEQ | in1 -- upper input, j is a stage index

IF -- creating masks for 3 bits of the header:
j = 0

position := 4 -- 2ˆ2, MSB of dst address
j = 1

position := 2 -- 2ˆ1
j = 2

position := 1 -- 2ˆ0, LSB of dst address
WHILE TRUE

SEQ
ch[i][j] ? x -- wait for INT on ch[i][j] and put it in x
t := (x/position) REM 2 -- j-th address bit
IF

t = 0
hi1 ! x | size -- to upper output

t = 1
lo1 ! x | size -- to lower output

Fig. 4.2: Transim code of an input process running in an Omega network’s switch
module

The switch receives messages from its input channels and passes every received
message to one of its output channels (or possibly to all of the outputs if it supports
broadcast). Routing of messages is based on a binary representation of a destination
address. A different bit of the address is used in each stage to determine if a message
should be routed to an upper or lower output channel of a current switch.

A developed Transim model uses four parallel processes to model a single switch
module in the network as shown in Figure 4.1 b). Two of the processes receive
messages from the input channels and send them to one of the two output processes,
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INT a:
SEQ | out1

WHILE TRUE
SEQ

ALT -- wait for data on channel hi1 or hi2
hi1 ? a

SKIP
hi2 ? a

SKIP
ch[2*i][j+1] ! a | size -- send it via upper output

Fig. 4.3: Transim code of an output process running in an Omega network’s switch
module

which in turn passes the messages to the next stage of the network. Since only a
single integer can be communicated between processes in the Transim simulator, it
is used to pass both a destination address (3 bits in case of 8× 8 Omega network)
and a length of the message (the remaining bits). One of the bits can also be used
to indicate a broadcast operation.

A code of one input process (denoted in1) is shown in Figure 4.2. The other
input process is very similar. An output process (denoted out1) is even simpler,
because it does not do routing. Instead, it only passes on all messages received from
the input processes. The code is given in Figure 4.3. Variable i is an index of a
particular switch module in a given stage determined by index j.

4.1.2 Fat Tree Topology

A fat tree is another kind of a blocking multistage indirect network. Similarly to
Omega networks it is built of simple switch modules, but input/output links are
bidirectional. One way of creating fat trees is to put two unidirectional multistage
networks back-to-back and then fold one onto another. Communication between
two partners requires almost twice as many hops than the unidirectional network,
but it provides multiple paths between any two nodes.

A fat tree achieves better performance over a simple tree due to increased band-
width in higher levels. Links used for transferring a message from lower levels are
selected pseudo-randomly. A structure of a fat tree connecting eight nodes by six
switches is shown in Figure 4.4. Each switch is connected to four bidirectional links.

Since all four links connected to each switch module are bidirectional, four input
processes and four output processes are used to simulate functionality of a switch. It
is not possible to use only a single input process which would receive from multiple
input channels by using ALT statement. Such an implementation may lead to a
so called fetch deadlock (at least two processes execute pending send operation
and cannot receive). More information on deadlock-free routing can be found in
section 5.1.

The input processes receive messages and pass them to appropriate output pro-
cesses according to destination addresses of the messages. The integer communicated
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Fig. 4.4: Fat tree topology

Fig. 4.5: Process graph of a crossbar switch model

in a simulation is again used to store both an index of a destination processor and
a length of the message.

4.1.3 A Crossbar Switch

A crossbar switch is one of the most complex nonblocking networks and therefore it
can achieve very good performance. It is built of m× n simple crosspoint switches,
which enable m concurrent data transfers to m < n different nodes. A common
configuration is a n×n square crossbar, which can implement any of n! permutations
without blocking.

If multiple source nodes send messages to the same destination at the same
time, only one of the requests is served at a time. The order in which requests are
served is determined by an arbitration logic (priority, fairness, random, etc.). In
case of simulation, arbitration is provided by ALT statement in processes out[i]. A
particular arbitration strategy is simulated by variable indexing on input channels
of the ALT statement. The principle is analogous to simulation of a bus arbiter as
described in section 3.1.1 on page 26.

A model of a 4 × 4 crossbar switch is depicted in Figure 4.5. Each of the four
input processes (denoted in[i]) receives messages from an appropriate node cpu[i],
decodes a destination address and passes messages on to one or more of the output
processes out[i], which are implemented using ALT statement.
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A more complex model using a different arbitration approach has also been
tested. Instead of distributed arbitration a central arbiter is used, which receives
requests for communication from senders and receivers. After the arbiter assigns
a communication channel to a sender-receiver pair, it sends the channel’s index to
both partners and they start communication. Such an approach allows simulation
of complex arbitration strategies.

4.1.4 Models of Switching Techniques

Interconnection networks use various switching techniques to pass data between
their stages. Some of the possible strategies are as follows:

• Circuit switching (CS) is a technique adopted from telephone networks. The
whole path from a source to a destination is constructed before a transmission
of data starts and it is reserved until all data have been transmitted.

• Store-and-forward (SF, also called packet switching) divides a message into
packets of a certain size, which fit into buffers of switches. Received packets
are individually routed to their destination. An important aspect is that every
packet is passed on to another switch only after all of its contents have been
received.

• Virtual cut through (VCT) also divides messages into packets but each
packet is subdivided into flits. Unlike the store-and-forward technique, flits
can be passed on just after a header flit has been received.

• Wormhole switching (WH) is very similar to virtual cut through but it uses
switches with more limited buffers, which cannot hold a whole received packet.
Due to this limitation the technique is prone to blocking and deadlock.

The models of interconnection architectures described so far can be modified to
support modeling of various kinds of switching. For example congestion at group
communications (simultaneous communication requests on multiple channels) are
resolved by serialization (selection statement ALT in a loop) for store-and-forward
routing or by interleaving flits (bytes) from different messages for wormhole rout-
ing. In the latter case a longer message is sent as a sequence of individual bytes
using zero start-up time (parameter ECD=0 of the used channel) and an explicit
WAIT(start-up) statement.

Moreover, the models can support different communication latencies for various
source-destination pairs. This occurs when various communication paths go through
a different number of smaller crossbars within the interconnection network, e.g.
Myricom’s Myrinet scalable network created by interconnection of 8×8 crossbars in
a fat-tree topology as described above. In the highest level of detail, each smallest
building block, a 2× 2 crossbar, can be modeled individually,

41



4.2 SMP Cluster Model

In the last few years, clusters of symmetric multiprocessors (SMPs) have gained
significant popularity in the field of parallel computing due to their excellent pri-
ce/performance ratio and possible universal use. The price of PCs built with two
processors is not very different from PCs with a single processor only, so it is common
to have multiprocessor servers and even multiprocessor personal PCs.

As in the case of single processor PCs, there is a huge effort to use this com-
putation power in clusters of PCs interconnected by general-purpose networks or
by specialized communication hardware. However, it is not easy to decide whether
a cluster of PC-based SMPs is a better choice than expensive and dedicated SMP
machines with many processors. The overall performance is influenced by many fac-
tors, especially by a particular cluster configuration, internal communication within
SMP nodes and external communication among SMP nodes themselves.

A model of a bus-based symmetric multiprocessor has already been described
in chapter 3. A cluster of single-processor PCs can be easily modeled by using one
of the described switch models (section 4.1) for passing messages among connected
nodes. The two models can also be merged to produce a more complex model of
a cluster of SMPs, which can help investigation of various architectures and aid
making decisions about the most suitable configuration for a particular algorithm.

