
Android
Jaroslav Dytrych

Faculty of Information Technology Brno University of Technology
Božetěchova 1/2. 612 66 Brno - Královo Pole

dytrych@fit.vutbr.cz

16 December 2020

Contents

• What is android?
• Android features
• Architecture overview
• Environment setup
• Simple applications
• Android database
• Android Java Services

GJA 10 2 / 69

What is Android?
• Operating system based on Linux and Java
• Developed by Google
• Dalvik instead of standard JVM (Just-In-Time Compilation)

• replaced by Android Runtime (ART) in Android 5.0
• compatible, but some Dalvik bytecode may not work (ART is

less tolerant)
• better optimizations (Ahead-of-time (AOT) compilation – during

installation), garbage collection, profiling, . . .
• Android SDK

• Compiler
• The dx (Dexer) tool converts Java class files into a .dex

(ART/Dalvik Executable) file
javac Hello.java
jar cvf hello.jar Hello.class
dx --dex --output=helloApp.jar hello.jar

• helloApp.jar will contain classes.dex
• Alternatives:
dx --dex --output=classes.dex Hello.class
dx --dex --output=hello.apk hello.jar

• Debugger
• Emulator

• Google Play (previously Android market)

GJA 10 3 / 69

File types

• Application (.apk)
• basically improved zip archives with the Java code in a file
classes.dex. This file is parsed by the ART/Dalvik JVM and
a cache of the processed classes.dex file is stored in the
phone’s cache.

• created using IDE, Gradle, ant or dx
• may contain assets (images, XML files, prefilled databases,

. . .)
• .odex (optimized dex) – pre-processed version of an

application’s classes.dex that is execution-ready for
ART/Dalvik (AOT compiled code)

• only a part of application can be odexed for installing of
.apk and .odex

• in odexed application the classes.dex is removed from the
APK archive and it does not write anything to the cache

• Deodexing is basically repackaging of APKs in a certain way,
such that they are reassembled into classes.dex files. By
doing that, all pieces of an application package are put
together back in one place, thus eliminating the worry of
a modified APK conflicting with some separate odexed parts.

GJA 10 4 / 69

File types

• Of Ahead Time (.oat)
• pre-processed version of an application’s classes.dex
• alternative to .odex
• Executable and Linkable Format (ELF)

• Uncompressed DEX (.vdex)
• contains the uncompressed DEX code of the APK, with some

additional metadata to speed up verification.
• Prior Android Oreo (8.0.0) DEX files were embedded in the

OAT itself and after Oreo, the transformation performed by
dex2oat generates two files.

• (.art)
• contains ART internal representations of some strings and

classes listed in the APK, used to speed application startup.

GJA 10 5 / 69

Android features

• Application ecosystem, allowing to easily add and remove
applications and publish new features across the entire
system.

• Support for all the web technologies, with a browser built
on top of the well-established WebKit rendering engine.

• Support for hardware accelerated graphics through
OpenGL ES (Embedded Systems).

• Support for all the common wireless mechanisms: GSM,
CDMA, UMTS, LTE, Bluetooth, WiFi.

GJA 10 6 / 69

Android versions

GJA 10 7 / 69

Android’s architecture – old

GJA 10 8 / 69

Android’s architecture – new

GJA 10 9 / 69

Android’s architecture

• Linux kernel contains all the essential hardware drivers like
display, camera, keypad etc.

• Hardware Abstraction Layer (HAL) provides abstraction
between hardware and rest of the software stack.

• Libraries includes
• WebKit – a web browser engine,
• SSL library for the Internet security,
• graphic and multimedia libraries OpenGL ES, SGL (Scalable

Graphics Library) and OpenMAX AL (Open Media
Acceleration – Application Layer),

• FreeType for rendering of fonts,
• Surface Manager for access to the display subsystem and

seamlessly composing of 2D and 3D graphic layers from
multiple applications,

• SQLite for storing of application data (one database per
application is expected),

• . . .

