
Servlets, Java Server Pages

Jaroslav Dytrych
Faculty of Information Technology Brno University of Technology

Božetěchova 1/2. 612 66 Brno - Královo Pole

dytrych@fit.vutbr.cz

24 September 2020



Introduction

• Lectures
• 2 hours a week

• Points
• Midterm test – 10
• Team Project with defense – 39

(29 product, 5 documentation, 5 defense)
• Final exam – 51 (10 points for the oral part)

• Lower limits
• Team project – 10
• Final exam – 20

• Projects
• Web (and mobile) application for 5 students

• Fewer students possible after consultation.

GJA 1 2 / 67



Course overview

1 Servlets, Java Server Pages
2 Maven, Testing and JAX (Java API for XML)
3 RMI (Remote Method Invocation) and JMS (Java Message

Service)
4 EJB (Enterprise Java Beans) and Java Server Faces
5 PrimeFaces
6 Spring
7 Midterm test
8 Lecture of an expert from practice
9 JPA (Java Persistence API), Hibernate

10 Google Web Toolkit
11 Android basics
12 Cloud
13 Project defenses

GJA 1 3 / 67



Servlets



Content

• Servlet containers and application servers
• Introduction to servlets
• Deployment
• Servlet methods
• Servlet operations
• Annotations (declarative programming)

GJA 1 5 / 67



Introduction

• Servlet containers
• Apache

• Tomcat http://tomcat.apache.org/
• Eclipse Foundation

• Jetty http://www.eclipse.org/jetty/

• Application servers
• Oracle

• GlassFish https://javaee.github.io/glassfish/

• Payara Services Ltd
• Payara https://www.payara.fish/ – drop in replacement for

GlassFish
• Red Hat

• WildFly (renamed from JBoss) http://wildfly.org/
• IBM

• WebSphere Application Server https:
//www.ibm.com/cloud/websphere-application-platform

GJA 1 6 / 67

http://tomcat.apache.org/
http://www.eclipse.org/jetty/
https://javaee.github.io/glassfish/
https://www.payara.fish/
http://wildfly.org/
https://www.ibm.com/cloud/websphere-application-platform
https://www.ibm.com/cloud/websphere-application-platform


CGI Scripts

• CGI stands for “Common Gateway Interface”.
• CGI script is an external program, which is called by the

webserver. So the webserver is the mediator between the
client and application.

• It is necessary to run a new instance for each request (it is
stateless).

1 Client sends a request to server.
2 Server starts a CGI script.
3 Script computes a result for the

server and quits.
4 Server returns response to the

client.
5 Another client sends a request.
6 Server starts the CGI script again.

GJA 1 7 / 67



Servlets
• A servlet is a small Java program that runs within a Web

server. Simply said it is a Java class.
• From specification: For a servlet not hosted in a distributed

environment (the default), the servlet container must use
only one instance per servlet declaration. However, for
a servlet implementing the SingleThreadModel interface,
the servlet container may instantiate multiple instances to
handle a heavy request load and serialize requests to
a particular instance.

1 Client sends a request to server.
2 Server starts a servlet.
3 Servlet computes a result for

server and does not quit.
4 Server returns response to client.
5 Another client sends a request.
6 Server calls the servlet again.

GJA 1 8 / 67



Servlets vs. CGI scripts

• Advantages
• Running a servlet doesn’t require creating a separate

process each time.
• A servlet stays in memory, so it doesn’t have to be reloaded

each time.
• There is only one instance handling multiple requests, not

a separate instance for every request.
• It can keep context (session) in memory.
• Untrusted servlets can be run in a “sandbox”.

• Disadvantage
• More complicated configuration.

GJA 1 9 / 67



Servlets

• A servlet is any class that implements the
javax.servlet.Servlet interface.

• In practice, most servlets extends the
javax.servlet.http.HttpServlet class (with built-in support for
HTTP protocol).

• Some servlets extends javax.servlet.GenericServlet instead.

• Servlets, like applets (client side programs, mostly built-in
into the web pages), usually lack a main method, but must
implement or override certain other methods.