Simulation of a hybrid architecture of SMP clusters in Transim as described
in [66] uses a feature of the simulator language which supports setting different
speeds and delays on various inter-processor channels. This enables setting appropri-
ate parameters for both internal links in SMP nodes as well as external ones among
SMP nodes. Transim allows different speeds on interconnecting links if topology
is described by LINK statements (see LINK bandwidth assignments in Figure 4.6).
Otherwise, in the case of uniform speed, topology information is extracted from the
simulation file automatically.

A process graph of a SMP cluster model with four SMPs and three processors
per SMP is depicted in Figure 4.6. Top of the figure shows a graph of a single SMP
node, which is an extension of the model described in chapter 3. In addition to
the original model, a SMserver process supports one more service (ext — external
communication request) and the process is also connected to two more channels
(extin and extout), which are used for communication with other nodes. Internal
communication of processes cpu in a single SMP node is managed by the SMserver

process.
Bottom of Figure 4.6 shows a connection of SMP nodes by a crossbar switch.

When a process in[i] receives data from a node SMP[i], it either passes the data
to one of the processes out[j], i 6= j, in case of a point to point communication, or
the process in[i] splits into three processes (a, b and c) which pass the data to all
the other processes out[j] in parallel in case of a broadcast communication. Each
process out[j] passes all data received from processes in[i] to its node SMP[j].
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Fig. 4.6: Model of a cluster of SMP nodes connected by a crossbar switch — a
process graph
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4.3 A System of Linear Equations Benchmark

The described models were tested by simulation of a parallel version of the Gauss-
Jordan elimination method for solution of linear equations. In this method the
algebraic system is transformed directly to a diagonal form and there is no back
substitution phase. The main part of the diagonalization process of the Gauss-
Jordan method can be described by the following pseudo code (A is a square matrix

of size n× n, ~b is a vector of right-hand sides of size n):

for i := 1 to n do pivot row
for j := 1 to n, (j 6= i) do for all other rows

begin

c = aji/aii

bj := bj − cbi

for k := i + 1 to n do for each element in current row
ajk := ajk − caik

end

This simple version of the algorithm supposes that a value of the element aii is
never zero or near zero. In a case when zeros on the main diagonal may occur, a so
called partial pivoting modification would have to be used. This method selects a
pivot row depending on absolute values of elements on the main diagonal.

The algorithm is further illustrated by Figures 4.7 and 4.8. Figure 4.7 shows
elements of the matrix A with the vector ~b added as the last column in four different
steps of the computation:

a) at the beginning of the algorithm

b) after the first pivot row was divided by an element on the main diagonal

c) after the first pivot row was subtracted from other rows

d) a final unit matrix with a vector of solutions ~c

The process is also schematically shown in Figure 4.8. Black squares represent ones,
white squares represent zeros and gray squares represent any values.

A parallel version of the Gauss-Jordan method for P processors assigns each pro-
cessor P/n consecutive rows of a system matrix A and P/n elements of vector ~b for
storage and processing. Each processor takes its turn as a “leader” and sequentially
broadcasts each one of its P/n equations (a pivot row) and after each broadcast it
also modifies its remaining equations.

4.3.1 Simulation of a Workstation Cluster

To be able to compare results of the cluster model simulations and real executions,
the Gauss-Jordan algorithm was implemented and executed on a cluster of eight
Ultra 5 workstations with Ultra-SPARC II processors running at 270MHz. Each

44




a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn




1 a12

a11
· · · a1n

a11

b1
a11

a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn


a) original matrix b) the 1st pivot row modified


1 a12

a11
· · · a1n

a11

b1
a11

0 a22 − a21
a12

a11
· · · a2n − a21

a1n

a11
b2 − a21

b1
a11

...
...

. . .
...

...
0 an2 − an1

a12

a11
· · · ann − an1

a1n

a11
bn − an1

b1
a11




1 0 · · · 0 c1
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. . .

...
...
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c) other rows modified by the 1st pivot row d) solution matrix

Fig. 4.7: A matrix of an algebraic system in four phases of Gauss-Jordan elimination
algorithm

Fig. 4.8: Four different states of matrix A during computation of Gauss-Jordan
elimination method

node’s line card was connected to a hardware multiport router Summit48, which
has 48 Ethernet ports at 10/100Mbit/s and two Ethernet ports at 1Ġbit/s. The
router has a 17.5Gbit/s non-blocking switch fabric and a forwarding rate of 10.1
million packets per second. Hardware latencies of the router are below 10µs and
can be neglected with respect to the software latencies (160µs for send and 260µs
for receive operation at clock speed 270MHz).

The program was implemented in C with Message Passing Interface (MPI) li-
brary used for parallel execution and communication. The algorithm requires only
one type of a collective communication function — broadcast, which is used for
sending pivot rows to all processors.

Parameters of the simulation model were set to match the real environment
as close as possible. Interesting parameters of processing elements simulating the
crossbar switch and workstations configurable in Transim are clock speed (SPD),
link speed (LS), external channel delay (ECD) and internal channel delay (ICD). The
parameters were set so that the total simulated latency corresponds to the latency
of a MPI broadcast routine, which in turn depends on a number of nodes involved in
the communication. Measured values of broadcast latencies are about 500, 750 and
1000µs for 2, 4 and 8 nodes whereas related transfer rates are 10, 5 and 3.5Mbyte/s
respectively.

Table 4.1 contains a comparison of speedup values obtained from simulations
and from executions on a workstation cluster. A solution of systems of two hundred
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2 processors 4 processors 8 processors

# equations Ssim Sreal Ssim Sreal Ssim Sreal

200 1.01 0.87 0.99 0.81 0.87 0.74

400 1.58 1.54 2.18 2.16 2.45 2.58

600 1.78 1.70 2.85 2.87 3.81 4.18

800 1.86 1.80 3.21 3.17 4.79 5.06

1000 1.90 1.86 3.42 3.34 5.47 5.53

Tab. 4.1: Speedup for simulated (Ssim) and real execution (Sreal) of a linear equation
benchmark program on a cluster of workstations
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Fig. 4.9: Speedup of real execution of a linear equation benchmark program and
achieved relative accuracy of simulation

to one thousand equations on two, four and eight processors was performed and
simulated. The data are also plotted in Figure 4.9. Graphs in the Figure 4.9
show speedup of the real implementation and a relative difference between measured
and simulated values of the speedup. The results indicate quite high accuracy of
simulation (a difference within 10% in most cases), which has been achieved by
measuring durations of inner loops (sequential code) in a real program and using
the values in simulation (an argument of the SERV() command).

4.3.2 SMP Cluster Simulation

A hybrid (message passing and shared variable) programming paradigm was sim-
ulated with the developed model of a SMP cluster. Combining two programming
models is beneficial if granularity of communication is small for a shared memory
and large for message passing. A simulated algorithm was the same linear equation
solver described at the beginning of section 4.3.

Four SMP nodes, each with three processors on a shared bus, were interconnected
through a 4×4 crossbar switch. Equations of the solved system are assumed equally
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SMP Cluster 4× 3 Single SMP 1× 12 CPU Cluster 12× 1

n Time [ms] Speedup Time [ms] Speedup Time [ms] Speedup

120 2.92 5.0 3.61 4.0 2.87 5.0

240 14.1 8.3 33.9 3.4 14.4 8.1

360 40.6 10.0 117 3.4 42.8 9.2

480 88.9 10.5 278 3.4 96.3 10.0

600 167 11.0 543 3.4 183 10.0

720 280 11.3 939 3.4 311 10.1

840 436 11.5 1491 3.4 489 10.3

Tab. 4.2: Execution times and speedup for simulated architectures with limited L1
cache size

distributed among processors. The leader processor broadcasts the pivot row to the
remaining SMPs and then all processors transform all their equations accordingly.
A broadcast within a single SMP is done by reading the new pivot row, previously
modified by the leading processor, by other processors. Reading starts after a barrier
synchronization at the end of each modification step. Barrier synchronization among
SMPs is achieved in a simulation by a shared counter in each SMP that is set by
the leader and tested by processors within each SMP.

