Title:

Electronics for Information Technology

Code:IEL
Ac.Year:2018/2019
Sem:Winter
Curriculums:
ProgrammeFieldYearDuty
IT-BC-3BIT1stCompulsory
Language of Instruction:Czech
Private info:http://www.fit.vutbr.cz/study/courses/IEL/private/
Credits:6
Completion:credit+exam (written)
Type of
instruction:
Hour/semLecturesSeminar
Exercises
Laboratory
Exercises
Computer
Exercises
Other
Hours:3961208
 ExamsTestsExercisesLaboratoriesOther
Points:551501812
Guarantor:Šátek Václav, Ing., Ph.D. (DITS)
Deputy guarantor:Růžička Richard, doc. Ing., Ph.D., MBA (DCSY)
Lecturer:Bidlo Michal, Ing., Ph.D. (DCSY)
Peringer Petr, Dr. Ing. (DITS)
Růžička Richard, doc. Ing., Ph.D., MBA (DCSY)
Šátek Václav, Ing., Ph.D. (DITS)
Instructor:Kocnová Jitka, Ing. (DCSY)
Linhart Miroslav, doc. Ing., CSc. (DCSY)
Rozman Jaroslav, Ing., Ph.D. (DITS)
Strnadel Josef, Ing., Ph.D. (DCSY)
Šátek Václav, Ing., Ph.D. (DITS)
Šimek Václav, Ing. (DCSY)
Veigend Petr, Ing. (DITS)
Faculty:Faculty of Information Technology BUT
Department:Department of Intelligent Systems FIT BUT
Substitute for:
Circuit Theory (ITO), DITS
Computer Hardware (IPR), DITS
Schedule:
DayLessonWeekRoomStartEndLect.Gr.St.G.EndG.
Moncomp.lablecturesL30615:0016:501BIB
Moncomp.lablecturesL30617:0018:501BIB
Tuecomp.lablecturesL30607:0008:501BIB
TuelecturelecturesE11208:0009:501BIA
TuelecturelecturesE10408:0009:501BIA
TuelecturelecturesE10508:0009:501BIA
TuelecturelecturesE11208:0009:502BIAxxxx
TuelecturelecturesE11208:0009:502BIBxxxx
Tueexam - 2. oprava2019-01-29D10509:0011:501BIA
Tueexam - 2. oprava2019-01-29D10509:0011:501BIB
Tueexam - 2. oprava2019-01-29D10509:0011:502BIA
Tueexam - 2. oprava2019-01-29D10509:0011:502BIB
Tueexam - 2. oprava2019-01-29D020609:0011:501BIA
Tueexam - 2. oprava2019-01-29D020609:0011:501BIB
TuelecturelecturesE11214:0014:501BIA
TuelecturelecturesE10414:0014:501BIA
TuelecturelecturesE10514:0014:501BIA
TuelecturelecturesE11214:0014:502BIAxxxx
TuelecturelecturesE11214:0014:502BIBxxxx
TueexerciselecturesE11215:0015:501BIA1024
TueexerciselecturesE10415:0015:501BIA1024
TueexerciselecturesE10515:0015:501BIA1024
TueexerciselecturesE11215:0015:502BIAxxxx
TueexerciselecturesE11215:0015:502BIBxxxx
Tuecomp.lablecturesL30615:0016:501BIB
Tuecomp.lablecturesL30617:0018:501BIA
Tuecomp.lablecturesL30617:0018:501BIB
Tuecomp.lablecturesL30619:0020:501BIA
Tuecomp.lablecturesL30619:0020:501BIB
WedlecturelecturesD10508:0009:501BIB
WedlecturelecturesD020708:0009:501BIB
WedlecturelecturesD10508:0009:502BIAxxxx
WedlecturelecturesD10508:0009:502BIBxxxx
Wedcomp.labodd weekL30608:0009:501BIA
Wedcomp.labodd weekL30608:0009:501BIB
Wedcomp.lablecturesL30613:0014:501BIA
WedlecturelecturesD10514:0014:501BIB
WedlecturelecturesD020714:0014:501BIB
WedlecturelecturesD10514:0014:502BIAxxxx
WedlecturelecturesD10514:0014:502BIBxxxx
WedexerciselecturesD10515:0015:501BIB3044
WedexerciselecturesD020715:0015:501BIB3044
WedexerciselecturesD10515:0015:502BIAxxxx
WedexerciselecturesD10515:0015:502BIBxxxx
Wedcomp.lablecturesL30615:0016:501BIA
Wedcomp.lablecturesL30617:0018:501BIA
Wedcomp.lablecturesL30617:0018:501BIB
Wedcomp.lablecturesL30619:0020:501BIA
Thucomp.lablecturesL30609:0010:501BIA
Thucomp.lablecturesL30611:0012:501BIA
Thucomp.lablecturesL30611:0012:501BIB
Thucomp.lablecturesL30613:0014:501BIB
Fricomp.lablecturesL30609:0010:501BIA
Friexam - řádná2019-01-04D10509:0011:501BIA
Friexam - řádná2019-01-04D10509:0011:501BIB
Friexam - řádná2019-01-04D10509:0011:502BIA
Friexam - řádná2019-01-04D10509:0011:502BIB
Friexam - řádná2019-01-04D020609:0011:501BIA
Friexam - řádná2019-01-04D020609:0011:501BIB
Friexam - řádná2019-01-04D020709:0011:501BIA
Friexam - řádná2019-01-04D020709:0011:501BIB
Friexam - řádná2019-01-04E11209:0011:501BIA
Friexam - řádná2019-01-04E11209:0011:501BIB
Friexam - řádná2019-01-04E10409:0011:501BIA
Friexam - řádná2019-01-04E10509:0011:501BIB
Friexam - řádná2019-01-04A11209:0011:501BIA
Friexam - řádná2019-01-04A11309:0011:501BIB
Friexam - řádná2019-01-04A21809:0011:501BIA
Friexam - řádná2019-01-04A21809:0011:501BIB
Friexam - 1. oprava2019-01-18D10509:0011:501BIA
Friexam - 1. oprava2019-01-18D10509:0011:501BIB
Friexam - 1. oprava2019-01-18D10509:0011:502BIA
Friexam - 1. oprava2019-01-18D10509:0011:502BIB
Friexam - 1. oprava2019-01-18D020609:0011:501BIA
Friexam - 1. oprava2019-01-18D020609:0011:501BIB
Friexam - 1. oprava2019-01-18D020709:0011:501BIA
Friexam - 1. oprava2019-01-18D020709:0011:501BIB
Friexam - řádná2019-01-04G20209:0011:501BIA
Friexam - řádná2019-01-04G20209:0011:501BIB
Fricomp.lablecturesL30613:0014:501BIA
Fricomp.lablecturesL30613:0014:501BIB
Friexam - řádná2019-01-04D020613:0015:501BIA
Friexam - řádná2019-01-04D020613:0015:501BIB
Friexam - řádná2019-01-04D020613:0015:502BIA
Friexam - řádná2019-01-04D020613:0015:502BIB
Friexam - řádná2019-01-04E11213:0015:501BIA
Friexam - řádná2019-01-04E11213:0015:501BIB
Friexam - řádná2019-01-04E10413:0015:501BIA
Friexam - řádná2019-01-04E10513:0015:501BIB
Friexam - řádná2019-01-04A11213:0015:501BIA
Friexam - řádná2019-01-04A21813:0015:501BIA
Friexam - řádná2019-01-04A21813:0015:501BIB
Friexam - řádná2019-01-04G20213:0015:501BIA
Friexam - řádná2019-01-04G20213:0015:501BIB
 