GJA 10 10 / 69

Android’s architecture
• Application Framework is a set of services that collectively

form the environment in which Android applications run.
• Content Providers – allows applications to publish and share data

with other applications.
• View System – is an extensible set of views used to create application

user interfaces.
• Activity Manager – controls all aspects of the application lifecycle

and activity stack.
• Window Manager – is responsible for managing the list of windows,

which windows are visible,
• Package Manager – is the system by which applications are able to

find out information about other applications currently installed on
the device.

• Telephony Manager – provides information to the application about
the telephony services available on the device.

• Resource Manager – provides access to non-code embedded
resources such as strings, color settings and user interface layouts.

• Location Manager – provides access to the location services
allowing an application to receive updates about location changes.

• Notifications Manager – allows applications to display alerts and
notifications to the user.

GJA 10 11 / 69

Security and permissions

• Unique ID for every application.
• Applications are separated.
• Sharing is always explicit.

• Each application started in own process.
• Permissions (for Internet connection, telephone services,

camera, . . .)
• must be declared in Android manifest.
• Different levels of permissions.
• User is asked during the installation (up to version 5) or on

runtime (From Android 6.0 – API level 23).

GJA 10 12 / 69

Android components
• Activities

• basically regular applications.
• Activity is a screen of user interface (e.g. login activity).

• Fragments
• parts of activities (created from views),
• often parts of user interface from 3rd parties.

• Views and layout manager
• buttons, check boxes, text fields, grid layout, linear layout,

relative layout, . . .
• Intents

• asynchronous messages
• between activities
• implicit (as open the browser) and explicit (data transfer).

• Services
• background processes like music players.

• Broadcast receivers
• receives intents.

• Content providers
• access to the application data and sharing.

GJA 10 13 / 69

Environment setup

• Android SDK
• Command-line programs
• Dalvik/ART executables

• Android development tools
• Android Studio (Official IDE for Android based on IntelliJ IDEA)
• Eclipse plugins – not supported and deprecated

(https://dl-ssl.google.com/android/eclipse/)
• Android virtual devices

• Virtual devices manager
• ADB (Android Debug Bridge)

• command-line tool that lets you communicate with a device
• client – sends commands
• daemon – runs commands on a device (background process

on each device)
• server – manages communication between the client and

the daemon (background process on your development
machine on port 5037)

Demo – SDK manager
GJA 10 14 / 69

https://dl-ssl.google.com/android/eclipse/

Android debug bridge

• adb install <path-to-apk>
• install an application

• push <local> <remote>
• copy a file or directory and its sub-directories to the device

• pull <remote> <local>
• copy a file or directory and its sub-directories from the device

• adb forward <local-port> <remote-port>
• e.g. VirtualBox
• example: adb forward tcp:6100 tcp:7100

• adb shell
• starts shell in Android environment in the target device

• . . .

GJA 10 15 / 69

Gradle project structure – Android Studio

app

• build . (build outputs)
• src/main

• assets . (images etc.)
• res . (application resources)
• java . (src)
• AndroidManifest.xml

• app.iml . . . (module IntelliJ IDEA project model)
• build.gradle . (Gradle script)

build . (build cache etc.)
gradle . (Gradle wrapper)
AppName.iml (IntelliJ IDEA project model)
build.gradle . (Gradle script)
gradlew . (Gradle start up script)
. . .

GJA 10 16 / 69

Assets vs. resources

• Assets are files to be deployed with application (e.g.
images).

• Resources are application resources, such as drawable
files, layout files and UI string.

• Often XML files.

GJA 10 17 / 69

Android manifest

• File AndroidManifest.xml
• unique identifier for the application (Java package name),
• the level of the Android API that the application requires –

SDK version (here deprecated – should be in
app/build.gradle)

• minSdkVersion – minimum API Level required for the
application to run,

• targetSdkVersion – API Level that the application targets
(used for compilation),

• maxSdkVersion – maximum API Level on which the
application is designed to run.