Actual parameters of simulated architectures have been the following: L1 cache
size: 16KB with access time 1 CPU clock cycle, access time to external memory
or L2 cache (of infinite size): 3 clock cycles, clock speed: 1GHz in all three cases,
bus bandwidth in SMPs: 1GB/s, external channel speed: 100MB/s, start-up time:
10µs.

The results of simulations for a number of equations n varying from 120 to 840
and a processor count equal to 12 are in Table 4.2. The values of both simulated
execution time and speedup are also plotted in Figure 4.10. The single SMP performs
poorly due to bus saturation caused by frequent requests for data from processors. A
cluster of a dozen of workstations shows a good speedup for more than a few hundred
equations. The SMP cluster gives the best results (although it is comparable to the
workstation cluster) since for three CPUs the SMP bus bandwidth is sufficient.

4.4 Conclusions

Simulation of a linear equation solver on a SMP or SMP cluster in Transim is very
time-consuming, since essentially every cache miss is simulated. A single simulation
can easily take several hours. Another restriction is that the simulator supports
only about 232 events after which simulation automatically terminates. Both these
drawbacks can be eliminated by parallel simulation, which was successfully used to
obtain presented results.

In fact, simulation of the linear equation solver is embarrassingly parallel appli-
cation, since, contrary to real processing, to start up simulation in any given state,
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Fig. 4.10: Execution times and speedup for simulated architectures with limited L1
cache size

the value of only a single shared variable is needed — the number of equations yet
to be transformed. Simulation can thus run on several workstations in parallel, each
workstation starting simulation from a different pivot row.

To balance the load, the number of pivot rows in care of individual workstations
should differ. The load is given by the total length of all pivot rows in a single
workstation and this quantity should be approximately the same for all workstations
in order to complete the simulation simultaneously. The overall average efficiency
E is calculated from partial efficiencies figured out by workstations involved as
a weighted average with weights given by simulated execution times. The global
speedup is then S = PE where P is the processor count in the simulated system.

Aside from the presented hybrid shared variable/message passing programming
paradigm, simulations of other styles of programming were also performed with the
model of a SMP cluster:

• process farm

• pipeline

• data parallel computing.

The model was configured with number of nodes and number of processors per a
single node varying from one to sixteen. Three different configurations of node
interconnect were used:

• optimized hardware configuration

• LAN configuration

• WAN configuration.

Results of the study published in [66] also indicate usefulness of the approach to
support a qualified choice of the most suitable configuration for a particular speed
of communication links and given tasks to be solved.
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Chapter 5

Tuning the Performance of
Communication Algorithms

Combinatorial search and optimization techniques in general are characterized by
looking for a solution to a problem from among many potential solutions. For many
search and optimization problems, exhaustive search is infeasible and some form
of directed search is undertaken instead. In addition, rather than only the best
(optimal) solution, a good non-optimal solution is often sought.

As with any kind of iterative algorithm, it is impossible to predict run time of
search or optimization algorithms since it depends on input data, randomly gen-
erated numbers etc. Nevertheless simulation of such algorithms helps a developer
to design an efficient parallel implementation by identifying potential bottlenecks,
sources of overhead and influence of a selected granularity of the algorithm and
a type of a target architecture. This chapter describes design and performance
tuning of an iterative algorithm which optimizes scheduling of communications on
irregular interconnection networks.

The particular optimization task has been chosen since communications between
two partners (point-to-point) or among all (or a subset) of partners engaged in
parallel processing have a dramatic impact on the speedup of parallel applications.
Performance modeling and optimization of communications is therefore important
in design of application specific systems.

An optimization part of the described algorithm is based on genetic algorithm,
which is a powerful, domain-independent search technique that was inspired by Dar-
winian theory. It emulates the natural process of evolution to perform an efficient
and systematic search of the solution space to progress toward the optimum. It
is based on the theory of natural selection that assumes that individuals with cer-
tain characteristics are more able to survive and hence pass their characteristics to
their offsprings. It is an adaptive learning heuristic belonging to a class of general
nondeterministic algorithms.

Genetic algorithms operate on a population (or set) of individuals (or solutions)
encoded as strings. These strings represent points in the search space. In each
iteration, referred to as a generation, a new set of strings that represent solutions
(called offsprings) is created by crossing some of the strings of the current generation.
Occasionally new characteristics are injected to add diversity. Genetic algorithms
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Fig. 5.1: Eight-processor AMP configuration

combine information exchange along with survival of the fittest among individuals
to conduct the search. Convergence of genetic algorithms has been proved by use of
Markov chains and a fundamental Schema Theorem [55, 56].

5.1 Models of Communications on Irregular To-

pologies

Processors in common distributed-memory parallel computers are often intercon-
nected with networks that are node-symmetric, i.e. each node has the same view of
the network. Such regular networks like a ring, a 2D-torus or a hypercube have the
advantage that the same relatively simple routing function can be used, identical
in (translated to) all nodes. All-to-all communications then require that all nodes
communicate simultaneously without conflict, i.e. no channel can be used at any
time in one direction by more than one message (e.g. the time-arc-disjoint trees —
TADTs have this property).

However, there are cases when irregular networks have a certain advantage and
are given priority over the regular networks. An example of such irregular network
topology is the class of AMP (A Minimum Path) configurations, designed especially
to minimize the network diameter and the average inter-processor distance [57]. The
AMP networks have been found for node count P = 5, 8, 12, 13, 14, 32, 36, 40, 53,
64, 128, 256.

The 8-processor AMP network topology is depicted in Figure 5.1. The SC node
denotes a system controller (host computer) that sends input data to processing
nodes and collects results. Each processing node can communicate simultaneously
on four bi-directional full duplex links.

There are a few routing techniques suitable for irregular networks such as interval
routing or up-down routing [58]. However, implementation of group communication
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algorithms is seldom mentioned in literature. Next paragraphs will therefore de-
fine group communication algorithms of interest in most parallel applications, their
general features and ensuring their deadlock freedom.

The simplest time model of communication in distributed memory systems uses
a number of communication steps (rounds): point-to-point communication takes
one step between adjacent nodes and a number of steps if the nodes are not directly
connected. In the more detailed view, the communication time is composed of a fixed
start-up time ts at the beginning and of a component that is a function of distance d
(the number of channels on the route or hops a message has to make), and message
length m in certain units (words or bytes). For distance-sensitive store-and-forward
(SF) switching we have

TSF = ts + d(tr + mt1), tr � mt1 (5.1)

and for distance-insensitive wormhole (WH) switching

tWH = ts + dtr + mt1 (5.2)

where tr is a routing delay plus the switching and inter-router latency and t1 is per
unit-message transfer time. In this linear model of communication we assume no
contention for channels.

Further, we have to distinguish between unidirectional (simplex) channels and
bi-directional (half-duplex, full-duplex) channels. The number of bi-directional
channels between the CPU and a router (ports) that can be engaged in commu-
nication simultaneously (1-port or all-port models) has also an impact on number
of communication steps and communication times, as well as if nodes can com-
bine/extract partial messages with negligible overhead (combining nodes) or can
only re-transmit/consume original messages (non-combining nodes). Finally we
have to take into account a switching technique (store-and-forward or wormhole)
and a network topology.