GJA 1 10 / 67



Important servlet methods

• When a servlet is first started up, its init(ServletConfig config)
method is called.

• init should perform any necessary initializations.
• init is called only once, and does not need to be thread-safe.

• Every servlet request results in a call of
service(ServletRequest request, ServletResponse response).

• service calls another method depending on the type of
service requested – e.g. doGet() or doPost().

• Usually you would override the called methods of interest, not
service itself.

• service handles multiple simultaneous requests, so service
and the methods it calls must be thread safe.

• When the servlet is shut down, destroy() is called.
• destroy is called only once, but must be thread safe

(because other threads may still be running).

GJA 1 11 / 67



Servlet deployment

• Web archive
• ROOT/META-INF

• Contains deployment descriptors.
• Typically contains MANIFEST.MF

• ROOT/WEB-INF
• Can not be read by the client directly – can be used for storing

of database password and other secrets.

• Actual program
• ROOT/WEB-INF/classes
• ROOT/WEB-INF/libs

• Configuration file web.xml stored in ROOT/WEB-INF
• Contains

• Filters
• Init and context parameters
• Servlet mapping
• Error handlers

• Alternatively configuration can be done by the annotations.

GJA 1 12 / 67



Methods and configuration
• Init param (for given servlet)

// web.xml
<servlet>

<servlet-name>controlServlet</servlet-name>
<servlet-class>my.package.ControlServlet</servlet-class>

<init-param>
<param-name>myParam</param-name>
<param-value>paramValue</param-value>

</init-param>
</servlet>

// ControlServlet.java
public void init(ServletConfig servletConfig) throws ServletException{

this.myParam = servletConfig.getInitParameter("myParam");
}

• Context param (for whole application)
<context-param>

<param-name>myParam</param-name>
<param-value>the value</param-value>

</context-param>

String myContextParam = request.getSession().getServletContext()
.getInitParameter("myParam");

• Load on startup
• By default the servlet is loaded when first requested.
• Can be loaded immediately after server start or deployment:

<load-on-startup>1</load-on-startup>

GJA 1 13 / 67



Configuration
• Filters

• Mostly predefined filters from libraries.
• Used for various aspects like logging, security, etc.
• Security mostly handled otherwise.

<filter>
<filter-name>MyFilter</filter-name>
<filter-class>my.package.MyFilter</filter-class>

</filter>
<filter-mapping>

<filter-name>MyFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain filterChain) throws IOException, ServletException {

log.warning("Log filter processed a "
+ getFilterConfig().getInitParameter("logType")+ " request");

filterChain.doFilter(request, response); // continue request processing
}

• Servlet mappings
<servlet>

<servlet-name>comingsoon</servlet-name>
<servlet-class>mysite.server.ComingSoonServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>comingsoon</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>
GJA 1 14 / 67



HTTP requests

• The HTML tag “form” has an attribute “action”, whose
value can be “get” or “post”.

• When a request is submitted from a Web page, it is almost
always a GET or a POST request.

• The “get” action results in the form information being put
after a ? in the URL.

• The & separates the various parameters.
• Example
http://www.google.com/search?hl=en&ie=UTF-8&oe=
UTF-8&q=servlet

• Only a limited amount of information can be sent this way.

• “post” can send large amounts of information.

GJA 1 15 / 67

http://www.google.com/search?hl=en&ie=UTF-8&oe=UTF-8&q=servlet
http://www.google.com/search?hl=en&ie=UTF-8&oe=UTF-8&q=servlet


Servlet methods

• The service method dispatches the following kinds of
requests: DELETE, GET, HEAD, OPTIONS, POST, PUT, and
TRACE.

• A GET request is dispatched to the
doGet(HttpServletRequest request, HttpServletResponse
response) method.

• A POST request is dispatched to the
doPost(HttpServletRequest request, HttpServletResponse
response) method.

