XMW3 / IW3 – Sítě 1

Štefan Pataky, Martin Poisel

Základy síťí v prostředí MS Windows

IPv4 a IPv6

- zápis a přidělování adres, rozsahy adres
- dynamické získání adresy DHCP, Router Advertisment, Neighbour Discovery

Směrování

- statické směrování
- dynamické směrování (RIP, OSPF)

NAT, Firewall

- stavový a nestavový firewall
- překlad privátních adres na veřejné, mapování portů

VPN

- PPTP, L2TP, SSTP, IPSec, DirectAccess

Obecné info

- RFC 791
- Bezestavový protokol, best-effort, bez záruky doručení
- O integritu dát se stará vyšší vrstva TCP

Struktura datagramu

- Hlavička a data

Format IP datagramu							
Bajty		0	1	2		3	
Bajt 0 až 3	verze	IHL	typ služby	celková délka			
Bajt 4 až 7	identifikace			příznaky (3 bity)	offset fragmentu (13 bitů)		
Bajt 8 až 11	TTL číslo protokolu			kontrolní součet hlavičky			
Bajt 12 až 15	zdrojová adresa						
Bajt 16 až 19	cílová adresa						
Bajt 20 až ((IHL * 4) - 1)	rozšířená nepovinná nastavení						
	data						

IP adresa

- 32 bit číslo, odděleno tečkama po 3 → 192.168.1.1
- jednoznačně identifikuje počítač v rámci sítě
- "2 části" adresa sítě a adresa počítače
- aktuální problém dochází (vice zde http://www.potaroo.net/tools/ipv4/index.html)

Maska podsítě

- rozděluje IP adresu na část síťovou a hostitelskou
- 32 bit číslo, odděleno tečkama po 3, např.: 255.255.255.0

Broadcast

- IP adresa, která adresuje všechny počítače v rámci lokální sítě

Výchozí brána

- IP adresa routeru, na kterou jsou poslány pakety, které mají cíl mimo lokální síť

IPv4 – výpočet adresy subsítě a broadcastu

Decimálně				
IP adresa	192 .	168	209	215
Maska	255 .	255	255	0
Binárně				
IP adresa	11000000 .	10101000	11010001	11010111
Maska	11111111 .	11111111	11111111	00000000

- bity IP adresy, pod kterými má maska subsítě jedničky určují adresu sítě

 bity IP adresy, pod kterými má maska subsítě nuly určují adresu hostitele v rámci subsítě

Adresa sítě a broadcast

- zapisujeme adresu sítě 192.168.209.0/24 a broadcast 192.168.209.255
- z masky jsme také schopni zjistit počet IP adres připadaící na síť (v tomto případě 254)

IPv4 – rozsahy sítí

Veřejné IP adresy

- unikátní v rámci Internetu
- přiděluje RIR, pro Evropu RIPE

Privátní adresy

- unikátní v rámci lokální sítě
- přidělujeme si je sami
 - 192.168.0.0/16
 - 10.0.0/8
 - 172.16.0.0/12

Další typy

- multicast 224.x.x.x 239.x.x.x
- loopback 127.x.x.x (běžně používáme 127.0.0.1)
- rezervované rozsahy 240.x.x.x 255.255.255.255

IPv4 – výpočet adresy sítě a broadcastu - lab

Úkoly

- zjistit adresu sítě
- zjistit adresu broadcastu
- zjistit počet IP adres v subnetu
- určit rozsah (privátní/veřejný)
- 192.168.115.27/19
- 10.0.0.138/16
- 81.185.254.136/28
- 12.224.0.1/17
- 201.0.0.17/29
- 192.162.12.159/14

IPv4 – dynamické získání IP

DHCP (dynamical host configuration protocol)

- RFC 2131
- Postaven na BOOTP
- Discovery -> offer -> request -> acknowledge (DORA)
- UDP 67 server, UDP 68 klient
- centrální přidělení IP adresy ze serveru
- možno konfigurovat možnosti podle klienta

APIPA

- p2p získání IP adresy na lokální síti (rozsah 169.254.0.0/16)

IPv6

Obecné info

- RFC 2460 (draft standard)
- Bezestavový protokol, best-effort, bez záruky doručení
- O integritu dát se stará vyšší vrstva TCP

IP paket

Hlavička IPv6 ^[23]								
Byty	(0 1			2	3		
0–3	Verze	Třída p	orovozu		Značka to	ku		
4–7		Délka dat			Další hlavička	Max. skoků		
8–11								
12–15	Zdrojová odroca							
16–19		Zurojova adresa						
20–23								
24–27								
28–31	Cílová adresa							
32–35								
36–39								

10000

IPv6

IP adresa

- 128 bit hexadec číslo, odděleno dvojtečkama po 4, možno zkracovat → 2a01:430:12::F2:1
- Přibližně 3,4 x 10³⁸ po odečtení speciálních adres a rezerv 7,9 x 10²⁸ než IPv4
- jednoznačně identifikuje počítač v rámci sítě
- "2 části" adresa sítě a adresa počítače

Prefix (maska podsítě)

 místo FFFF:FFFF … se po používá pouze prefixový zápis → 2a01:430:12::F2:1/64

Rozdíly mezi IPv4 a IPv6

Větší adresní prostor

Bezstavová autokonfigurace adres (SLAAC)