A few comments are appropriate on communication among various nodes from
the simplest to the most complex type. A single neighbor-to-neighbor communi-
cation, multiple neighbor-to-neighbor communications, and a single point-to-point
communication are always deadlock free. For multiple simultaneous point-to-point
communications (including permutation) the deadlock freedom is ensured by the
acyclic property of a channel dependency graph. In that graph nodes correspond to
channels and a directed edge connects two nodes if and only if a message coming
through the first channel is routed to the second one.

A deadlock-free routing table for 8-processor AMP network from Figure 5.1 and
the related channel dependency graph are given in Table 5.1 and Figure 5.2. Chan-
nels in the graph are denoted by a source node number and a direction (West, North,
South, East). Had we routed a message from node 2 to node 7 via node 6 (instead
of node 3), as shown by the dotted path, we would have got a cycle in the graph
and a possibility of a deadlock.

In many parallel algorithms we often find certain communication patterns, which
are regular in time, in space, or in both time and space; by space we understand
spatial distribution of processes on processors. Communications taking place within
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Fig. 5.2: The channel dependency graph

Destination

PE 0 1 2 3 4 5 6 7 SC

0 x N S W E N S W E

S 1 S x W N E N W W E

o 2 N E x W S E S W S

u 3 E N S x E N S W W

r 4 W N S W x N S S E

c 5 W S E W S x N N N

e 6 N W N S E S x S E

7 E N E E S N S x W

SC W W W S W S S S x

Tab. 5.1: 8-processor AMP routing table

a subset or the set of all processors are called group or collective communications.
Examples of these may serve:

• OAB (One-to-All Broadcast): One node sends the same message to all other
nodes.

• OAS (One-to-All Scatter): One node sends distinct messages to all other
nodes.
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• AOG (All-to-One Gather): A reverse operation to OAS — all nodes send
a message to a single node.

• AAB (All-to-All Broadcast): All nodes perform OAB at the same time, each
node sends its message to all other nodes.

• AAS (All-to-All Scatter): All nodes perform OAS at the same time, each node
sends distinct (private) messages to all other nodes.

• Permutation.

Implementation of group communications is inherently prone to a deadlock. The
acyclic property of the channel dependency graph is not sufficient, it applies only
to the situation when a group of nodes are sending messages to distinct partners
(permutation routing or a subset of it). If we let each node send or receive messages
to or from more than one partner in a loop asynchronously, we still face a danger
of a so called fetch deadlock (at least two nodes execute pending send operation
and cannot receive). This is why we use a synchronized communication model
and assume that the communication proceeds in synchronized rounds (steps). In
store-and-forward networks one round is a set of parallel (simultaneous) hops of
packets between adjacent nodes. In WH networks, a round is a set of simultaneously
communicating pairs along conflict-free paths; one round takes time given by the
slowest communicating pair.

In the rest of this chapter, we will focus especially on OAS and AAS operations
on interconnection networks with the following parameters:

• full-duplex links — messages can be transferred in both directions at the same
time

• store-and-forward switching — whole packets are buffered in switches

• non-combining nodes — every received packet is sent on separately

• all-port communication facility — all ports of a single node can be used for
communication simultaneously.

These communication tasks (OAS, AAS) cause the highest communication traffic
and their timing overhead greatly depends on capabilities of particular communi-
cation hardware. One possibility how to implement AAS is to use permutations
separated by barriers. The number of steps is then P − 1, where P is processor
count. However, this number of steps is too large and can be reduced significantly.
Since we deal with irregular topologies, the only way to find optimal or sub-optimal
schedules of communication steps is by combinatorial optimization. Next we de-
scribe our method of doing it.

5.2 GAroute Algorithm Description

The purpose of GAroute as described in [71, 72, 73, 74] is to find a (sub-)optimal
schedule of neighbor-to-neighbor communications implementing a given group com-
munication (OAS or AAS), especially for irregular networks, where a schedule cannot
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node id neighbor 1 neighbor 2 neighbor 3 neighbor 4

(north) (south) (west) (east)

0 1 2 3 4

1 5 0 6 4

2 0 6 3 5

3 5 2 7 0

4 1 6 0 SC

5 7 1 3 2

6 2 7 1 4

7 5 6 SC 3

Tab. 5.2: Description of 8-processor AMP topology

be constructed analytically. GAroute performs its computation in two main phases.
In the first phase, it searches for all shortest paths among nodes in a particular
topology. Inclusion of longer paths as well is controlled by a settable parameter. In
the second phase, a genetic algorithm is used to build a schedule from the paths
found in the first phase.

5.2.1 Input

At the beginning, the program reads its input data from a specified configuration
file. It contains values of the following parameters:

• name of the file with a description of the network topology (its graph)

• type of a communication operation (currently OAS or AAS)

• source node (used only for OAS)

• path length increment

• the target number of communication steps for the communication task

• population size

• number of offsprings to be produced in every generation

• mutation probability

• size of a tournament group

Description of the network topology for which a particular group communication
is being optimized is specified in a separate file. This file contains a list of each node’s
neighbors, where two nodes are considered to be neighbors only if they are connected
by a single direct link. Table 5.2 shows sample data which describe eight-processor
AMP topology in Figure 5.1. Further description of the other parameters is given
in the following sections.
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Fig. 5.3: Construction of the shortest paths list from node 0 to node 5 in the 8-
processor AMP topology

5.2.2 The Search for the Shortest Paths

The first phase of computation consists of a search for all shortest paths between
pairs of nodes. This task is performed by a breadth-first search algorithm: a tree is
gradually constructed, one level at a time, from a root that is assigned an index of
a source node. When a new level of the tree is generated, every node at the lowest
level (leaf) is expanded. When a node is expanded, its successors are determined
as all its direct neighbors except those which are already located at higher levels of
the tree (this is necessary to avoid cycles). Construction of the tree is finished when
a value of at least one leaf is equal to an index of a destination node. Destination
leaves’ indices determine identity of found paths, which are then stored as sequences
of node indices.

A sample tree constructed while searching for shortest paths from node 0 to
node 5 in the 8-processor AMP topology is shown in figure 5.3. The SC node is not
considered. Three paths were actually found in the tree: 0-1-5, 0-2-5 and 0-3-5.

If OAS communication is being scheduled, only paths from a single source node
to all other nodes are searched for. On the other hand, for optimization of AAS
communication, all paths between every pair of source-destination nodes are consid-
ered. Because all links in a target topology are assumed to be bi-directional, to save
work only paths to destinations with indices greater than the source node index are
sought. All the other paths are constructed by reversing direction of already found
paths, i.e. swapping source and destination nodes. All paths are stored in an array
and shared by all individuals in a population.