• These are the two methods you will usually override.
• doGet and doPost typically do the same thing, so usually you

do the real work in one, and have the other just call it.
public void doGet(HttpServletRequest request,

HttpServletResponse response) {
processRequest(request, response);

}
• Value of parameter can be acquired easily:
request.getParameter(name_of_parameter);

GJA 1 16 / 67



A “Hello World servlet”

public class HelloServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String docType =

"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";

out.println(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello World</H1>\n" +
"</BODY></HTML>");

}
}

Example HelloServlet
GJA 1 17 / 67



The superclass

• Every class must extend GenericServlet or a subclass of
GenericServlet.

• GenericServlet is “protocol independent,” so you could write
a servlet to process any protocol.

• In practice, you almost always want to respond to an HTTP
request, so you extend HttpServlet.

• A subclass of HttpServlet must override at least one
method, usually one doGet, doPost, doPut, doDelete, init
and destroy and getServletInfo.

GJA 1 18 / 67



The doGet method

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

• This method serves a GET request.
• Input is in the HttpServletRequest parameter.
• Output is via the HttpServletResponse object, which we

have named response.
• I/O in Java is very flexible but also quite complex, so this

object acts as an “assistant”.
• The method uses request to get the information that was

sent to it.
• The method does not return a value. Instead, it uses

response to get an I/O stream, and outputs its response.
• Since the method does I/O, it can throw an IOException.
• Any other type of exception should be encapsulated as

a ServletException.
• The doPost method works exactly the same way.

GJA 1 19 / 67



Input to the servlet

• A GET request supplies parameters in the format
URL?name=value&name=value&name=value

• Spaces in the parameter values are encoded by + signs or
%20 (space is illegal in URL).

• Other special characters are encoded in hex; for example,
an ampersand is represented by %26.

• Parameter names can occur more than once, with
different values.

• Input values are retrieved by parameter name (name of
the form input).
request.getParameter(name_of_parameter);

• A POST request supplies parameters in the same syntax,
only it is in the “body” section of the request and it is
therefore harder for the user to see it.

GJA 1 20 / 67



Getting the parameters

• Input parameters are retrieved via
HttpServletRequest object request.

• public Enumeration〈String〉 getParameterNames()
• Returns an Enumeration of the parameter names.
• If there are no parameters, returns an empty Enumeration.

• public String getParameter(name)
• Returns the value of the parameter name as a String.
• If the parameter doesn’t exist, returns null.
• If name has multiple values, only the first is returned.

• public String[] getParameterValues(name)
• Returns an array of values of the parameter name.
• If the parameter doesn’t exist, returns null.

GJA 1 21 / 67



Example of input parameters

public void doGet(HttpServletRequest request,
HttpServletResponse response) {

... stuff omitted ...
out.println("<H1>Hello");
String names[] = request.getParameterValues("name");
if (names != null) {

for (int i = 0; i < names.length; i++) {
out.println(", " + names[i]);

}
}
out.println("!");

}

GJA 1 22 / 67



Using the HttpServletResponse

• The second parameter of doGet (or doPost) is
HttpServletResponse response.

• Everything sent via the Web has a “MIME type” (RFC 2045
https://www.ietf.org/rfc/rfc2045.txt).

• The first thing we must do with response is set the MIME type
of our reply:

• Following tells the client to interpret the page as HTML in
UTF-8:
response.setContentType(”text/html;charset=UTF-8”);

• Because we will be outputting character data, we will
need a PrintWriter, handily provided for us by the getWriter
method of response:
PrintWriter out = response.getWriter();

• Now we’re ready to create the actual page to be
returned.

GJA 1 23 / 67

https://www.ietf.org/rfc/rfc2045.txt


Using the PrintWriter

• From here on, it’s just a matter of using our PrintWriter,
named out, to produce the Web page.

• First we create a header string:
String docType =

"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";

• This line is technically required by the HTML specification.
• Browsers as IE can set particular page rendering mode.
• Very important for HTML validators.

• Then use the println method of out one or more times:
out.println(docType +

"<HTML>\n" +
"<HEAD> ... </BODY></HTML>");

Example FormProcessing
GJA 1 24 / 67



Typical servlet operations

Servlet often serves as a mediator between the client and the
enterprise application. Its typical operations are:

• Input validation
• Can be done also on client side.