ICMPv6 server klient vyšle router solicitation (multicast), router odpověď router advertisement

Multicast

- Zaveden od začátku, směrovatelný nemusí využívat broadcast

Jumbogramy

- Při MTU velkost paketů až 4 GiB
- Chybí kontrolní součet

IPv6 – rozsahy sítí

Globální

- unikátní v rámci Internetu
- přiděluje se prefix délky 48 nebo 64 bitů (např.: 2a01:43:E::/48)

Lokální síťové

- unikátní v rámci lokální sítě
- přidělujeme si je sami
 - fec0::/10

Lokální linkové

- unikátní v rámci jedné subsítě
- přidělujeme si je sami, resp. přidělují se samy 🙂
 - fe80::/10

Loopback

- zpětná smyčka
 - ::1/128

IPv6 – výpočet adresy sítě a broadcastu - lab

Úkoly

- zjistit adresu sítě
- zjistit adresu broadcastu
- zjistit počet IP adres v subnetu
- určit rozsah (privátní/veřejný)
- 2a00:10:3::128/48
- fe00:1::1/64
- fec0::128/64
- 2001:abcd:fe00::123::5/64
- 2a01:40:ff:12bb:12::5/48

IPv6 – dynamické získání IP

DHCP (dynamical host configuration protocol)

- centrální přidělení IP adresy ze serveru
- možno konfigurovat možnosti podle klienta

ND (neighbour discovery)

- p2p získání IP adresy na lokální síti

RA (router advertisment)

- ohlášení routeru na lokální síti pro získání statické trasy/výchozí brány

TCP/IP

Port

- 16 bit číslo
- adresuje aplikaci na danné IP adrese

TCP/IP

Směrování

 pokud chceme komunikovat s IP adresou, která neleží na naší subsíti (nelze komunikovat přímo) dojde ke směrování

Směrovací tabulka

 tabulka, ve které si hostitel uchovává seznam statických cest do jiných subsítí, popř. výchozí bránu (adresu routeru, na který se pošle vše, co nemá jinou cestu)

Statické směrování

- cesty zadávámé do směrovací tabulky ručně

Dynamické směrování

- cesty jsou do směrovací průběžně aktualizovány podle situace na síti (nová cesta, přetížená cesta, cesta offline atd.)
- slouží protokoly RIP, RIPv2, OSPF, BGP

TCP/IP - nástroje

PING

- nástroj na kontrolu dostupnosti hostitele

Tracert

- nástroj na testování směrování

IPconfig

- nástroj na zobrazení nastavení TCP/IP

Route

- nástroj na nastavení směrovací tabulky

Netsh

- net shell – cli pro masochisty na kompletní nastavení síťe v prostředí MS

TCP/IP – demo

Nastavení IP adres v nastavení sítě

- ncpa.cpl

Nástroje TCP/IP

- ping, ipconfig, tracert, route, netsh

Směrování v praxi

- simulace směrování ve virtuálním prostředí

TCP/IP – statické směrování – řízený lab

Úkol společně s lektorem

- zprovozněte dva routery a dvě stanice podle obrázku
- staticky přidělte adresy routerům i stanicím
- nastavte směrování
- zkontrolujte funkčnost pingem z jedné stanice na druhou

TCP/IP – statické směrování – řízený lab

- 1. připravte 2x virtuální stroj pro router1 a router2
 - 128 mb ram
 - 1x CPU
 - 500 MB disk
 - 2x legacy lan
- 2. zapněte virtuální mašny na stanice, možno využít Windows XP, Vista, 7
 - nezapomeňte vypnout firewall, nebo na něm povolit ping
- 3. nastavte všem čtyřem virtuálním strojům síťové připojení private (aby komunikovaly jen uvnitř virtuálního prostředí)
- 4. do routerů nainstalujte operační systém mikrotik (na yetti mikrotik-3.13.iso)
 - stiskněte a pro výběr všech balíčků, poté odškrtněte xen, následně i pro instalaci
 - potvrďte 2x y, potom
 - po doinstalaci restartu se přihlašte jako admin a prázdné heslo
 - příkazem /ip address add interface=ether1 address=192.168.1.1/24 přidejte adresu na první router

TCP/IP – statické směrování – řízený lab

- 5. přepněte se na stanici1
 - nastavte IP adresu **192.168.1.2/24**
 - otestustujte spojení s routerem příkazem **ping 192.168.1.1**
 - pokud vše funguje, zadejte do prohlížeče stanice1 <u>http://192.168.1.1</u> a stahněte administrační konzoli
- 6. Nastavení routes
 - spusťte administrační konzoli winbox a dokonfigurujte router1
 - v záložce /IP/addresses nakonfigurujte IP adresu pro druhé síťové rozhraní
 - v záložce /IP/routes nastavte statickou cestu na subsíť 192.168.3.0 (použijte bránu 192.168.2.2, kterou nastavíte jako IP adresu routeru2)
 - příkazem /ip routes add dst-address=192.169.3.0/24 gateway=192.168.2.2 nastavte statickou cestu do další subsítě
- 7. stejným způsobem nakonfigurujte stanici2 a router2
- 8. zkontrolujte funkčnost spojení příkazem ping a tracet