In certain cases when the target topology has nonuniform numbers of links per
node, it may happen that an optimal routing schedule cannot be constructed from
a set of only the shortest paths. Use of just the shortest paths may cause heavy use
of some links while rare use of others, which prevents construction of an optimal
solution. To avoid this problem a special parameter path length increment has been
introduced. This optional parameter specifies a number of hops that can be added
to a length of the shortest path. The algorithm then considers not only the shortest
paths but also paths whose length may be longer at most by the increment.
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5.2.3 The Optimization Algorithm

As soon as the list of the shortest paths (possibly combined with longer ones) is
created, it is used for iterative construction of a time schedule of a given group
communication by employing a genetic algorithm. An individual’s chromosome is
represented by an array of genes. Every gene encodes a time schedule of a single
message transmission from a given source node to a destination node. This schedule
consists of an identity of a path which is used for routing the message and a list of
time steps at which every node on the path (except the destination node) sends the
message to the next node on the path. Assignment of time steps is constrained by a
rule that transmission of any message must not take more steps than a maximum,
which is set as an input parameter when the program is run. Number of genes G
in every chromosome is determined by the type of communication to be scheduled
and by the number of nodes P in a target architecture as

G = P − 1 (5.3)

for OAS or
G = P (P − 1) (5.4)

for AAS communication.
At first, an initial population of randomly generated individuals is set up. Then

genetic operators (crossover and mutation) are repeatedly applied to individuals
in the population to produce offsprings, which replace less fit individuals in the
current population. A number of offsprings produced in every generation is set as
a configuration parameter. If its value equals to a size of the whole population,
then all individuals in the population are replaced by newly generated offsprings in
every generation. Otherwise, if the value is lower than the population size, then
the fittest individuals from a current population survive for the next generation (so
called elitist strategy [59]).

A point of crossover is selected randomly at a boundary of any gene. A multi-
point crossover is also possible. Partners for mating are chosen by a tournament
selection [60], which is performed by selecting the best individual from a group of
randomly selected individuals. A size of the group for a tournament selection can
optionally be set as a configuration parameter of the algorithm and it influences
a selection pressure toward the best individuals in the population (the larger the
group size, the greater the pressure). Mutation is performed after crossover by
randomly selecting genes and randomly changing their values (index of a path if
more than one is available and also appropriate time steps).

Selection of individuals depends on evaluation of a fitness function. In our rep-
resentation of chromosomes, fitness of an individual is directly derived from its cost,
which is determined by a number of conflicts among genes of its chromosome. A con-
flict is defined as follows: two genes cause a conflict when they encode paths which
use the same communication channel in the same time step. It is obvious that we
are concerned only with such final solutions which have no conflicts, i.e. whose cost
is equal to zero.

This approach to optimization is a bit different from a common use of genetic
algorithms when the algorithm searches for (sub-)optimal solutions using an absolute
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criterion of optimality. In our case, a user first selects a quality of a sought solution
by setting the target number of communication steps S. This parameter is not
optimized by GAroute and it is constant during a single execution of the algorithm.
A typical work with GAroute then consists of the following steps:

1. Estimate a number of communication steps S required to perform a given
group communication.

2. Run the algorithm with this value set as a parameter.

3. If an optimal solution (with cost equal to 0) is found, try to run the algorithm
with a lower value of S. Otherwise, if a solution for a given value of S cannot
be found in a reasonable time, try to run the algorithm with an increased value
of S and possibly tune other parameters as well.

5.2.4 Sequential Performance Tuning

At first, a sequential version of GAroute was implemented in C++ to test ability of
the algorithm to provide useful results. To ensure good portability, the implemen-
tation uses only standard C and C++ libraries.

Since the first step in achieving a good parallel program performance is single-
processor tuning, performance of the sequential program was analyzed to identify
bottlenecks. It also appeared that analysis was necessary because test executions of
the initial implementation showed that its performance dramatically reduces with
increasing number of processors P of the optimized topology. The problem was
severe especially for AAS communication, which requires very long chromosomes
(the length is given by equation 5.4).

Analysis using profiling tools revealed that a majority of processing time was
spent in evaluation of a fitness (objective) function, which determines cost of each
individual in every generation. On the contrary, a time taken by genetic operators
is negligible. Even though the search for shortest paths (the first phase of the
algorithm) requires also significant time, it is performed only once at the beginning
of computation and does not affect the overall run-time as much as the genetic
algorithm.

The reason of the bad performance was that the initial implementation of the
fitness function used a quite trivial approach to determining a cost of a chromosome.
Since the cost is defined as a number of conflicts (the same channel used by different
genes in the same step) the fitness function counted the conflicts by checking all
possible pairs of genes whether they use the same channel for communication. This
is repeated for every communication step. So the main part of the function uses
two nested loops both iterating through all genes of a chromosome yielding an
asymptotic complexity O(G2), where G is a number of genes determined by the
type of communication to be scheduled (equations 5.3 and 5.4 on page 56).

Although some optimizations were already used to simplify a body of each loop,
e.g. a set of all genes which already caused a conflict was constructed on the fly so
that a single check of the set can avoid expensive path reconstructions and pointer
dereferences, the complexity was still unacceptable. Especially if we consider the
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AAS communication, which requires long chromosomes (number of genes propor-
tional to P 2), we get a complexity O(P 4) which is infeasible for optimization of
architectures with more than a few processors.

To decrease the high complexity, a smarter implementation was developed. In-
stead of a set of genes which cause a conflict in a given communication step, it uses
a set of channels already used in the step. For better performance, every channel is
encoded as a single 32-bit integer, which contains indices of the two nodes connected
by the channel (higher two bytes for the source node and lower two bytes for the
destination node). Use of this data structure simplifies a computation of cost to a
single loop iterating through all genes. In every iteration a gene is checked if it uses
a channel for communication in the current step. If it does, then the set of used
channels is checked for the channel. If the channel is not in the set yet, it is inserted
into the set, otherwise a cost in incremented.

Performance of the new implementation is much better since it reduces an asymp-
totic complexity to O(G) from original O(G2). Complexity of the loop’s body is
similar or even smaller than in the original implementation so that a multiplicative
constant hidden in the asymptotic complexity formula is decreased as well.

5.2.5 Parallel Performance Tuning

The sequential implementation was successfully applied to smaller scale problems
and high quality solutions were obtained. However, optimization of architectures
with more than few tens of processors was difficult since large chromosome length
(especially for AAS communication) forced use of a smaller population size due to
limitations of both a memory size and a processing power, which in turn caused
search of a smaller state space and limited quality of found solutions.

To overcome the mentioned limitations, a parallel version was designed, simu-
lated and implemented. The design of an efficient parallel version was supported
by data obtained from simulations and from executions of the sequential version.
A primary architecture intended for testing the parallel program was a cluster of
workstations because it was readily available. Therefore high communication delays
were considered during the design. Nevertheless, since the message passing was pro-
grammed using MPI library [14] routines, the program can easily be compiled and
run on any architecture (clusters of workstations, MPPs, SMPs, etc.) for which an
implementation of MPI standard is available.

The Search for the Shortest Paths

It was decided not to parallelize the first phase of the algorithm at all. There were
several reasons for this decision:

• Computation of the search for shortest paths takes a small fraction of the
overall runtime of the program. Measurements of the sequential code indicate
that for populations of at least several tens of individuals, which are quite
common, the search lasts approximately as long as a single generation of the
genetic algorithm.
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• Load balance would be difficult since distances of processors in the optimized
topology are not known before the search and therefore trees of different depths
would be traversed by different processors.

• Partial results would have to be collected and broadcasted to all processors
(AOG + OAB or a single AAB communication), which would cause additional
significant overhead.

Due to these difficulties the whole search is performed by all processors. Suppos-
ing that they have a local copy of the input file, communication is totally avoided
in this phase. Such an implementation assumes that processors with the same per-
formance are used. In a case of heterogeneous parallel computers a more efficient
approach would be to let the fastest processor perform the search and then broadcast
results to others.

The Optimization Algorithm

Since genetic algorithm (GA) is highly parallel there are several possible approaches
to parallelize this problem. Three main categories of parallel genetic algorithms are:

• Global GA treats the entire population as a single breeding unit and aims
to exploit the algorithmic parallelism inherent in the genetic algorithm.

