HIGH-LEVEL SCHEDULING AND ALLOCATION

FOR TESTABILITY

Vladimír Drábek

Department of Computer Science and Engineering, FEI

Technical University of Brno, Božetěchova 2, 612 66 Brno

phone: +420-5-7275213, fax: +420-5-41211141

e-mail: drabek@dcse.fee.vutbr.cz

ABSTRACT

This paper presents basic techniques applicable at high-level synthesis for the purposes of testability. Three synthesis rules are formulated and their application for scheduling and allocation phases are analysed. The main measure of testability are register controllability and observability.

INTRODUCTION

Testing of digital systems is not an obsolete problem. As the integrated circuits get more and more complex and inaccessible, it becomes more difficult and expensive to obtain a complete test of the design. Since high-level synthesis enables the designer to handle complex designs, it is obviously required to deal with the problem of test design at high level too.

There are several problems and approaches to high-level test synthesis. First of them is a high-level fault model. When the source specification is given in VHDL, it is required to have an appropriate fault model, namely in VHDL. Such a fault model exhibits a distinct fault coverage and the basic problem is the gate-level fault coverage obtained through the test generated at VHDL-level [1]. These problems can be covered by the notion of high-level test generation. The second group of methods of high-level test synthesis deals with high-level testability, namely high-level controllability and high-level observability. Such an approach represents an active dealing with the design and modifies the structure of high-level design to achieve the high-level testability criteria required. This approach can be driven by some combinational and sequential controllability and observability measures applied to data path synthesis process [3]. Our paper analyses the possibilities of high-level testable architecture design and high-level testability achieving during the phases of scheduling and allocation [2].

BACKGROUND OF BEHAVIOURAL MODELLING

The behaviour of a circuit can be specified in a high-level hardware description language (VHDL, Verilog), and is usually translated into a graph form based on data flows and control flows defined in the specification. Hence, a data flow graph (DFG) can be derived from the behavioural specification, see Figure 1.

Data flow graph can be acyclic, or a cyclic one. For each operation o associated with a node in DFG, o.earliest denotes the earliest possible cycle time o can execute in, and o.latest denotes the latest possible cycle time o can execute in, without violating the data dependency defined in the DFG. The mobility of o is defined as o.latest - o.earliest. The sequence of operations with 0 mobility is called a critical path.

� VLOŽIT MSDraw ���

Figure 1. Behavioural specification a) and its data flow graph b)

Scheduling assigns an execution time, or control step, or cycle time to each operation in a behavioural specification. Figure 2 shows an example of two different schedules, namely scheduled data flow graphs (SDFG) for the same DFG.

� VLOŽIT MSDraw ���

Figure 2. Two possible schedules for the same DFG

The schedule a) is an example of scheduling as soon as possible - ASAP, schedule b) again as late as possible - ALAP. The lifetime of a variable v is defined as an interval <v.birth, v.death>. E.g. for variable a the lifetime is <0, 1>, for c: <0, 2>, for h: <1, 3., etc. It is obvious that lifetimes of some variables can overlap, i.e. these variables cannot be assigned to the same register. Controllability and observability can be enhanced based on following observations. If any one of the variables assigned to a register is a primary input (output) of the chip, this register is directly controlled (observed); if not, the register can be accessed only through other register. So the first synthesis rule reads [4]:

 SR1: Whenever possible, allocate a register to at least one primary input or primary output.

The second synthesis rule is based on data path circuit graph (DPCG). For an implementation of a computation ARITH1 : ((a+b)+(d+e)) and its DPCG see Figure 3. The former observable output was g#, the new observable output is g, new connections are in bold lines. The former DPCG sequential depth was 2 (from R3/R4 to R1 and to R2). New DPCG sequential depth is only 1 (e.g. R2 - R1, etc.). The feedback path in bold line has been added to improve observability. Without this path, the value of variable c would be not directly observable at register R1.

� VLOŽIT MSDraw ���

Figure 3. Implementation of ARITH1 and its DPCG

 SR2: Reduce the sequential depth from an input register to an output register.

The next rule is useful in the case of cyclic DPCG, or SDFG. It is obvious that the maximum cycle length found gives the assessment of the difficulty of testing the circuit. From this observation we can formulate the third synthesis rule:

 SR3: Reduce sequential loops by proper resource sharing to avoid creating sequential loops for acyclic DFGs, and assign IO registers to break sequential loops in cyclic DFGs.

TESTABILITY SYNTHESIS DURING SCHEDULING

The testability synthesis rules presented in the previous chapter suppose scheduled DFGs. The idea is to apply synthesis rules during scheduling and allocation and define some measures for testability assessment. The effect of scheduling on register controllability is illustrated in Figure 4.

 � VLOŽIT MSDraw ���

Figure 4. R can be made directly controllable

After removing the conflicting long lifetime of variable a by rescheduling the multiplier to cycle 1, variable a can be assigned to register R and SR1 can be applied. Similar effect can be demonstrated on register observability.

TESTABILITY SYNTHESIS DURING ALLOCATION

Resource sharing (conditional and unconditional) can be used to obtain optimum and testable architecture. Unconditional resource sharing can be applied for sharing functional modules scheduled for operations in different cycles and for registers keeping variables without conflicting lifetimes. Conditional resource sharing makes use of functional modules and registers scheduled for mutually exclusive parts of conditional branches.

A more general behavioural representation, called the hierarchical control-data flow graph (HCDFG), is used to model conditional branches. An example of HCDFG is in Figure 5, where C - condition, J - join, TB - true block, FB - false block.

� VLOŽIT MSDraw ���

Figure 5. Example of an acyclic HCDFG

SUMMARY

In this paper basic principles of high-level design for testability are introduced. Further works will focus on detailed algorithms description, their implementation, and experimenting with them.

ACKNOWLEDGMENT

This work has been supported by the Grant Agency of the Czech Republic under contract No. 102/98/1463.

REFERENCES

[1] Ward, P. C. - Armstrong, J. R.: Behavioral Fault Simulation in VHDL, Proc. 27th ACM/IE