• used libraries,
• permissions setup,
• components of the application, which include the

activities, services, content providers and broadcast
receivers,

• entry-point specification,
• . . .

Example AndroidImage
GJA 10 18 / 69

Android Support Library

• When developing apps that support multiple API versions, you may want
a standard way to provide newer features on earlier versions of Android or
gracefully fall back to equivalent functionality. Rather than building code
to handle earlier versions of the platform, you can leverage these libraries
to provide that compatibility layer. In addition, the Support Libraries
provide additional convenience classes and features not available in the
standard Framework API for easier development and support across more
devices.

GJA 10 19 / 69

Android Support Library
• Dependency (Android Studio)

• build.gradle (Project)
allprojects {

repositories {
google()
...

• build.gradle (Module)
dependencies {

api ’com.android.support:support-v4:28.0.0’
• Installation (Eclipse)

1 Install Android Support Repository in the SDK manager (Extras).
2 File – Import.
3 Existing Android Code into Workspace.
4 Browse to the SDK installation directory

android-sdks/extras/android/support/v7/appcompat

5 Finish.
6 In the imported library project, expand the libs/ folder, right-click

each .jar file and select Build Path – Add to Build Path.
7 Go to the your project properties – Android category.
8 Add (in the part Library).
9 Select the project and confirm.

GJA 10 20 / 69

AndroidX

• Android Support Library is deprecated.
• AndroidX replaces the original support library APIs with

packages in the androidx namespace.
• Only the package and Maven artifact names changed;

class, method, and field names did not change.
• Migration

• Before you migrate, bring your app up to date. It is
recommended to update your project to use the final version
of the support library: version 28.0.0. This is because AndroidX
artifacts with version 1.0.0 are binary equivalent to the
Support Library 28.0.0 artifacts.

• With Android Studio 3.2 and higher, you can migrate an
existing project to AndroidX by selecting Refactor – Migrate
to AndroidX from the menu bar.

GJA 10 21 / 69

Activity

• Activity is a single screen of the user interface of an
application.

• Activity supports advertising.
• When an activity starts a new activity, the latter replaces

the former on the screen and is pushed on the back stack
which holds the last used activities, so when the user is
done with the newer activity, it can easily go back to the
previous one

• button Back, gesture or calling of method finish()

GJA 10 22 / 69

Android activity

GJA 10 23 / 69

Activity lifecycle

• Started
• Created a new Linux process, allocated new memory for the

new UI objects, and set up the whole screen (visible).
• Running (Resumed)

• The activity is on the foreground and has focus.
• Paused

• The activity is still visible on the screen but no longer has
focus. It can be destroyed by the system under very heavy
memory pressure.

• Stopped
• The activity is no longer visible on the screen. It can be killed

at any time by the system.
• It is in the memory for quick restart.

• Each activity extends class Activity with callback
methods.

GJA 10 24 / 69

Android resources

• Simple values
• strings (/res/values/strings.xml),
• constants used in program.

• Layouts
• layout descriptions for activities and fragments.

• Styles and themes
• define appearance (like Holo light with dark action bar).

• Animations
• define animations in XML for the property animation API.

• Menus
• properties of entries for a menu.

GJA 10 25 / 69

Android resources

• R.java
• ID’s are generated there,
• in the XML files we define a names which is mapped into

number constants in the generated R.java
public static final int

activity_horizontal_margin=0x7f040000;

• constants then can be used to create an objects.
• Android Gradle plugin 3.6 and higher includes support for

the Maven Publish Gradle plugin, which allows you to
publish build artifacts to an Apache Maven repository.
Additionally, Android Gradle plugin has made significant
performance improvement for annotation processing/KAPT
for large projects. This is caused by AGP now generating R
class bytecode directly, instead of .java files.

• There is no R.java from Android Studio 3.6.

GJA 10 26 / 69

Resources directory

• Resources are stored in /res folder
• anim/ – animation definitions,
• color/ – color definitions,
• drawable – subdirectories with images (ldpi, mdpi, hdpi,
xhdpi),

• layout/ – activity layout description,
• menu/ – menu layout description,
• raw/ – left untouched,
• values/ – strings, integers, arrays, etc.,
• xml/ – arbitrary XML files.

