Název:

Diskrétní matematika

Zkratka:IDA
Ak.rok:2013/2014
Semestr:zimní
Studijní plán:
ProgramObor/
specializace
RočníkPovinnost
IT-BC-3BIT1.povinný
Vyučovací jazyk:čeština
Kredity:7 kreditů
Ukončení:zkouška (písemná)
Výuka:
hod./sempřednáškasem./cvič.lab. cvič.poč. cvič.jiná
Rozsah:39120410
 zkouškatestycvičenílaboratořeostatní
Body:60010030
Garant:Kovár Martin, doc. RNDr., Ph.D. (UMAT)
Přednášející:Hliněná Dana, doc. RNDr., Ph.D. (UMAT)
Kovár Martin, doc. RNDr., Ph.D. (UMAT)
Cvičící:Hliněná Dana, doc. RNDr., Ph.D. (UMAT)
Chernikava Alena, Mgr., Ph.D. (FIT)
Kovár Martin, doc. RNDr., Ph.D. (UMAT)
Fakulta:Fakulta elektrotechniky a komunikačních technologií VUT v Brně
Pracoviště:Ústav matematiky FEKT VUT v Brně
Navazující:
Algoritmy (IAL), UIFS
Formální jazyky a překladače (IFJ), UIFS
Matematická analýza (IMA), UMAT
Modelování a simulace (IMS), UITS
Numerická matematika a pravděpodobnost (INM), UMAT
Základy počítačové grafiky (IZG), UPGM
 
Cíle předmětu:
  Předmět poskytuje základní znalosti z matematiky potřebné pro řadu navazujících předmětů. Studenti se seznámí s elementárními poznatky z algebry a diskrétní matematiky, s důrazem na matematické struktury, které jsou potřebné pro pozdější aplikace v informatice.
Anotace:
  Množina, relace a zobrazení. Ekvivalence a rozklady. Uspořádání. Struktury s jednou a dvěma operacemi. Svazy a Boolovy algebry. Sémantika a syntaxe výrokového počtu. Normální tvary formulí. Matice a determinanty. Vektorové prostory a podprostory. Soustavy lineárních rovnic. Základní pojmy teorie grafů. Souvislost grafů. Podgrafy a morfismy grafů. Problém rovinnosti. Stromy a jejich vlastnosti. Jednoduché grafové algoritmy.
Požadované prerekvizitní znalosti a dovednosti:
  Středoškolská matematika.
Získané dovednosti, znalosti a kompetence:
  Studenti získají elementární znalosti z diskrétní matematiky a lineární algebry, a schopnost orientace v souvisejících matematických strukturách.
Osnova přednášek:
 
  1. Formální jazyk matematiky. Intuitivní množinové pojmy. Základní množinové operace. Množinové mohutnosti. Číselné množiny. Kombinatorické vlastnosti množin. Princip inkluze a exkluze. Techniky důkazů a jejich ilustrace.
  2. Binární relace a zobrazení. Skládání relací a zobrazení. Vlastnosti zobrazení. Indexované systémy množin a jejich zobrazení. Abstraktní prostory. Reálné funkce a jejich vlastnosti. Spojitost a nespojitost. Rekurzívně definované funkce.
  3. Další vlastnosti binárních relací. Reflexivní, symetrický a transitivní uzávěr. Ekvivalence a rozklady. Uspořádání, zvláště svazové. Hasseovské diagramy.
  4. Algebry s jednou a dvěma operacemi a jejich morfismy. Grupy a tělesa. Svaz jako množina se dvěma operacemi. Booleova algebra.
  5. Hlavní vlastnosti a zákony Boolových algeber. Dualita a množinová reprezentace konečných Boolových algeber.
  6. Formule a sémantika výrokového počtu. Interpretace a klasifikace formulí. Boolova algebra neekvivalentních formulí. Syntaxe výrokového počtu. Věta o kompaktnosti. Normální tvary formulí.
  7. Matice a maticové operace. Determinant čtvercové matice. Inverzní a adjungovaná matice. Metody výpočtu determinantu.
  8. Vektorový prostor a jeho podprostory. Báze a dimenze. Vyjádření vektoru v bázi. Transformace souřadnic. Lineární zobrazení vektorových prostorů.
  9. Soustavy lineárních rovnic. Gaussova eliminace. Frobeniova věta. Cramerovo pravidlo.
  10. Skalární a unitární součin. Ortonormální systémy vektorů. Ortogonální průmět vektoru do podprostoru. Vektorový a smíšený součin.
  11. Grafy a jejich různé reprezentace. Sledy, tahy a cesty. Algoritmus nalezení nejkratší cesty. Souvislost grafů.
  12. Podgrafy. Izomorfismus a homeomorfismus grafů. Eulerovské a hamiltonovské grafy. Problém rovinnosti.
  13. Stromy, kostry a jejich vlastnosti. Binární stromy a jejich prohledávání. Tok v orientovaném grafu.
Osnova numerických cvičení:
 