• Working with database
• Java persistence API

• Uploading files
• Apache Commons

• Commons IO
• Commons FileUpload

• Can be handled directly in servlet 3.0 and above.

GJA 1 25 / 67



Commons FileUpload

• Depends on Commons IO.
• Contains classes for upload:

• DiskFileItemFactory
• ServletFileUpload

• Constructor ServletFileUpload(FileItemFactory fileItemFactory)
• Method List〈FileItem〉 parseRequest(HttpServletRequest request)

• FileItem
• String getFieldName()
• String getContentType()
• InputStream getInputStream()

• Needs a repository when storing uploaded files to the file
system (typically /tmp).

• Retrieved FileItem is in /tmp/.
• When upload finished, we will move the file into the final

location.
• Can be loaded into ByteArray when direct disk access is

not available.
• FileItemIterator
• FileItemStream (methods are similar as in FileItem)

Example FileUpload
GJA 1 26 / 67



Annotations



Annotations

• Annotations enable a declarative style of programming.
• An annotation indicates that the declared element should

be processed in some special way by a development tool,
compiler, deployment tool, or during runtime.

• 3 Levels of Retention (RetentionPolicy):
• SOURCE (processed by IDE – e.g. NetBeans; discarded by

compiler),
• CLASS (default; processed during compilation and written to

class file, not available in VM),
• RUNTIME (preserved in bytecode, available in runtime).

• Any declaration can be annotated (package, class,
interface, constructor, method, parameter, enumeration,
variable, . . . ).

• Annotation can be also annotated (Meta Annotation).

GJA 1 28 / 67



Annotation Declaration

• Types
• Normal Annotation (array of key – value pairs)
• Single Member Annotation (one value)
• Marker Annotation (e.g. @Override)

• No exceptions from annotations.
• No inheritance.
• Methods return primitive types, String, Class, enum types,

annotation types, or arrays of these types.
• Declared with @interface (@interface != interface).

GJA 1 29 / 67



Normal Annotation

• Annotations that take multiple arguments. The syntax for
these annotations provides the ability to pass in data for all
the members defined in an annotation types.
public @interface RequestForEnhancement {

int id();
String synopsis();
String engineer() default "[unassigned]";
String date() default "[unimplemented]";

}

@RequestForEnhancement(
id = 2868724,
synopsis = "Provide time-travel functionality",
engineer = "Mr. Doe",
date = "4/1/3017"

) public static void travelThroughTime(Date destination)
{ ... }

GJA 1 30 / 67



Special annotations

• Single member
• An annotation that only takes a single argument has a more

compact syntax. You don’t need to provide the member
name.
public @interface Copyright {

String value();
}

@Copyright("2006 Intelliware")
public class OscillationOverthruster { ... }

• Marker
public @interface Preliminary { }

@Preliminary public class TimeTravel { ... }

GJA 1 31 / 67



Built-in Annotations
• Java Annotations

• @Override – Indicates that a method declaration is intended
to override a method declaration in a supertype (retention
SOURCE).

• @Deprecated – A program element annotated is one that
programmers are discouraged from using, typically because
it is dangerous, or because a better alternative exists.
Compilers warn when a deprecated program element is
used or overridden in non-deprecated code (retention
RUNTIME).

• @SupressWarnings – Indicates that the named compiler
warnings should be suppressed in the annotated element
(retention SOURCE).

• . . .
• Meta-Annotations

• @Target – Indicates the kinds of program element to which
an annotation type is applicable.

• @Retention – Indicates how long annotations with the
annotated type are to be retained.

• @Inherited – Indicates that an annotation type is
automatically inherited.