GJA 10 27 / 69

Drawable example (1/2) – custom widget

<?xml version="1.0" encoding="UTF-8"?>
<shape

xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">

<solid android:color="#FF1A47"/>
<stroke android:width="3dp"

android:color="#0FECFF"/>
<padding android:left="5dp"

android:top="5dp"
android:right="5dp"
android:bottom="5dp"/>

<corners android:bottomRightRadius="7dp"
android:bottomLeftRadius="7dp"
android:topLeftRadius="7dp"
android:topRightRadius="7dp"/>

</shape>

GJA 10 28 / 69

Drawable example (2/2) – custom widget

<?xml version="1.0" encoding="UTF-8"?>
<android:shape

xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="oval">

<gradient android:startColor="#31d931"
android:endColor="#0da40d"
android:angle="270"/>

<stroke android:width="2dp" android:color="#ffc0c0c0" />
<size android:height="12dp" android:width="12dp"/>

</android:shape>

GJA 10 29 / 69

Create first Android application

• Define Application name, Project name and Package
name.

• Define SDK and theme of an application
• minimum SDK version, target SDK version

• Configure launcher icon.
• Specify type of the main activity.
• Specify layout.
• Run AVD (Android Virtual Device).

GJA 10 30 / 69

User interface controls
• Control appearance

• Wrap content
• Match parent (Fill parent)

• Define layout/widget with unique ID
• example: android:id="@+id/my button"
• @ – XML parser should parse and expand the rest of the ID

string and identify it as an ID resource.
• + – this is a new resource name that must be created and

added to our resources (in the R.java file).
• Create an instance of the view object and capture it from

the layout
Button myButton = (Button) findViewById(R.id.my_button);

• Button
• CheckBox
• Password
• RadioButton
• ToggleButton
• RatingBar
• Spinner - drop down menu
• ProgressBar
• Image

• Dialog
Examples AndroidCheckBox, AndroidPassword, AndroidRadio

AndroidRatingBar, AndroidSpinner, AndroidProgressBar2
GJA 10 31 / 69

Dialogs

• Embedded
• Prompt
• Alert
AlertDialog.Builder

• Custom
• LayoutInflater – dynamic creation of an instance from XML
• DialogInterface – defines a dialog-type class

• Dialog.class.cast(DialogInterface)
• BUTTON NEGATIVE, BUTTON NEUTRAL, BUTTON POSITIVE

• or use setContentView()
• set the activity content to an explicit view (for Dialog)
• less dynamic

Examples AndroidAlert, AndroidPrompt, AndroidCustomDialog
GJA 10 32 / 69

Layout managers

• LinearLayout – aligns all children in a single direction,
vertically or horizontally

• layout weight – size ratio between multiple views
• can be nested

• RelativeLayout – position of each view can be specified
as relative to sibling elements (used by designer, easy to
break).

• TableLayout

• Listview

• GridView
• since Android 4.0

• WebView – displays web pages
• ScrollView

Examples AndroidLinearLayout, AndroidRelativeLayout,
AndroidTableLayout, AndroidListView, AndroidGridView
AndroidWebView, AndroidScrollView

GJA 10 33 / 69

Android Intents

• What are intents?
• Asynchronous messages which allows Android components to

request functionality from other components of the Android system.
• They’re signalling, that an event has occurred.
• Sent to system via call startActivity(Intent)
• Can switch activities of an application.
• Instances of class android.content.Intent
• Can be explicit or implicit

• Explicit – Developer designates the target by its name,
• Implicit – There is no explicit target for the Intent. The system will

find the best target for the Intent by itself, possibly asking the

user what to do if there are several matches (which web

browser to use).

• Activities, Services and BroadcastReceivers starts using intents.

GJA 10 34 / 69

Explicit intents

• Explicit intents explicitly defines the component which should be called by
the Android system, by using the Java class as identifier.