• Migration GAs divide the population into a number of subpopulations, each
of which is treated as a separate breeding unit under the control of a conven-
tional GA.

• Diffusion GA treats each individual as a separate breeding unit. The second
partner for mating is always selected from within a small local neighborhood
of the first partner.

Both global and diffusion genetic algorithms were refused because their fine gran-
ularity makes them unsuitable for architectures with large communication overhead,
which were primarily targeted. The migration GA offers coarse granularity paral-
lelism at the expense that subpopulations are quite isolated and may tend to con-
verge to local optima rather than to global optima. To encourage the proliferation of
good genetic material throughout the whole population, individuals migrate between
the subpopulations from time to time.

The selected migration approach still leaves some choices to be made, e.g. how
often and how many individuals should migrate and if they should be broadcasted
to all processors or only to a subset of them (near neighbors). To support qualified
choices, a simulation model was developed to ease testing various configurations
of the algorithm. It is based on the cluster model described in chapter 4. Some
results can be seen in Figure 5.4. The graph shows efficiency of three variants of
communication on a cluster of four to sixteen processors. The model simulates
migration of ten individuals among subpopulations in every tenth generation of a
total of 200 generations.

The version denoted P-1 neighbors in the graph simulates broadcast of the best
individuals to all processors. It achieves poor scalability due to communication
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Fig. 5.4: Simulated efficiency of GAroute algorithm for various communication pat-
terns

traffic increasing linearly with the number of processors P while a workload of every
CPU remains constant. Such an implementation is therefore unsuitable for larger
numbers of processors.

Much better performing is a variant denoted 3 neighbors, which attains almost
linear speedup (constant efficiency). It should be noted, though, that the simulated
speedup does not automatically mean similar increase in speed of the algorithm’s
convergence. It just deals with the communication versus useful computation ratio.

The last case denoted Overlapped Comm. simulates efficiency of the algorithm
when communication overhead is fully overlapped with useful computation. As
expected, the efficiency reaches almost 100% since the main source of overhead
which still remains is the sequential computation performed at the beginning of the
algorithm (the search for shortest paths). The dependency will be the sasme for
both constant number of neighbors N = P − 1 assuming that computation of the
generations between two migrations does not take shorter time than communication.

Since in practice 100% of communication can hardly be performed in background
leaving the main processing unit free for other computation and the ratio greatly
depends on capabilities of a praticular hardware used and on software implemen-
tation, the final solution was to keep N � P , especially for greater values of P ,
but still proportional to P . This greatly reduces the communication overhead. In a
case of need, the user can still tune the value. Since the cluster used for testing has
a star topology, which does not distinguish distances of processors, neighbors were
simply determined from indices of the machines.

Despite the mentioned difficulties with overlapping communication, every at-
tempt was made to overlap as much communication with computation as possible.
All communications are programmed using MPI nonblocking asynchronous routines.
Completion of a previous communication task is checked and possibly waited for
only at the point of the next communication so that the previous communication
has enough time to complete without waiting.
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5.2.6 Experimental Results

The developed program was tested with various parameters (population size, number
of offsprings created in every generation, probability of mutation, single-point and
double-point crossover). The following paragraphs summarize experience gained
during experimentation with these parameters.

It seems that there is no apparent difference in speed of convergence if a double-
point crossover is used instead of the simpler single-point crossover. On the other
hand, mutation probability has a great impact on convergence. It appears that
higher probability (up to 1 percent) causes faster convergence during the first gen-
erations, but later, after a few tens or hundreds of generations, frequent mutation
slows down convergence significantly.

The best results have therefore been obtained with mutation probability being
lowered gradually during computation (a similar process to cooling schedule of Sim-
ulated Annealing algorithm [61]). The schedule is based on a minimal cost (cost of
the fittest individual in a current population). After minimal cost goes down to a
half of its value in the first generation, mutation probability is also lowered to a half.
This process is repeated a few times so that last generations are performed with a
probability of mutation lowered to a small fraction of its original value at the begin-
ning of computation. Some improvement has also been achieved by mutating more
likely those genes which cause conflicts (increasing the cost of their chromosome)
than those which do not cause any conflicts.

Population size of one hundred to a few hundred individuals seems to be suffi-
cient. Better results have been achieved when fewer offsprings than the size of the
whole population are produced in every generation, so that the fittest individuals
from the current population can survive without a danger of being replaced by less
fit offsprings. It is usually sufficient to keep two or four fittest individuals.

Scheduling of OAS and AAS communication operations for two different archi-
tectures, a hypercube and AMP, was tested. The number of processors in the target
architecture varied from 8 to 64. A hypercube has been chosen as a convenient
benchmark because of its regular topology with known optimal scheduling. The
optimal number of steps S for OAS communication on a hypercube with dimension
n and P processors is given by:

S =
⌈
2n − 1

n

⌉
=

⌈
P − 1

log P

⌉
(5.5)

and for AAS communication

S = 2n−1 =
P

2
(5.6)

OAS and AAS communication complexities, measured by the number of time
steps in schedules found by GAroute so far, are shown in Tables 5.3 and 5.4 (columns
three and four). The first column gives the node count in the target architectures
and the second column shows the number of steps in the known optimal schedule
for a hypercube (the reachable lower bound).

The presented data deserve some comments. Firstly, OAS is a quite simple
operation and therefore the algorithm is likely to find an optimal solution even for
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# of nodes hypercube optimal hypercube AMP

8 3 3 2

16 4 4 –

23 – – 6

32 7 7 8

42 – – 11

53 – – 13

64 11 11 –

Tab. 5.3: Results of OAS optimization

# of nodes hypercube optimal hypercube AMP

8 4 4 4

16 8 9 –

23 – – 14

32 16 18 22

42 – – 31

53 – – 45

64 32 40 –

Tab. 5.4: Results of AAS optimization

larger architectures in a couple of tens of iterations if its parameters are set correctly
(mutation probability, population size, . . . ).

Although AAS has a higher order of complexity than OAS, GAroute has been
successfully applied even to this communication pattern. Nearly optimal solutions
have already been found for architectures with up to 32 processors and acceptable
results have been attained for larger networks. A further improvement of these
results can be expected in the future, because a number of experiments, which could
be carried out so far, was limited by the overall run time required for optimization
(many hours if nearly optimal solutions are sought). On the other hand, if we need
an acceptable solution quickly, GAroute can be run with a larger target number of
communication steps S and it is likely to find such solution quickly.

To illustrate the results found by GAroute, Table 5.5 contains eight AAS routing
tables for eight nodes in AMP topology. Rows show message movement in at most
four steps from source nodes (left columns) to destination nodes (bold digits), pos-
sibly via intermediate nodes. The asterisk means that the message does not move in
the given step. Two intermediate nodes in some rows indicate non-minimum routing
over three channels, since the diameter D = 2.