Learning objectives:
  To obtain general knowledge and basics of selected methods of description and analysis of electric circuits with practical application in computer science. To obtain detailed instructions and information about occupational safety with electric devices. To gain practical knowledge of working with fundamental electronic circuits in labs.
Description:
  Basic transient analysis of electric circuits. Formulation of circuit equations and possibilities of their solutions. Analysis of RC, RL, and RLC circuits. Analysis of non-linear electric circuits. Parameters and characteristics of semiconductor elements. Graphic, numerical, and analytical methods of non-linear circuit analysis. TTL and CMOS gates. Power supply units. Limiters and sampling circuits. Level translators, stabilizers. Astable, monostable, and bistable flip-flops. Lossless and lossy transmission lines. Wave propagation on transmission lines, reflections, impedance matching.
Knowledge and skills required for the course:
  This course takes place in the winter term of the first year of the bachelors study programme. Thus, we expect that students have the high school level knowledge.
Learning outcomes and competencies:
  Ability to analyse electric circuits with practical application in computer science.
Knowledge of safety regulations for work with electronic devices.
Why is the course taught:
  Even though software is immaterial, the humanity has to still use matter to express and store thoughts, ideas and solutions. Systems designed to store the information are very complicated and have to be miniaturized. And because everything is still made of matter, we need forces that can manipulate even small particles of matter. Electromagnetic fields contain such sources, so we can, using smartly designed circuits, focus the energy and manipulate it very precisely. This is why computers are based on electronics. To understand how the computers work, we need to understand basic laws that govern electric field, electric circuits. This knowledge can then be useful when designing more complicated (for the most part digital) electronic circuits. 
Syllabus of lectures:
 
