

Input / Output System

Input/Output Problems

• Wide variety of peripherals:

—Delivering different amounts of data,

—At different speeds,

—In different formats.

• All are slower than CPU and RAM.

• A strong need for I/O modules.

1

Input/Output Module

• Interface to CPU and memory.

• Interface to one or more peripherals.

• I/O module – I/O adapter, I/O controller
(equal concepts).

• The ability to work autonomously, i. e.
without any attention from CPU is a very
important aspect of performing peripheral
operations.

 2

Generic Model of I/O Module

3

External Devices (Peripheral Devices)

• Human readable:

—screen, printer, keyboard.

• Machine readable:

—monitoring and control.

• Communication:

—modem,

—Network Interface Card (NIC).

4

External (Peripheral) Device Block

Diagram

5

I/O Module Function

• Control & Timing.

• CPU Communication.

• Device Communication.

• Data Buffering.

• Error Detection.

6

I/O Steps

• CPU checks I/O module and external device
status (status byte, sense bytes). Sense bytes –
more detailed information about errors in the
peripheral device.

• I/O module returns status to CPU.

• If ready, CPU requests data transfer.

• I/O module gets data from device.

• CPU checks I/O module and external device
status (status byte, sense bytes).

• I/O module transfers data to CPU.

• This is an example of programmed I/O.

• Important - CPU checks repeatedly whether the
peripheral operation was finished (polling). 7

I/O Module Diagram

8

Input Output Techniques

• Programmed I/O (not used at present).

• Interrupt driven I/O.

• Direct Memory Access (DMA).

 They differ in the way in which I/O
module informs CPU that the peripheral
operation has finished because the
peripheral operation was performed
autonomously (independently).

9

Three Techniques for

Input of a Block of Data

10

Programmed I/O

• CPU has direct control over I/O

—Sensing status

—Controlling read/write commands

—Transferring data

• CPU waits for I/O module to complete
operation.

• It wastes CPU time.

11

Programmed I/O - detail

• CPU requests I/O operation.

• I/O module performs operation.

• I/O module sets status bits.

• CPU checks status bits periodically.

• I/O module does not inform CPU directly.

• I/O module does not interrupt CPU.

• CPU may wait or come back later
(polling).

12

I/O Commands

• CPU issues address

—Identifies module (& device if >1 per module)

• CPU issues command

—Control - telling module what to do

– e.g. seek operation on disk

—Test - check status

– e.g. power? Error?

—Read/Write

– Module transfers data via buffer from/to device

13

Addressing I/O Devices (registers)

• Under programmed I/O data transfer is
very like memory access (CPU viewpoint).

• Each device (register) is given unique
identifier.

• CPU commands contain identifier
(address).

14

I/O Mapping

• Memory mapped I/O

—Devices (registers) and memory share an address
space.

—I/O looks just like memory read/write.

—No special commands for I/O.

– Large selection of memory access commands available

• Isolated I/O

—Separate address spaces (memory and registers).

—Need I/O or memory select lines.

—Special commands for I/O.

– Limited set.

15

Interrupt Driven I/O

• Overcomes CPU waiting.

• I/O module interrupts CPU when ready.

• No repeated CPU checking of device.

16

Interrupt Driven I/O

Basic Operation

• CPU issues read command.

• I/O module gets data from peripheral
whilst CPU does other work.

• I/O module interrupts CPU.

• CPU requests data.

• I/O module transfers data.

17

CPU Viewpoint

• CPU issues read command.

• CPU does other work.

• CPU checks for interrupt at the end of
each instruction cycle.

• If interrupted:

—Save context (registers)

—Process interrupt

– Fetch data & store

18

Changes in Memory and Registers

for an Interrupt

19

Design Issues

• How do you identify the module issuing
the interrupt?

• How do you deal with multiple interrupts?

—i.e. an interrupt handler being interrupted

20

Identifying Interrupting Module (1)

• Different line for each module (holds for
ISA, not for PCI)

—PC

—The number of peripheral devices is limited (it
does not hold for PCI bus).

• Software poll

—CPU asks each module in turn

—Slow

21

Multiple Interrupts

• Each interrupt line has a priority assigned.

• Higher priority lines can interrupt lower
priority lines.

22

ISA Bus Interrupt System

• ISA bus chains two 8259As together

• Link is via interrupt 2

• It gives 15 lines

—16 lines less one for link

• IRQ 9 is used to re-route anything trying
to use IRQ 2

—Backwards compatibility

• Incorporated in chip set

23

82C59A Interrupt

Controller

24

Direct Memory Access (DMA)

• Interrupt driven and programmed I/O
require active CPU intervention.

—Transfer rate is limited.

—CPU is tied up (it cannot do anything else).

• DMA is the answer.

25

DMA Function

• Additional Module (hardware) on bus
(DMA Controller).

• DMA controller takes over the control
from CPU for I/O operation.

• At present: system bus clients are able to
control system bus and generate control
signals into the system bus (bus
mastering).

26

Typical DMA Module Diagram

27

DMA Operation

• CPU tells DMA controller:

—Read/Write

—Device address

—Starting address of memory block for data

—Amount of data to be transferred

• DMA controller deals with transfer.

• DMA controller sends interrupt when
finished.

28

I/O Channels

• I/O devices getting more sophisticated.

• e.g. graphics cards.

• CPU instructs I/O controller to do transfer.

• I/O controller does entire transfer.

• It improves speed

—Takes load off CPU,

—Dedicated processor is faster.

29

I/O Channel Architecture

30