• Associative array of values can be sent in the intent

Intent i = new Intent(this, ActivityTwo.class);
i.putExtra("Value1", "This is value one for another

activity");

Bundle extras = getIntent().getExtras();
String value1 = extras.getString("Value1");

Example AndroidExplicitIntent
GJA 10 35 / 69

Implicit intents

• Specify the action which should be performed and
optionally data for the action.

• If only one handler is registered for an intent, android
proceeds with intent directly, otherwise asks user.

• Like two video players installed . . .

Intent i = new Intent(Intent.ACTION_VIEW,
Uri.parse("http://www.fit.vutbr.cz"));

• Serves like global service messages.

Example AndroidImplicitIntent
GJA 10 36 / 69

Android service

interactivenoninteractive

GJA 10 37 / 69

Android service

• onCreate() – executed when the service is first created in order to set
up the initial configuration.

• onBind() – system invokes this method by calling bindService()

when another component wants to bind with the service (such as to
perform RPC).

• onUnbind() – called when all clients have disconnected from
a particular interface published by the service.

• onRebind() – new clients have connected to the service, after it had
previously been notified that all had disconnected.

• onStartCommand() – executed every time startService() is
invoked by another component, like an Activity or a BroadcastReceiver.
When this method executes, the service is started and can run in the
background indefinitely. If you implement this, it is necessary to stop the
service by calling stopSelf() or stopService().

• onDestroy() – the service is no longer used and is being destroyed.
Your service should implement this to clean up.

GJA 10 38 / 69

Android services

• Service runs in background without user interaction.
• Many predefined services are embedded in system.
• Scope resolved in AndroidManifest.xml

• in a thread,
• in own process.

• Services runs with higher priority than activities.
• They need to be explicitly declared in manifest.
• Communication via Intents.
OnHandleIntent() – deprecated
OnHandleWork()

• Activity represents context.
• Broadcast receivers reads data from services.

Examples AndroidService, AndroidIntentImage, AndroidBoundServiceGJA 10 39 / 69

Broadcast receiver

• A component which allows to react on custom and system
events.

• Must be registered
• either statically in android manifest
• or dynamically via Context.registerReceiver()

• sendBroadcast(Intent) →
OnReceive(Context, Intent)

• Intent Filter can be specified.
• System broadcasts

• BOOT_COMPLETED
• CONNECTIVITY_CHANGE

GJA 10 40 / 69

Android Widgets

• Placed on HomeScreen (e.g. battery indicator).
• A Widget runs as a part of the process of its host.

• This requires that Widgets preserve the permissions of their
application.

• Uses remoteViews to create user interface.
• Interface for a widget is Broadcast receiver.
• Steps to create a widget

• Define layout.
• Create XML – AppWidgetProviderInfo

• Dimensions
• Update period
• Category (home screen, the keyguard, or both)

• Create a BroadcastReceiver which is used to build the user
interface of the Widget.

• Enter the Widget configuration in the AndroidManifest.xml
file.

• Optionally call the activity from the widget.

Example AndroidWidget
GJA 10 41 / 69

Running example AndroidWidget

• If you have a problem that you have no main activity, in the
Android Studio Select menu Run -> Edit Configurations. In
the General tab for app, look for Launch Options and
select Nothing instead of Default Activity.

• Nothing is visible after installation – it is necessary to hold
finger/pointer on empty space on home screen and then
add the widget.

• Example is for SDK version less than 26. In the version 26 and
higher, it is not working properly.

• Widget challenge 2020/21: who will first fix the example for
SDK version 29 will gain 6 bonus points (tutorial is in the
references).

GJA 10 42 / 69

Widgets continuation

• BroadcastReceiver typically extends
AppWidgetProvider

• The AppWidgetProvider class implements the
onReceive() method, extracts the required information
and calls the following widget lifecycle methods.