  1. Mathematical basis for electric circuits (analytic and numerical methods), terminology and quantities used in circuits.
  2. Laws in linear DC circuits (Ohm's Law, Kirchhoff's law)
  3. Electrical circuits of resistors with one and more directed voltage sources, analysis based on a method of simplification
  4. Theorems about substituted sources (Thévenin's theorem), method of loop's current and nodes voltages, superposition principle
  5. General description of RC, RL and RLC circuits. RC, RL and RLC circuits with sources of direct voltage. Transient processes
  6. Alternating voltages and Fourier's series, solution of RLC circuits. RLC circuits in impulse mode, frequency filters
  7. Lossless and lossy transmission lines. Wave propagation in transmission lines.
  8. Semiconducting components, bipolar technology, PN junction, diode
  9. Bipolar transistors, transistor as a switch
  10. Unipolar transistors, TTL and CMOS gates (logic levels, power consumption)
  11. Operational amplifiers with weighted resistant nets. Digital-to-analog converters. Analog-to-digital converters
  12. Overview of important electric circuits (voltage sources, stabilizers, oscillator, multivibrator, bi-stable flip-flop, Schmitt flip-flop, timer, comparator, transmitter, receiver). Microelectronics, principles of integrated circuits manufacturing
  13. Methods of measurement of electric and non-electric quantities. Modern measuring devices. Principles and application of measuring devices
Syllabus of numerical exercises:
 
  1. Electric circuits of resistors. Fundamental circuits. Editor and simulator of electric circuits with directed voltage source. Audiovisual demonstrations
  2. RLC circuits, transient processes. Fundamental circuits. Editor and simulator of RLC circuits with alternating voltage source. Audiovisual demonstrations
  3. Bipolar technology, diode. Fundamental circuits. Audiovisual demonstrations
  4. Bipolar technology, transistor. Fundamental circuits. Audiovisual demonstrations
  5. A/D a D/A converters. Audiovisual demonstration of manipulation with professional electronic devices
  6. Signal transmission. Fundamental circuits. Audiovisual demonstrations
Syllabus of laboratory exercises:
 
  1. Electric circuits of resistors. Fundamental circuits. Editor and simulator of electric circuits with directed voltage source. Audiovisual demonstrations
  2. RLC circuits, transient processes. Fundamental circuits. Editor and simulator of RLC circuits with alternating voltage source. Audiovisual demonstrations
  3. Bipolar technology, diode. Fundamental circuits. Audiovisual demonstrations
  4. Bipolar technology, transistor. Fundamental circuits. Audiovisual demonstrations
  5. A/D a D/A converters. Audiovisual demonstration of manipulation with professional electronic devices
  6. Signal transmission. Fundamental circuits. Audiovisual demonstrations
Syllabus - others, projects and individual work of students:
 Individual evaluation of the subject on chosen examples.
Fundamental literature:
 
  • Lecture notes written in PowerPoint
  • Murina, M.: Teorie obvodů. Brno, VUTIUM 2000.
  • Brančík, L.: Elektrotechnika I. Brno, skripta FEKT VUT.
  • Sedláček, J., Dědková, J.: Elektrotechnika I - laboratorní a počítačová cvičení. Brno, skripta FEKT VUT.
  • Sedláček, J., Valsa, J.: Elektrotechnika II. Brno, skripta FEKT VUT.
  • Murina, M., Sedláček, J.: Elektrotechnika II - počítačová cvičení. Brno, skripta FEKT VUT.
  • Horowitz, P., Hill, W.: The art of electronics 3rd edition, Cambridge University Press, 2015.
Study literature:
 
  • Blahovec, A.: Elektrotechnika I, II, III, Informatorium, Praha 2000
  • Gescheidtová, E.: Základní metody měření v elektrotechnice. Brno, CERM 2000.
  • Láníček, R.: ELEKTRONIKA, obvody-součástky-děje, BEN - technická literatura, Praha 1998
  • Punčochář, J.: Operační zesilovače v elektronice, BEN - technická literatura, Praha 1999
Controlled instruction:
  Mid-term exam and Final exam: The minimal number of points which can be obtained from the final exam is 27. Otherwise, no points will be assigned to a student. Laboratories are voluntary. Missed laboratory is possible to replace with individual project after consultation with lecturer.
Progress assessment:
  During the semester, 6 laboratories (each for a maximum of 3 points), semestral project (max. 12 points) and midterm exam (maximum 15 points) are assessed.
Exam prerequisites:
  
  • The necessity of complete a electrical safety training course (compliant with Decree No 50/1978)
  • Obtain at least 3 points from semester project and at least 6 points from laboratories.
 

Your IPv4 address: 54.167.95.51
Switch to IPv6 connection

DNSSEC [dnssec]