GJA 1 32 / 67



Meta-Annotation Examples

@Target(value=METHOD)
@Retention(value=SOURCE)
public @interface Override {}

@Target(value={TYPE,FIELD,METHOD,PARAMETER,CONSTRUCTOR,
LOCAL VARIABLE})
@Retention(value=SOURCE)
public @interface SuppressWarnings {. . . }

GJA 1 33 / 67



Meta-Annotation Inherited
@Inherited
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface InhAnType { . . . }

• Annotation of this type will be inherited, so:
class First { }
@InhAnType
class Second extends First { }
class Third extends Second { }

Class firC = new First().getClass();
Class secC = new Second().getClass();
Class thiC = new Third().getClass();

System.out.println(firC.getAnnotation(InhAnType.class));
System.out.println(secC.getAnnotation(InhAnType.class));
System.out.println(thiC.getAnnotation(InhAnType.class));
Output:
null
@InhAnType()

@InhAnType()

GJA 1 34 / 67



Target values

• TYPE – class, interface (incl. annot. type), or enum declaration

• TYPE PARAMETER
• FIELD
• METHOD
• PARAMETER
• CONSTRUCTOR
• LOCAL VARIABLE
• ANNOTATION TYPE
• PACKAGE

GJA 1 35 / 67



References

• Servlets
• http://www.tutorialspoint.com/servlets/
• http://download.oracle.com/otndocs/jcp/servlet-3.
0-fr-eval-oth-JSpec/

• Servlet configuration
• http:
//tutorials.jenkov.com/java-servlets/web-xml.html

• https://cloud.google.com/appengine/docs/java/
config/webxml

• Java Annotations
• http://docs.oracle.com/javase/tutorial/java/
annotations/

• https://docs.oracle.com/javase/7/docs/api/

GJA 1 36 / 67

http://www.tutorialspoint.com/servlets/
http://download.oracle.com/otndocs/jcp/servlet-3.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/servlet-3.0-fr-eval-oth-JSpec/
http://tutorials.jenkov.com/java-servlets/web-xml.html
http://tutorials.jenkov.com/java-servlets/web-xml.html
https://cloud.google.com/appengine/docs/java/config/webxml
https://cloud.google.com/appengine/docs/java/config/webxml
http://docs.oracle.com/javase/tutorial/java/annotations/
http://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/7/docs/api/


Java Server Pages



Content

• Introduction
• Lifecycle
• Scriptlets
• Directives
• Expression Language
• Tags

GJA 1 38 / 67



The problem with servlets

• Servlet is common Java program running inside web or
application server.

• Servlets often contain request processing, business logic
and code (println) to generate the HTML response.

• Servlet creators must be java programmers.
• Changing look/feel of a web app or upgrading to support

new clients is hard if the GUI features are in the servlet.
• It is very hard to use web tools to develop an interface

since the resulting HTML must still be manually hard-coded
into the servlet.

GJA 1 39 / 67



JavaServer Pages

• JSP is written as ordinary HTML, with a little Java mixed in.
• The HTML is known as the template text.
• The Java is enclosed in special tags, such as <%. . .%>.

• JSP is similar to PHP, ASP, . . .
• JSP (Java Server Pages) is an alternate way of creating

servlets.
• JSP files must have the extension .jsp
• JSP is translated into a Java servlet, which is then compiled.
• Servlets are run in the usual way.
• The browser or other client sees only the resulting HTML, as

usual.

• Application server (AS) knows how to handle servlets and
JSP pages.

• Support for EL (Expression Language), JSP tags, . . .
• JSP can be combined with classic servlets in one

application (e.g. JSP for mostly static pages, servlet for
AJAX data).

GJA 1 40 / 67



JSP Processing

• JSP is typically compiled on first request. Then already
compiled servlet is used. So first page load can be slower.

• All HTML is translated into println() in servlet.

GJA 1 41 / 67



JSP Advantages

• We are working with documents, not with Java classes.
• There can be only small pieces of Java code in the

template text (look definition). This code can instantiate
and use some classes with business logic. It is easier to
change look and feel.

GJA 1 42 / 67



JSP scripting elements

• There is more than one type of JSP “tag”, depending on
what you want to do with the Java.