• Lifecycle
• OnEnabled – when first instance of a widget is added on

homescreen.
• OnDisabled – when the last instance is removed from the

homescreen.
• OnUpdate – everytime a message arrives.
• OnDeleted – when any instance of a widget is removed from

the screen.

GJA 10 43 / 69

Widget updates

• A Widget gets its data on a periodic timetable.
• XML configuration updates
• AlarmManager service

• Fixed update interval may be specified in XML
configuration.

• The AlarmManager allows you to be more resource efficient
and to have a higher frequency of updates. To use this
approach you define a service and schedule this service
via the AlarmManager regularly.

Example AlarmActivity
GJA 10 44 / 69

Android Database system

• Uses open source SQLite database.
• Supports standard SQL queries.
• Requires only 250 kB of memory.

• Supported datatypes
• TEXT (String in Java),
• INTEGER (Long in Java),
• REAL (Double in Java).

• Requires accessing the file system.
• Asynchronous processing supported.

GJA 10 45 / 69

Android SQLite

• No setup needed.
• Default database file
/DATA/APP NAME/databases/FILENAME

• DATA is the path which the
Environment.getDataDirectory() returns.

• APP NAME is a name of application.
• FILENAME is a name of a database specified in code.

GJA 10 46 / 69

SQLite architecture

• Package android.database.sqlite

• SQLiteOpenHelper
• Manages database updates.
• onCreate – the database is created for the first time (load

defaults form assets).
• onUpdate – the database needs to be upgraded. The

implementation should use this method to do anything it
needs to upgrade to the new schema version.

• getReadableDatabase()
• getWritebleDatabase()

• Database tables should use id as a primary key.

GJA 10 47 / 69

Work with database

• Database installation
• Check for database existence
SQLiteDataBase.openDatabase(path, factory, ...)

• If non-existent, copy from Assets.

GJA 10 48 / 69

SQLiteDatabase

• Base type for every database.
• Provides methods for working with database

• insert
• update
• delete
• execSQL
• rawQuery – performs raw SQL query.
• query – structured interface for creating a query.

Cursor c = getReadableDatabase().rawQuery("select * from
todo where _id = ?", new String[] { id });

GJA 10 49 / 69

Query parameters

• tableName – name of the database table.
• columnNames – passing null returns all collumns.
• whereClause – filter, null selects all.
• selectionArgs – ?s may be included in the

”whereClause” – These placeholders will get replaced by
the values from the selectionArgs array.

• groupBy – declare how to group rows.
• having – filter, null means no filter.
• orderBy – how to order the results.

return database.query(DATABASE_TABLE, new String[]
{KEY_ROWID, KEY_CATEGORY, KEY_SUMMARY,
KEY_DESCRIPTION}, null, null, null, null, null);

GJA 10 50 / 69

Cursor

• Query returns cursor object.
• Points to one row of returned array.
• Has several methods

• getCount()
• moveToFirst()
• moveToNext()
• getLong(columnIndex)
• getString(columnIndex)
• close()
• . . .

Example AndroidSQL
GJA 10 51 / 69

Displaying data

• ListView
• Adapters – objects storing collections, that can be displayed.
• SimpleCursorAdapter – defines layout for each row of
ListView.

• Cursor to view mapping.

• Direct usage of ListView is deprecated - use
ListFragment instead.

• Define arrays
• An array which contains the column names.
• An array which contains the IDs of Views which should be

filled with the data.
• Loader class

• loads data from a content provider.

GJA 10 52 / 69

Content Provider

• By default, SQLite is private to application.
• Sharing can be specified via Content Provider.
• Content provider is an application which shares data to

other applications, almost allways it is some sort of SQLite
database.

