Title:

Advanced Computer Graphics

Code:PGP
Ac.Year:2016/2017
Term:Winter
Curriculums:
ProgrammeBranchYearDuty
IT-MSC-2MBI-Elective
IT-MSC-2MBS-Elective
IT-MSC-2MGM-Compulsory-Elective - group G
IT-MSC-2MIN-Elective
IT-MSC-2MIS-Elective
IT-MSC-2MMI-Elective
IT-MSC-2MMM-Elective
IT-MSC-2MPV-Elective
IT-MSC-2MSK-Elective
Language:Czech
Credits:5
Completion:examination (written)
Type of
instruction:
Hour/semLecturesSem. ExercisesLab. exercisesComp. exercisesOther
Hours:2600026
 ExaminationTestsExercisesLaboratoriesOther
Points:5190040
Guarantee:Zemčík Pavel, prof. Dr. Ing., DCGM
Lecturer:Beran Vítězslav, Ing., Ph.D., DCGM
Čadík Martin, doc. Ing., Ph.D., DCGM
Zemčík Pavel, prof. Dr. Ing., DCGM
Instructor:Milet Tomáš, Ing., DCGM
Tóth Michal, Ing., DCGM
Faculty:Faculty of Information Technology BUT
Department:Department of Computer Graphics and Multimedia FIT BUT
Prerequisites: 
Computer Graphics (PGR), DCGM
Computer Graphics Principles (IZG), DCGM
 
Learning objectives:
  To get acquainted with the advanced computer animation and computer graphics methods suitable for dynamic and large scale scenes. To learn how to practically implement selected algorithms through projects.
Description:
  Scene representation for dynamic rendering, mathematical and procedural textures - design, rendering and animation, real-time rendering of complex scenes, design and implementation of animation system for articulated structures, dynamics in computer animation, soft-object animation, facial and behavioral animation, special rendering methods and techniques (non-realistic rendering, special effects).
Subject specific learning outcomes and competences:
  The students will get acquainted with the advanced computer animation and computer graphics methods suitable for dynamic and large scale scenes. They will also learn how to practically implement selected algorithms through projects.
Generic learning outcomes and competences:
  The students will practice teamwork on the projects, work with literature, and practical experience with C/C++ language.
Syllabus of lectures:
 
  1. Introduction, limits of computer graphics
  2. Large scenes, level of detail
  3. Shaders
  4. Optimized ray tracing
  5. Landscape rendering
  6. Scenes with high dynamic range
  7. Animation of bone structures, "motion capture"
  8. Haptic a stereoimaging
  9. Virtual and augmented reality
  10. Design and structure for 3D rendering
  11. Holograms
  12. Conclusion
Syllabus - others, projects and individual work of students:
 
  1. Homeworks (5 runs) at the beginning of semester
  2. Individually assigned projects.
Fundamental literature:
 
  • Moeller, T., Haines, E., Real-time Rendering, AK Peters, 1999, ISBN 1569911012
  • Sillion, F., Puech, C., Radiosity and Global Illumination, Morgan Kaufmann, 1994, ISBN:1558602771
  • Ebert, D., S. et al., Texturing and Modelling: A Procedural Approach, Academic Press, 1998, ISBN 0-12-228760-6 
  • Thalmann, N., M., Thalmann, D., Interactive Computer Animation, Prentice Hall, 1996, ISBN 0-13-518309-X
  • Články IEEE, ACM, Wikipedie
Study literature:
 
  • Moeller, T., Haines, E., Real-time Rendering, AK Peters, 1999, ISBN 1569911012
Progress assessment:
  Homeworks, mid-term test, individual project.