• <%=expression%>
• The expression is evaluated and the result is inserted into the

HTML page.
• <%code%>

• The code is inserted into the servlet’s service method.
• This construction is called a scriptlet.

• <%!declaration%>
• The declarations are inserted into the servlet class, not into

a method.

GJA 1 43 / 67



Example JSP

<HTML>
<BODY>
Hello! The time is now <%= new java.util.Date() %>
</BODY>
</HTML>

• Notes:
• The <%= . . .%> tag is used, because we are computing

a value and inserting it into the HTML.
• The fully qualified name java.util.Date is used, instead of the

short name Date (use imports to handle this).

GJA 1 44 / 67



Implicit objects

• You can declare your own variables, as usual.
• JSP provides several predefined variables:

• request – The HttpServletRequest parameter.
• response – The HttpServletResponse parameter.
• out – A JspWriter (like a PrintWriter) used to send output to the

client.
• config – Allows to pass the initialization data to a JSP page’s

servlet.
• page – Represents the current page that is used to call the

methods defined by the translated servlet class.
• exception – Only for error pages.
• pageContext – The context for the JSP page itself that

provides a single API to manage the various scoped
attributes.

• session – The HttpSession associated with the request, or null if
there is none.

• application – Allows to share the same information between
the JSP page’s servlet and any Web components with in the
same application.

GJA 1 45 / 67



JSP scopes

• Object scope in JSP is divided into four parts.
• page: can be accessed only from within the same page

where it was created. JSP implicit objects out, exception,
response, pageContext, config and page have ‘page’
scope.

• request: can be accessed from any page that serves that
request. More than one page can serve a single request.
Implicit object request has the ‘request’ scope.

• session: is accessible from pages that belong to the same
session from where it was created. Implicit object session
has the ‘session’ scope.

• application: can be accessed from any pages across the
application. Implicit object application has the
‘application’ scope.

GJA 1 46 / 67



Scriptlets

• Scriptlets are enclosed in <% . . .%> tags
• Scriptlets do not produce a value that is inserted directly into

the HTML (as is done with <%= . . .%>).
• Scriptlets are Java code that may write into the HTML.
• Example:
<% String queryData = request.getQueryString();
out.println("Attached GET data: " + queryData); %>

• Scriptlets are inserted into the servlet exactly as written (into
the service method), and are not compiled until the entire
servlet is compiled.

• Example:
<% if (Math.random() < 0.5) { %>
Have a <B>nice</B> day!<% } else { %>
Have a <B>lousy</B> day!<% } %>

GJA 1 47 / 67



Declarations

• Use <%! . . .%> for declarations to be added to your servlet
class, not to any particular method.

• Caution: Servlets are multithreaded, so nonlocal variables
must be handled with extreme care.

• If declared with <% . . .%>, variables are local and OK.
• Data can also safely be put in the request or session objects.

• Example:
<%! private int accessCount = 0; %>
Accesses to page since server reboot:
<%= ++accessCount %>

• You can use <%! . . .%> to declare methods as easily as to
declare variables.

GJA 1 48 / 67



Directives

• Directives affects the servlet class itself.
• Directive is for JSP container and tells how to generate the

servlet.
• A directive has the form:

<%@ directive attribute="value" %>

or
<%@ directive attribute1="value1"

attribute2="value2"
...
attributeN="valueN" %>

• The most useful directives are:
• page – lets you import packages, for example:
<%@ page import="java.util.*"%>

• include – used to include a file into the JSP during the
translation phase. It merges the content of other external files
with the current JSP.

• taglib – tag library is a set of user-defined tags that implement
custom behavior.

GJA 1 49 / 67



The page directive

• Defines attributes that apply to an entire JSP page
• extends – Specifies the class from which the translated JSP will be

inherited.
• import – Specifies a comma-separated list of fully qualified type

names and/or packages that will be used in the current JSP.
• session – Specifies whether the page participates in a session.
• buffer – Specifies the size of the output buffer used with the implicit

object out.
• autoFlush – When set to true (the default), this attribute indicates that

the output buffer used with implicit object out should be flushed
automatically when the buffer fills.