• Must be specified in manifest
• Android:authorities
• Example – contacts

• Subclasses android.content.ContentProvider
• Sharing is implicitly on ContentProvider

• Can be turned off.
• Thread safety

• Keyword synchronized

Example AndroidContentProvider
GJA 10 53 / 69

SQLite full-text search

• CREATE VIRTUAL TABLE data1 USING fts3(content
TEXT); // inverted index (Apache Lucene)

• CREATE TABLE data2(content TEXT);

• SELECT count(*) FROM data1 WHERE content MATCH
’linux’; /* 0.03 seconds */

• SELECT count(*) FROM data2 WHERE content LIKE
’%linux%’; /* 22.5 seconds */

• Mapping via rowid/docid (no primary key).
• Different query syntax

• "TABLE_NAME MATCH "+query
• Support for wildcards, proximity queries etc.
• Boolean queries.

GJA 10 54 / 69

Android Java Services

• There are lots of services implemented in Java in Android.
• They abstract most of the native features to make them

available in a consistent way.
• Accesible via Context.getSystemService()

• Read the docs for more.

GJA 10 55 / 69

Android’s architecture – new

GJA 10 56 / 69

ActivityManager

• ActivityManager manages everything related to Android
applications

• starts activities,
• manages their life-cycle,
• fetches content from content providers,
• handles non-responding applications.

GJA 10 57 / 69

TelephonyManager

• TelephonyManager provides access to information about
the telephony services on the device.

• TelephomyManager.EXTRA STATE
• EXTRA STATE RINGING
• EXTRA INCOMING NUMBER

• SIM info
• Location of the cell
• Operator info

GJA 10 58 / 69

PackageManager

• PackageManager is for manipulating already installed
packages

• get list of packages,
• get/set permissions,
• get details/resources,
• install/uninstall package,
• check that the application can handle intent of given type.

GJA 10 59 / 69

AlarmManager

• AlarmManager abstracts timers.
• Allows to set one time or repetitive timer.
• When a timer expires, the AlarmManager grabs

a wakelock, sends an Intent to the corresponding
application and releases the wakelock once the Intent has
been handled.

GJA 10 60 / 69

ConnectivityManager

• ConnectivityManager manages network connections.
• Falls back to other connections when one fails.
• Notifies the system when one becomes

available/unavailable.
• Allows the applications to retrieve various information about

connectivity.

GJA 10 61 / 69

WifiManager

• WifiManager provides an API to manage all aspects of WiFi
networks

• list, modify or delete configured networks,
• get information about current WiFi network,
• list currently available WiFis,
• send intents on changes.

GJA 10 62 / 69

NotificationManager

• NotificationManager notifies the user of events that
happen. This is how you tell the user that something has
happened in the background.

• Notifications can take different forms:
• A persistent icon that goes in the status bar and is accessible

through the launcher,
• Turning on or flashing LEDs on the device,
• Alerting the user by flashing the backlight, playing a sound, or

vibrating.

GJA 10 63 / 69

Other managers

• PowerManager
• LocationManager
• ClipboardManager
• . . .

GJA 10 64 / 69

System server

• Starts all system services and managers.
• Runs services as:

• Lights Service,
• Vibrator Service,
• Sensor Service,
• . . .

GJA 10 65 / 69

References 1/3

• Vogella: Getting started with Android development
• http://www.vogella.com/articles/Android/article.html

• Mkyong: Android Tutorial
• http://www.mkyong.com/tutorials/android-tutorial/

• Tutorials Point: Android Tutorial
• https://www.tutorialspoint.com/android/index.htm

• Learn Android Development
• https://www.studytonight.com/android/

• Documentation
• https://developer.android.com

GJA 10 66 / 69

http://www.vogella.com/articles/Android/article.html
http://www.mkyong.com/tutorials/android-tutorial/
https://www.tutorialspoint.com/android/index.htm
https://www.studytonight.com/android/
https://developer.android.com

References 2/3
• Others

• https://www.businessinsider.com/
how-android-was-created-2015-3

• https:
//www.digitaltrends.com/mobile/android-version-history/

• https:
//www.techuntold.com/sequence-behind-android-os-names/

• http://www.techotopia.com/index.php/An_Overview_of_the_
Android_Architecture

• https://www.boldare.com/blog/
differences-between-class-and-dex-files-in-java-android/

