Název:

Diskrétní procesy v elektrotechnice

Zkratka:DMA2
Ak.rok:2012/2013
Semestr:letní
Studijní plán:
ProgramOborRočníkPovinnost
VTI-DR-4DVI4-volitelný
Vyučovací jazyk:čeština
Ukončení:zkouška (ústní)
Výuka:
hod./sempřednáškasem./cvičenílab. cvičenípoč. cvičeníjiná
Rozsah:390000
 zkouškatestycvičenílaboratořeostatní
Body:1000000
Garant:Diblík Josef, prof. RNDr., DrSc., UMAT
Fakulta:Fakulta elektrotechniky a komunikačních technologií VUT v Brně
Pracoviště:Ústav matematiky FEKT VUT v Brně
 
Cíle předmětu:
Diskrétní a diferenční rovnice jsou matematickou páteří mnoha oblastí inženýrských věd. Cílem předmětu je vytvořit základní představy o vlastnostech řešení těchto rovnic a ukázat způsoby jejich aplikování. Proto je pozornost věnována aplikačním příkladům a využití při studiu stability procesů, jejich řiditelnosti a pozorovatelnosti.
Anotace:
Předmět je věnován popisu procesů pomocí diskrétních rovnic. Je tvořen třemi celky:
a)základním aparátem a základními metodami analýzy diskrétních procesů,
b)aplikacemi diferenčních rovnic a rozhodování o stabilitě procesů,
c)aplikacemi diferenčních rovnic při řízení procesů.
Předmět je vhodný pro studentky a studentky doktorského studia, kteří při své práci používají diskrétní a diferenční vztahy a rovnice a numerické algoritmy. Jako příklad lze uvést použití pro matematické modelování jevů v nanotechnologiích, teorii řízení a při zpracování signálů.
Požadované prerekvizitní znalosti a dovednosti:
Jsou požadovány znalosti na úrovni bakalářského a magisterského studia.
Získané dovednosti, znalosti a kompetence:
Schopnost orientace v základních pojmech a metodách diskrétních a diferenčních. Řešení úloh z oblastí, uvedených v anotaci, pomocí aplikace těchto metod. Řešení úloh využitím moderního matematického software.
Osnova přednášek:
  1. Základní aparát a základní metody vyšetřování diskrétních procesů (5 týdnů):
    Diskrétní počet (vybrané diferenční vztahy na základě spojitých analogií). Diferenční rovnice a systémy. Základní pojmy, užívané v diskrétních rovnicích (rovnovážné body, periodické body, body potenciálně rovnovážné a potenciálně periodické, stabilita řešení, přitahující a odpuzující body) a jejich ilustrace na příkladech (modelování obvodů diskrétními rovnicemi, přenos informace). Rekurzivní algoritmy řešení systémů diskrétních rovnic a rovnic vyšších řádů (případ konstantních koeficientů, metoda variace parametrů, metoda neurčitých koeficientů). Počítačová konstrukce obecného řešení. Transformace některých nelineárních rovnic na lineární. Diferenční rovnice sestavované na bází vzorkování, impulsové podněty, výpočet charakteristik z odezvy signálu (odezva Diracovy distribuce), přechodné děje.
  2. Aplikace diferenčních rovnic, stabilita procesů (4 týdny):
    Stabilita rovnovážných bodů. Typy stability a nestability. Stabilita lineárních systémů s proměnnou maticí. Stabilita nelineárních systémů podle lineární aproximace. Ljapunovova přímá metoda pro zjištění stability. Fázová analýza dvourozměrného diskrétního systému s konstantními koeficienty, klasifikace rovnovážných bodů.
  3. Aplikace diferenčních rovnic - řízení procesů (4 týdny):
    Diskrétní ekvivalenty spojitých systémů. Diskrétní teorie řízení (řiditelnost, úplná řiditelnost, matice řiditelnosti, kanonické tvary řiditelnosti, řiditelná kanonická forma, konstrukce algoritmu řízení). Pozorovatelnost (úplná pozorovatelnost, nepozorovatelnost, princip duality, matice pozorovatelnosti, kanonické tvary pozorovatelnosti, vztah řiditelnosti a pozorovatelnosti). Stabilizace řízení dle zpětné vazby. 
Literatura referenční:
  1. Diblík, J., Růžičková, I., Discrete Processes in Electrical Engineering, Studijní modul, Brno, 2005.
  2. Aramanovič, J. G., Lunc, G. L., Elsgolc, L. C., Funkcie komplexnej premennej, operátorový počet, teória stability, Alfa, SNTL, 1973.
  3. Farlow, S. J., An Introduction to Differential Equations, McGraw-Hill, Inc., 1994.
  4. Mayer, D., Úvod do teorie elektrických obvodů, SNTL, Alfa, 1978.
  5. Prágerová, A., Diferenční rovnice, SNTL, 1971
  6. Saber, Elaydi, N., An Introduction to Difference Equations, Springer-Verlag, New York, Inc., 1996.