• isThreadSafe – Specifies if the page is thread safe.
• info – Specifies an information string that describes the page.
• errorPage – Any exceptions in the current page that are not caught

are sent to the error page for processing.
• isErrorPage – Specifies if the current page is an error page that will be

invoked in response to an error on another page.
• contentType – Specifies the MIME type of the data in the response to

the client.
• pageEncoding – Specifies the page encoding of the current page.

GJA 1 50 / 67



The include directive

• The include directive inserts another file into the file being
parsed.

• The included file is treated as just more JSP, hence it can
include static HTML, scripting elements, actions and
directives.

• Syntax: <%@ include file="URL"%>
• The URL is treated as relative to the JSP page.
• If the URL begins with a slash, it is treated as relative to the

home directory of the Web server.

• The include directive is especially useful for inserting things
like navigation bars.

GJA 1 51 / 67



JSP comments

• Different from HTML comments.
• HTML comments are visible to the client.

<!-- an HTML comment -->

• JSP comments are used for documenting JSP code.
• JSP comments are not visible on client-side.

<%-- a JSP comment --%>

GJA 1 52 / 67



JavaBeans



JavaBeans

• A JavaBean is a reusable software component that can
be manipulated visually in a builder tool.

• A JavaBean is a Java class written according to the
JavaBeans API specifications.

• Following are the unique characteristics that distinguish
a JavaBean from other Java classes:

• It provides a default, no-argument constructor.
• It should be serializable and implement the Serializable

interface.
• It may have a number of (private) properties which can be

read or written.
• It may have a number of “getter” and “setter” methods for

the properties.
• It may have a support for “events” as a simple

communication metaphor which can be used to connect up
beans.

GJA 1 54 / 67



Getter and setter

• For each property (XXX) of component (bean), two
methods getXXX and setXXX are implemented (“getter”
and “setter”). Return type of the get method is the same
as the type of the parameter of the set method.

public void setText(String text)
public String getText()

• If the property is of type boolean, “get” is replaced by “is”.

public void setSelected(boolean b)
public boolean isSelected()

GJA 1 55 / 67



JavaBeans – example
public class Frog {

private int jumps;
private Color color;
private boolean big;

public int getJumps() {
return jumps;

}
public void setJumps(int j) {

jumps = j;
}
public Color getColor() {

return color;
}
public void setColor(int c) {

color = c;
}
public boolean isBig() {

return big;
}
public void setBig(boolean b) {

big = b;
}

}

GJA 1 56 / 67



JavaBean properties
• Bound properties

• Notify others of a property change event.
• PropertyChangeEvent

private final PropertyChangeSupport pcs =
new PropertyChangeSupport( this );

public void addPropertyChangeListener(PropertyChangeListener l) {
this.pcs.addPropertyChangeListener(l);

}
public void removePropertyChangeListener(PropertyChangeListener l)
{

this.pcs.removePropertyChangeListener( l );
}
...
this.pcs.firePropertyChange("name", oldName, newName);

• Vetoable properties
• VetoableChangeListener (may throw PropertyVetoException)

public void setName(String newName) throws PropertyVetoException {
String oldName = this.name;
this.vcs.fireVetoableChange("name", oldName, newName);
this.name = newName;
this.pcs.firePropertyChange("name", oldName, newName);

}

GJA 1 57 / 67



Expression Language

• Provides an important mechanism for enabling the
presentation layer (web pages) to communicate with the
application logic (managed beans).

• Used by both JavaServer Faces technology and
JavaServer Pages (JSP) technology.

• Represents a union of the expression languages offered by
JavaServer Faces technology and JSP technology.

GJA 1 58 / 67



Expression language

• EL allows page authors to use simple expressions to
dynamically access the data from JavaBeans
components.

• EL is used for the following tasks:
• Dynamically read application data stored in JavaBeans

components, various data structures, and implicit objects.
• Dynamically write data, such as user input into forms, to the

JavaBeans components.
• Invoke arbitrary static and public methods.
• Dynamically perform arithmetic operations.