Each node stores its table and communicates with its neighbors in four steps
(rounds) according to the table. For example node 2 sends messages to neighbors
0 and 3 in the first step, to neighbor 5 in the second step and to neighbor 6 in the
third step. Messages to remaining nodes 1, 4, and 7 go via intermediate nodes 5, 6,
and 6 and reach destinations in step 4, 2, and 3, respectively. On the other hand,
node 2 receives messages from nodes 0 and 3 in step 2, from node 7 in step 3 and
from nodes 4, 6, 1, and 5 in the last step 4.
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0 ∗ ∗ 1 ∗
0 ∗ 2 ∗ ∗
0 3 ∗ ∗ ∗
0 4 ∗ ∗ ∗
0 ∗ ∗ 3 5

0 ∗ ∗ 2 6

0 ∗ 3 ∗ 7

1 4 ∗ 0 ∗
1 5 ∗ ∗ 2

1 0 ∗ ∗ 3

1 ∗ ∗ 4 ∗
1 ∗ 5 ∗ ∗
1 ∗ ∗ 6 ∗
1 6 7 ∗ ∗

2 0 ∗ ∗ ∗
2 ∗ ∗ 5 1

2 3 ∗ ∗ ∗
2 6 4 ∗ ∗
2 ∗ 5 ∗ ∗
2 ∗ ∗ 6 ∗
2 ∗ 6 7 ∗

3 ∗ ∗ 0 ∗
3 0 ∗ ∗ 1

3 ∗ 2 ∗ ∗
3 ∗ 0 ∗ 4

3 ∗ ∗ 5 ∗
3 7 6 ∗ ∗
3 5 ∗ ∗ 7

4 ∗ ∗ ∗ 0

4 ∗ 6 ∗ 1

4 ∗ 1 0 2

4 6 ∗ 2 3

4 ∗ ∗ 1 5

4 ∗ ∗ ∗ 6

4 ∗ ∗ 6 7

5 ∗ ∗ 1 0

5 1 ∗ ∗ ∗
5 ∗ 3 ∗ 2

5 ∗ ∗ ∗ 3

5 2 0 4 ∗
5 ∗ 1 ∗ 6

5 ∗ 7 ∗ ∗

6 4 0 ∗ ∗
6 ∗ ∗ 4 1

6 ∗ ∗ ∗ 2

6 ∗ 2 3 ∗
6 1 4 ∗ ∗
6 ∗ 1 5 ∗
6 7 ∗ ∗ ∗

7 ∗ ∗ 3 0

7 6 ∗ 1 ∗
7 ∗ 3 2 ∗
7 ∗ ∗ ∗ 3

7 ∗ ∗ 6 4

7 ∗ ∗ ∗ 5

7 ∗ ∗ ∗ 6

Tab. 5.5: 8-processor AMP routing table

5.3 Conclusions

This chapter presented a design, implementation and performance tuning of a paral-
lel iterative optimization algorithm. The design was supported by the same simula-
tion approach described in previous chapters. A model of a workstation cluster was
used to provide a preliminary view of the program’s performance on the particular
architecture. It enabled quick decisions about various variants of an implementa-
tion without a need to implement several different versions only for testing and
comparison.

Beside the fact that the developed program serves as a representative case study
of the performance tuning approach, the results also indicate usefulness of the de-
signed algorithm in other areas of parallel computing. The algorithm provided high
quality schedules of group communications, which cannot be constructed by any
heuristic approach known to the author. Support for other types of communica-
tion and hardware capabilities of target architectures can be incorporated into the
program to further broaden its application area.

Moreover, a user-selectable optimality of sought solutions is an unusual approach
not mentioned in literature concerning genetic algorithms. This approach was re-
quired to maintain constant length of chromosomes and was successfully employed
in the algorithm.

Aside from GAroute, simulations of other optimization algorithms were also
performed. For example a diffusion genetic algorithm used for optimization of stack
filters in image processing was simulated on a 2D-torus architecture. Achieved
results were published in [70].
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Chapter 6

Conclusions and Future Research
Directions

6.1 Contributions

A primary goal of the thesis was development of a unified approach to modeling of
parallel architectures and algorithms with special emphasis on estimation of obtain-
able performance. The goal has been fulfilled by applying a CSP-based simulation
approach, which was originally designed by its authors for prototyping of parallel
algorithms on a particular message passing architecture. The modeling approach
has been extended to support simulation of a wide variety of architectures and pro-
gramming paradigms. Advantages of the developed approach include following:

• It can be used to run typical programs on theoretical machines like PRAM
and asynchronous PRAM (APRAM) and derive their execution times.

• It can simulate execution of message-passing as well as shared-variable pro-
grams on various architectures.

• It can describe interconnection of processors via direct (hypercube, 2D-torus,
full connection) as well as indirect networks (multistage interconnection net-
works), crossbars and buses.

• It can include time model of message passing communication as well as shared-
memory communication (possibly the write miss in a sender cache, synchro-
nization, and the read miss in a receiver cache).

• It allows description of various synchronization operations (locks, barriers) and
their timing overhead.

• It is able to evaluate performance of parallel applications simultaneously with
(simulated) execution.

As results presented in the thesis indicate, a quite satisfactory accuracy of sim-
ulation can usually be attained. Especially when measurements of implemented
fragments of sequential code were performed and models augmented with the mea-
sured data, high accuracy (within 10 %) has been achieved. The accuracy has been
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verified for models of two most common parallel architectures — a bus-based sym-
metrical multiprocessor and a switch-connected cluster, since the two architectures
were available for experimentation (a 4-processor SMP and a cluster of worksta-
tions).

The approach has also been successfully used in teaching of parallel architectures
and algorithms. Students can experiment with the models to better understand
fundamental principles of parallel architectures and to get the first experience with
debugging of parallel programs. They can also use the described models of various
architectures, synchronization operations, etc. to build more complex models and
experiment with them. A broad range of parallel algorithms have already been
simulated in various student assignments. Main application areas of models available
for experimentation include:

• Sorting and searching — bitonic sort, parallel sort with regular sampling,
merge-sort, parallel search

• Linear algebra — matrix transposition and multiplication, Gauss-Jordan
method, multidiagonal sparse linear equations, iterative solution of linear equa-
tions, FFT, Divide and Conquer paradigm applied to FFT

• Synchronization — butterfly and dissemination barriers, LL-SC lock using
coherency, a centralized barrier with a shared counter, dining philosophers

• Soft computing — multi-layer artificial neural networks, genetic algorithms,
cellular neural networks

• Other — parallel reduction, scan and broadcast, tree farm, linear farm, prime
number generation, deadlock at routing, minimum spanning tree, A Minimum
Path (AMP) topology, fat tree interconnection, omega interconnection network

Aside from fulfillment of main goals of the thesis, tuning the performance and op-
timization of collective communication algorithms for irregular topologies have been
demonstrated using a parallel program GAroute. Results presented in section 5.2.6
prove its ability to provide high quality results, which are useful for design of effi-
cient communication algorithms. This parallel program has been itself tuned for the
best performance and serves as an example of useful parallelization techniques.

Other particular contributions of this work include following:

1. A general library of basic models (interconnection networks, synchronization
mechanisms) has been developed, which can be used for building complex
models of parallel systems and applications.

2. The thesis demonstrated general application of ALT statement for simulation
of various types of arbitration. A central arbiter has been designed, which
is fair for arbitrary number of requesters. Moreover, distributed as well as
centralized “on demand” arbitration has been implemented.

3. Use of ALT statement in models of bidirectional interconnection networks based
on synchronous channel communication has been found to be prone to a fetch
deadlock. The fact has not been mentioned in other literature concerning
Occam or Transim languages yet.

65



4. A novel variant of Genetic algorithm has been introduced. It uses a progres-
sively adjusted quality metrics of a searched solution and reduces the cost
function of individuals not to a minimum but to zero.

6.2 Future Research Directions

Although Transim proved to be a very useful tool for simulations performed in this
work, its limitations may make it unsuitable under certain circumstances. Prob-
lems appeared especially during simulations of complex models like a cluster of
SMPs, which employs a combination of both message passing and shared variable
paradigms. Sometimes the limitations could be overcome e.g. by using distributed
simulation as mentioned in section 4.4, but in some cases they may be more difficult
to handle.

