## Formal Languages and Compilers

## Dominika Regéciová

Faculty of Information Technology, Brno University of Technology
Božetěchova 1/2. 61266 Brno
iregeciova@fit.vutbr.cz

## TriT

- Review of material from the previous lecture
- Alphabet, strings, and languages (all slides)
- Introduction to compilers (all slides)
- Exercises
- Extra exercise for home - 0.5 point when completed and send to me today
- What is a symbol?
- What is a symbol?
- The symbols can be characters, words, punctuation, hieroglyphs, dots and dashes (Morse code), etc.
- What is a symbol?
- The symbols can be characters, words, punctuation, hieroglyphs, dots and dashes (Morse code), etc.
- What is a sentence?
- What is a symbol?
- The symbols can be characters, words, punctuation, hieroglyphs, dots and dashes (Morse code), etc.
- What is a sentence?
- A sentence is a sequence of symbols.
- What is a symbol?
- The symbols can be characters, words, punctuation, hieroglyphs, dots and dashes (Morse code), etc.
- What is a sentence?
- A sentence is a sequence of symbols.
- What is a language?
- What is a symbol?
- The symbols can be characters, words, punctuation, hieroglyphs, dots and dashes (Morse code), etc.
- What is a sentence?
- A sentence is a sequence of symbols.
- What is a language?
- A language is a set of "legal" sentences.
- What is a symbol?
- The symbols can be characters, words, punctuation, hieroglyphs, dots and dashes (Morse code), etc.
- What is a sentence?
- A sentence is a sequence of symbols.
- What is a language?
- A language is a set of "legal" sentences.
- What is a formal language?
- What is a symbol?
- The symbols can be characters, words, punctuation, hieroglyphs, dots and dashes (Morse code), etc.
- What is a sentence?
- A sentence is a sequence of symbols.
- What is a language?
- A language is a set of "legal" sentences.
- What is a formal language?
- A formal language is a language defined by a finite set of unambiguous rules delimiting the legal sentences from the illegal ones.

1. Write down first 5 strings over alphabet $\Sigma=\{a\}$ in length order:
a) $L=\left\{a^{2^{n}}: n \geq 0\right\}$
b) $L=\left\{a^{n}: \mathrm{n}\right.$ is a prime number $\}$

Note: 1 is not a prime number

1. Write down first 5 strings over alphabet $\Sigma=\{a\}$ in length order:
a) $L=\left\{a^{2^{n}}: n \geq 0\right\}$
b) $L=\left\{a^{n}: \mathrm{n}\right.$ is a prime number $\}$

Note: 1 is not a prime number
Solution:
a) a, aa, aaaa, aaaaaaaa, aaaaaaaaaaaaaaaa
b) aa, aaa, aaaaa, aaaaaaa, aaaaaaaaaaa
2. Concatenate following languages:
a) $\{a a, b b\} .\{a a, b b\}$
b) $\{a a, b b\} .\{\varepsilon\}$
c) $\{a a, b b\} . \varnothing$
2. Concatenate following languages:
a) $\{a a, b b\}$. $\{a a, b b\}$
b) $\{a a, b b\} .\{\varepsilon\}$
c) $\{a a, b b\} . \varnothing$

Solution:
a) $\{a a, b b\} .\{a a, b b\}=\{a a a a, a a b b, b b a a, b b b b\}$
b) $\{a a, b b\} .\{\varepsilon\}=\{a a \varepsilon, b b \varepsilon\}=\{a a, b b\}$
c) $\{a a, b b\} . \varnothing=\varnothing$
3. Define intersection of $L_{1}=\left\{a^{2 n}: n \geq 1\right\}$ and $L_{2}=\left\{a^{3 n}: n \geq 1\right\}$
3. Define intersection of $L_{1}=\left\{a^{2 n}: n \geq 1\right\}$ and $L_{2}=\left\{a^{3 n}: n \geq 1\right\}$

## Solution:

$L_{1} \cap L_{2}=\left\{a^{6 n}: n \geq 1\right\}$

- Solve till today's midnight
- Send your solution to iregeciova@fit.vutbr.cz
- You can get 0.5 points for correct and nice solution (short answer does not count!)
- Extra points does not count into credit and course minimum
- Exercise: Define if complement of language
$L=\left\{a^{n}: n \geq 2\right\}$ is finite if:
a) $L$ is defined over alphabet $\Sigma=\{a\}$
b) $L$ is defined over alphabet $\Sigma=\{a, b\}$

Thank you for your attention