  1. Budou procvičena témata z přednášek ve vhodném rozsahu.
Osnova počítačových cvičení:
 Dvě dvouhodinová cvičení k tématům přednášek číslo 8, 9 a 10.
Osnova ostatní - projekty, práce:
 Pět samostatných domácích úloh - bližší informace sdělí vyučující.
Literatura referenční:
 
  • Anderson I., A First Course in Discrete Mathematics, Springer-Verlag, London 2001.
  • Acharjya D. P., Sreekumar, Fundamental Approach to Discrete Mathematics, New Age International Publishers, New Delhi, 2005.
  • Faure R., Heurgon E., Uspořádání a Booloeovy algebry, Academia, Praha 1984.
  • Gantmacher, F. R., The Theory of Matrices, Chelsea Publ. Comp., New York, 1960.
  • Garnier R.,  Taylor J., Discrete Mathematics for New Technology, Institute of Physics Publishing, Bristol and Philadelphia 2002.
  • Gratzer G., General Lattice Theory, Birkhauser Verlag, Berlin 2003.
  • Grimaldi R. P., Discrete and Combinatorial Mathematics, Pearson Addison Valley, Boston 2004.
  • Grossman P., Discrete mathematics for computing, Palgrave Macmillan, New York 2002.
  • Johnsonbaugh, R., Discrete mathematics, Macmillan Publ. Comp., New York, 1984.
  • Kolář, J., Štěpánková, O., Chytil, M., Logika, algebry a grafy, STNL, Praha 1989.
  • Kolibiar, M. a kol., Algebra a príbuzné disciplíny, Alfa, Bratislava, 1992.
  • Kolman B., Elementary Linear Algebra, Macmillan Publ. Comp., New York 1986.
  • Kolman B., Introductory Linear Algebra, Macmillan Publ. Comp., New York 1993.
  • Kolman B., Busby R. C., Ross S. C., Discrete Mathematical Structures, Pearson Education, Hong-Kong 2001.
  • Klazar M., Kratochvíl J, Loebl M., Matoušek J. Thomas R., Valtr P., Topics in Discrete Mathematics, Springer-Verlag, Berlin 2006.
  • Kučera, L., Kombinatorické algoritmy, SNTL, Praha 1983.
  • Lipschutz, S., Lipson, M.L., Theory and Problems of Discrete Mathematics, McGraw-Hill, New York, 1997.
  • Lovász L., Pelikán J., Vesztergombi, Discrete Mathematics, Springer-Verlag, New York 2003.
  • Mannucci M. A., Yanofsky N. S., Quantum Computing For Computer Scientists, Cambridge University Press, Cambridge 2008.
  • Mathews, K., Elementary Linear Algebra, University of Queensland, AU, 1991.
  • Matoušek J., Nešetřil J., Kapitoly z diskrétní matematiky, Karolinum, Praha 2000.
  • Matoušek J., Nešetřil J., Invitation to Discrete Mathematics, Oxford University Press, Oxford 2008.
  • Nahara M., Ohmi T., Qauntum Computing: From Linear Algebra to Physical Realizations, CRC Press, Boca Raton 2008.
  • O'Donnell, J., Hall C., Page R., Discrete Mathematics Using a Computer, Springer-Verlag, London 2006.
  • Preparata, F.P., Yeh, R.T., Úvod do teórie diskrétnych štruktúr, Alfa, Bratislava, 1982.
  • Rosen, K.H., Discrete Mathematics and its Applications, AT & T Information systems, New York 1988.
  • Rosen, K. H. et al., Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton 2000.
  • Ross, S. M. Topics in Finite and Discrete Mathematics, Cambridge University Press, Cambridge 2000.
  • Sochor, A., Klasická matematická logika, Karolinum, Praha 2001.
  • Švejdar, V., Logika, neúplnost, složitost a nutnost, Academia, Praha 2002.
  • Vickers S., Topology via Logic, Cambridge University Press, Cambridge 1990.
Literatura studijní:
 
  • Demlová M., Nagy J., Algebra, SNTL, Praha 1982.
  • Havel, V., Holenda, J., Lineární algebra, STNL, Praha 1984.
  • Jablonskij, S.V., Úvod do diskrétnej matematiky, Alfa, Bratislava, 1984.
  • Kolář, J., Štěpánková, O., Chytil, M., Logika, algebry a grafy, STNL, Praha 1989.
  • Matoušek J., Nešetřil J., Kapitoly z diskrétní matematiky, Karolinum, Praha 2000.
  • Peregrin J., Logika a logiky, Academia, Praha 2004.
  • Preparata, F.P., Yeh, R.T., Úvod do teórie diskrétnych štruktúr, Alfa, Bratislava, 1982.
Kontrolovaná výuka:
  Absolvování cvičení ve stanoveném rozsahu.
Průběžná kontrola studia:
  Absolvování cvičení ve stanoveném rozsahu.
 

Vaše IPv4 adresa: 3.91.79.74
Přepnout na https

DNSSEC [dnssec]