GJA 1 59 / 67



Immediate and Deffered Evaluation Syntax

• Immediate Evaluation
• All expressions written using the ${} syntax are evaluated

immediately and value is returned on first page load.
• All immediately evaluated expressions are read only value

expressions.
• It can be used only within template text or as the value of

a tag attribute that can accept runtime expressions.

<fmt:formatNumber value="${sessionScope.cart.total}"/>

• Deferred Evaluation
• Used mostly.
• All expressions written using the #{} syntax are evaluated as

deferred.
• Expressions can be evaluated at other phases of a page

lifecycle as defined by whatever technology is using the
expression.

<h:inputText id="name" value="#{customer.name}" />

GJA 1 60 / 67



Value Expressions
• Rvalue expressions can read data but cannot write it.
• Lvalue expressions can both read and write data.
• Immediately evaluated expressions are always rvalue.
• Value expressions can refer to the following objects and

their properties or attributes:
• JavaBeans components
• Collections
• Java SE enumerated types
• Implicit objects

• . or [] notation ${customer.name} or
${customer["name"]}

• An rvalue expression also refers directly to values that are
not objects: ${"literal"}, ${customer.age + 20},
${true}, ${57}

• Value expressions using the ${} delimiters can be used in
static text or any standard or custom tag attribute that can
accept an expression.

• Properties of objects are automatically accessed through
the getter and setter methods.

GJA 1 61 / 67



Method expressions

• A method expression is used to invoke an arbitrary public
method of a bean, which can return a result.

• Method expressions must always use the deferred
evaluation syntax.

• Method expressions can use the . and the [] operators,
#{object.method} is equivalent to
#{object["method"]}

• The EL offers support for parameterized method calls:
• expr-a[expr-b](parameters)
#{userNumberBean[userNumber](’5’)}

• expr-a.identifier-b(parameters)
#{userNumberBean.userNumber(’5’)}

GJA 1 62 / 67



JSP tags

• JSP supports tags similar to ColdFusion CFML style.
• JSP tags have XML syntax.
• Supports Expression Language

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
...
<c:set var="browser" value="${header[’User-Agent’]}"/>
<c:out value="${browser}"/>

• Directive taglib is used for import of tag libraries.
• JSTL – JSP Standard Tag Library
• Separates logic from presentation layer.
• Java code goes into the bussines tier.
• Supports creating of new tags.

GJA 1 63 / 67



JSP predefined tags

• Predefined tags (JSP Actions) are available without any
directive.

• <jsp:include page="URL" />
• Inserts the indicated relative URL at execution time (not at

compile time, like the include directive does).
• This is great for rapidly changing data.

• <jsp:forward page="URL" />

<jsp:forward page="<%= JavaExpression %>" />
• Forwarding a request to the another resource – it can be a

JSP, static page such as html or Servlet or the (dynamically
computed) JavaExpression resulting in a URL/JSP/servlet.

• Something as redirection.
• <jsp:getProperty name="bean" property="propertyName" />

• Prints a particular feature of a given object.
• <jsp:setProperty name="bean" property="prop" param="paramName"/>

• Setting the parameter values.

GJA 1 64 / 67



JSP useBean tag

• The useBean (predefined) action tag is the most commonly
used tag because of its powerful features.

• It allows a JSP to create an instance or receive an instance
of a JavaBean.

• It is used for creating or instantiating a bean with a specific
name and scope.

• Example:
<jsp:useBean id="date" scope="session"

class="java.util.Date" />

<p>The date is <%= date %></p>

Example JSPExamples
GJA 1 65 / 67



References

• JSP
• http://www.tutorialspoint.com/jsp/
• http://download.oracle.com/otndocs/jcp/
7224-javabeans-1.01-fr-spec-oth-JSpec/

• http://docs.oracle.com/javaee/5/tutorial/doc/
bnahq.html

GJA 1 66 / 67

http://www.tutorialspoint.com/jsp/
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://docs.oracle.com/javaee/5/tutorial/doc/bnahq.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnahq.html


Thank you for your attention!