Due to the limitations, possibilities of use of the developed simulation approach
in other environments have also been investigated. A promising framework seems
to be JavaCSP [62], which is a Java implementation of various CSP constructs.
It is a class library that allows adoption of CSP approach to concurrency with all
its advantages. The models developed in this thesis could therefore be ported to
JavaCSP to allow e.g. larger scale simulations than Transim would support.

Another promising direction of further research seems to be performance mod-
eling of grid computing. This recent technology tries to provide an uniform way of
access to computing resources spread in geographically large areas. It should enable
accumulating idle processing power available throughout the Internet, which could
then be used for computationally intensive tasks. Attaining efficient computation in
such an environment is apparently a difficult task and should be solved with a help
of sound modeling and performance prediction tools. An attempt to predict per-
formance of computing in a wide area network environment by use of the described
modeling approach has already been published in [66].

Even though the developed and implemented algorithm GAroute is already able
to provide useful results, which indicate that main ideas behind the algorithm are
correct, a range of its possible applications is still limited. Further development of
the program can improve its usability by e.g. providing support for other types of
group communications, switching techniques, packet manipulation etc.

66



Appendix A

Transim Language Reference

This is a short reference of the most frequently used Transim commands. It does
not attempt to be a copy of a formal specification of the language but rather to be
a quick guide, which makes reading segments of source code of simulation models in
the text easier. The reference is divided into three sections: Software Description,
Hardware Description and Mapping Software onto Hardware similarly to structuring
of source code of the models.

A.1 Software Description

A.1.1 Data Types

The following three primitive data types are available. No real numbers or operations
on them are supported.

INT an integer type, its limits depend on a host operating system.

BOOL a boolean type with possible values TRUE and FALSE.

INTC a constant value which can be shared in hardware and software description.

A (multidimensional) array can be constructed from a primitive type, for exam-
ple: [10][5] INT matrix.

A.1.2 Code Structuring

Blocks of code are designated either by indentation (two space characters) or by
braces (‘{’ and ‘}’). The following statements determine how blocks are executed.

SEQ determines a block of statements which are executed sequentially. Loops can
be expressed by replication of SEQ (e.g. SEQ i = 0 FOR n).

PAR executes following blocks in parallel. Each block must be preceded by SEQ |

name statement, where name determines a name of the process. All processes
are executed concurrently on the same processor and in the same priority.

67



PRI PAR statement in contrast to PAR executes processes with different priori-
ties: the first process (in textual order) is executed in high priority, other
processes are executed in low priority. Neither PAR nor PRI PAR statement
can be replicated in Transim.

PLACED PAR executes following processes (named blocks) on different proces-
sors in parallel. The statement can be replicated (PLACED PAR i = 0 FOR n)
to provide a SPMD programming model.

A.1.3 Communication

Communication and synchronization means are provided by channels. Channels
in Transim use only a single protocol (ANY). A channel ch is therefore declared as
follows: CHAN OF ANY ch. Arrays of channels are also supported (declared as: [n]

CHAN OF ANY chn) and can mix channels between and within processors (hard and
soft channels). Communication is expressed by following statements:

! denotes a send operation, e.g. ch ! expr | mesg.length, where expr is an inte-
ger expression which is evaluated and the result is sent to a destination process.
mesg.length determines simulated length of the sent message.

? denotes a receive operation, e.g. ch ? var. A received integer value is stored in
a variable var.

ALT is a receive statement which selects from multiple input channels. If more than
one channel is ready for receive, the channel used for the next communication
operation is determined arbitrarily — in Transim always the first channel in
textual order.

PRI ALT statement unlike ALT always receives from the first ready channel in
textual order. In Transim the functionality is the same as that of simple ALT.

Two predefined channels can be used in the simulation:

DEVICE is a channel for communication with an external device. The channel
can be used for both input and output. Message length must be specified in
both cases.

OUTSTRM is an output channel used only for debugging and tracing. Values
sent to this channel are printed into an output file by the simulator. Commu-
nication on this channel does not influence the simulated time.

A.1.4 Predefined Functions and Procedures

The only function and procedures which can be used are following:

RAND(low, high) is a function which returns randomly generated value in the
interval <low, high>.
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SERV(expr) defines the length of simulated useful processor work, expr is the
number of CPU cycles.

WAIT(expr) indicates that a processor is idle for the specified number of cycles
expr.

NOTE(str) causes string str to be printed to an output file by the simulator. It
is useful for timing purposes.

A.2 Hardware Description

Each node (processor) of a simulated architecture is specified by a NODE statement,
which can have following parameters:

SPD processor speed in MHz

LS link speed in Mbit/s

ICS internal channel speed in Mbyte/s

ECS external channel speed in Mbyte/s

ICD internal channel delay in µs

ECD external channel delay in µs

TSL time-slice period in CPU cycles

EF external memory factor (the number of additional CPU cycles for one external
memory cycle)

The NODE statement can be replicated (e.g. NODE i = 0 FOR n). In a case that
links of different speeds are used, a LINK statement is also required to describe
interconnection of nodes. Otherwise, interconnection is automatically obtained by
the simulator from a Transim source file. Example:

NODE
NODE i = 0 FOR P

NODE cpu : SPD = 500, ECD = 485, ECS = 7.9

A.3 Mapping Software onto Hardware

Named components of a (replicated) PLACED PAR statement are mapped to proces-
sors (specified by the NODE statement in a hardware description) by a MAP statement.
The statement can also be replicated. Example:

MAP
MAP i = 0 FOR P

MAP cpu[i] : cell[i]
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Shrnut́ı

Tato práce se zabývá jednotným př́ıstupem k modelováńı paralelńıch architektur a
algoritmů s d̊urazem předevš́ım na odhad dosažitelné výkonnosti. Pro tento účel
byl zvolen modelovaćı jazyk Transim, který byl svými autory p̊uvodně navržen jako
simulátor transputer̊u vhodný pro prototypováńı a vyhodnocováńı výkonnosti par-
alelńıch programů komunikuj́ıćıch pomoćı zaśıláńı zpráv. V této práci je však použit
pro simulaci mnoha r̊uzných typ̊u paralelńıch architektur a programových vzor̊u, což
jde daleko za rámec jeho p̊uvodně zamýšlených aplikaćı.

Navržený př́ıstup je předveden na simulaćıch jak abstraktńıch model̊u, jako
jsou PRAM nebo APRAM, tak také běžně použ́ıvaných paralelńıch architektur
např́ıklad symetrických multiprocesor̊u, svazk̊u pracovńıch stanic a jejich kombinaćı.
Je demonstrováno laděńı výkonnosti paralelńıch algoritmů a výsledky dosažené při
simulaćıch jsou porovnány s výsledky dosaženými na reálných paralelńıch poč́ıtač́ıch.
Prezentované simulačńı modely zahrnuj́ı také r̊uzné synchronizačńı operace běžně
použ́ıvané v mnoha paralelńıch algoritmech, které lze dále použ́ıt pro stavbu složi-
těǰśıch model̊u.

Bylo provedeno také laděńı výkonnosti komunikačńıch algoritmů, protože tyto
algoritmy významně ovlivňuj́ı režie paralelńıch výpočt̊u. Poněvadž komunikace je
nepostradatelnou součást́ı jakéhokoli paralelńıho výpočtu, jsou dosažené výsledky
použitelné pro širokou oblast paralelńıch aplikaćı běž́ıćıch na distribuovaných stro-
j́ıch využ́ıvaj́ıćıch propojovaćı śıtě s nepravidelnou topologíı.
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