• http://darutk-oboegaki.blogspot.cz/2011/03/
usage-of-dx-dex-dx-dex.html

• http://stackoverflow.com/questions/9593527/
what-are-odex-files-in-android

• http://www.addictivetips.com/mobile/
what-is-odex-and-deodex-in-android-complete-guide/

• https://web.archive.org/web/20171108061932/http:
//www.limbaniandroid.com/2014/04/
how-to-display-datepickerdialog-in.html

• https://stackoverflow.com/questions/45373007/
progressdialog-is-deprecated-what-is-the-alternate-one-to-use

• https://lief.quarkslab.com/doc/latest/tutorials/10_

android_formats.html

GJA 10 67 / 69

https://www.businessinsider.com/how-android-was-created-2015-3
https://www.businessinsider.com/how-android-was-created-2015-3
https://www.digitaltrends.com/mobile/android-version-history/
https://www.digitaltrends.com/mobile/android-version-history/
https://www.techuntold.com/sequence-behind-android-os-names/
https://www.techuntold.com/sequence-behind-android-os-names/
http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
https://www.boldare.com/blog/differences-between-class-and-dex-files-in-java-android/
https://www.boldare.com/blog/differences-between-class-and-dex-files-in-java-android/
http://darutk-oboegaki.blogspot.cz/2011/03/usage-of-dx-dex-dx-dex.html
http://darutk-oboegaki.blogspot.cz/2011/03/usage-of-dx-dex-dx-dex.html
http://stackoverflow.com/questions/9593527/what-are-odex-files-in-android
http://stackoverflow.com/questions/9593527/what-are-odex-files-in-android
http://www.addictivetips.com/mobile/what-is-odex-and-deodex-in-android-complete-guide/
http://www.addictivetips.com/mobile/what-is-odex-and-deodex-in-android-complete-guide/
https://web.archive.org/web/20171108061932/http://www.limbaniandroid.com/2014/04/how-to-display-datepickerdialog-in.html
https://web.archive.org/web/20171108061932/http://www.limbaniandroid.com/2014/04/how-to-display-datepickerdialog-in.html
https://web.archive.org/web/20171108061932/http://www.limbaniandroid.com/2014/04/how-to-display-datepickerdialog-in.html
https://stackoverflow.com/questions/45373007/progressdialog-is-deprecated-what-is-the-alternate-one-to-use
https://stackoverflow.com/questions/45373007/progressdialog-is-deprecated-what-is-the-alternate-one-to-use
https://lief.quarkslab.com/doc/latest/tutorials/10_android_formats.html
https://lief.quarkslab.com/doc/latest/tutorials/10_android_formats.html

References 3/3

• Others
• http://thetechnocafe.com/
how-to-create-widget-for-your-android-app/

• https://www.slideshare.net/opersys/
understanding-the-android-system-server

• https://stackoverflow.com/questions/62138507/
intentservice-is-deprecated-how-do-i-replace-it-with-jobintentservice

• https://medium.com/mindorks/
android-jobintentservice-for-background-task-e77bfa21fffa

• https://android-developers.googleblog.com/2020/02/

android-studio-36.html

GJA 10 68 / 69

http://thetechnocafe.com/how-to-create-widget-for-your-android-app/
http://thetechnocafe.com/how-to-create-widget-for-your-android-app/
https://www.slideshare.net/opersys/understanding-the-android-system-server
https://www.slideshare.net/opersys/understanding-the-android-system-server
https://stackoverflow.com/questions/62138507/intentservice-is-deprecated-how-do-i-replace-it-with-jobintentservice
https://stackoverflow.com/questions/62138507/intentservice-is-deprecated-how-do-i-replace-it-with-jobintentservice
https://medium.com/mindorks/android-jobintentservice-for-background-task-e77bfa21fffa
https://medium.com/mindorks/android-jobintentservice-for-background-task-e77bfa21fffa
https://android-developers.googleblog.com/2020/02/android-studio-36.html
https://android-developers.googleblog.com/2020/02/android-studio-36.html

Thank you for your attention!

