
How Should Teams Organize 1 Juanita Ewing
Their Applications?

How Should Teams Organize
their Applications?

Juanita J. Ewing
 Instantiations, Inc.

Copyright 1994, Juanita J. Ewing
Derived from Smalltalk Report

In my previous column I began to address some important issues for teams of Smalltalk
programmers. Teams of programmers are important because large complex applications
cannot be built by a single programmer. Continuing with issues relating to teams, this
column will present heuristics for organizing applications. Organizational units can be the
basis of work assignments for team members and the basis for distributing completed
portions of an application. An additional benefit is that organizational units tend to represent
reusable units.

Should teams organize their application? When a team of programmers
implements an application, the development work needs to be structured and distributed
among team members. Without some kind of organization, development would be a free-
for-all, and no schedule would be possible. The most obvious organizational technique is
to partition an application along class lines. In this organizational scheme, each member of
the team would be responsible for implementing and maintaining a group of classes. In
Smalltalk, a class is a unit that encapsulates behavior and the data specification for a
particular kind of object. An organization based on classes has the advantage of being built
on an existing supported Smalltalk unit, and is able to use many of the existing Smalltalk
tools. But, classes don’t exist in isolation.

Should hierarchically–related classes be organized together?
Classes are usually part of a hierarchy in which superclasses also specify data and
behavior. The behavior of an object is defined by the behavior in its own class and the
behavior of its superclasses. Since a class requires its superclass in order to function, it is
desirable to organize both classes together. This desire is the basis of our first heuristic.

This kind of grouping usually involves several classes, since an inheritance tree is
frequently larger than just two classes. Entire trees of hierarchically–related classes might
be grouped together to satisfy this heuristic, but it cannot be followed blindly. If it were,
most of the classes in an image would be grouped together.

How do you limit the hierarchical groups? If classes were grouped
strictly by inheritance, the size of groups would not be reasonable. Use the additional
heuristic that hierarchically–related classes performing a similar function should be grouped
together.

How Should Teams Organize 2 Juanita Ewing
Their Applications?

For example, suppose you are developing an application that has a plumbing system. The
plumbing system is composed of plumbing components such as valves, spigots and pipes.
All of the plumbing components are subclasses of an abstract class, PlumbingComponent.
PlumbingComponent is a subclass of Object. A group based on function would contain
PlumbingComponent and all its subclasses, but would not contain the superclass Object
because it does not fulfill the same function as a plumbing component.

Should collaborating classes be organized together? Frequently an
application contains several classes that send messages back and forth. These classes
collaborate. Collaborating classes require each other to function. Because these individual
classes don’t stand alone it is desirable to organize these classes together.

The degree of collaboration affects this organizational heuristic. If two classes collaborate
with just one message, then the degree of collaboration is small. Many messages indicate a
large degree of collaboration, and a stronger reason to organize the classes together.

Suppose our plumbing system contains a water heater. A water heater has a water tank, a
heating element and a thermostat. The heating element must be turned on and off when the
water temperature, as sensed by the thermostat, reaches upper and lower limits. The
thermostat sends messages such as turnOn and turnOff to the heating element. These two
classes collaborate and therefore should be grouped together.

heating
element

thermostat

on/off

We haven’t addressed the issue of how to organize the water tank class in our example.
The heating element would send messages indicating how much heat it has produced, and
based on the volume of water, a temperature rise could be calculated. Does the water tank
perform the temperature rise calculation? No. The water tank is responsible for knowing its
volume of water, but nothing about a generic water tank suggests that it be able to calculate
temperature rises. (We will ignore volume fluctuations based on temperature variations.)

Our system also needs to include a water heater object that performs operations specific to a
water heater such as calculating the temperature rise. The heating element communicates
with the water heater object to pass on heat production, and the water heater tells the
thermostat the current temperature.

Because of the collaboration between the water heater and both the heating element and the
thermostat, the water heater should also be included in the organization based on
collaboration.

How Should Teams Organize 3 Juanita Ewing
Their Applications?

heating
element

thermostat

water
heater

water
tank

on/off

temperature volume

production

The water tank collaborates with only one of the other classes in this example. Because of
the small degree of collaboration and also because the information doesn’t take an active
role in the primary calculation, we leave it out of the water heater group.

heating
element

thermostat

water
heater

on/off

temperature

production

Our group contains three classes: heating element, thermostat and water heater. This
organization is based solely on collaboration.

What if your classes are in a hierarchy and collaborating? It is
likely that your application contains classes that belong to a hierarchy and also collaborate
with other unrelated classes. Both hierarchical and non-hierarchical relationships should be
taken into account. Classes in the hierarchy should be organized together, and tightly
coupled classes in the application should be organized together.

How Should Teams Organize 4 Juanita Ewing
Their Applications?

Let’s examine the water heater example. Some of the objects in this system are
hierarchically related. The thermostat and the heating element are part of an electrical
component hierarchy, and the tank is part of the plumbing component hierarchy. Yet we
also want to capture the relationships based on collaboration, as depicted in the diagram.
There is a desire to associate the heating element with other electrical components, and a
desire to associate it with the other classes comprising the water heater.

How do you organize a class in more than one way? We have
discussed a unit that captures a single organization. Let’s call this unit the primary
organizational unit. In order to represent multiple overlapping associations, we need
another type of organization. Configurations are another type of organization that is used to
represent secondary relationships. Configurations refer to other organizational units. As
such, they are another level of organization. They can be nested, so that one configuration
may refer to another configuration or simply to a group of primary organizational units.

In most cases a hierarchical relationship forms the basis for the primary organizational unit.
This unit can then be combined with other units via configurations. This tactic reflects the
point of view that the hierarchical relationship is tighter and more stable than
collaboration–based relationships.

Another way to think about different organizations is to imagine scenarios for reuse and
maintenance. If developers are more likely to reuse a hierarchy of classes than a group of
collaborating classes, then the primary organization should be based on inheritance. If a
group of classes will be maintained as a unit, this means that they are closely related and
should be grouped together.

In the plumbing example, all the plumbing components can be organized into a primary
unit. This unit contains classes related by inheritance. The same should be done for the
electrical components. A configuration representing the water heater would contain three
primary units:

• the plumbing components unit
(for the water tank)

• the electrical components unit
(for the thermostat and heating element)

• the water heater unit consisting of only the water heater class.

With inheritance as the organizational basis for primary units, collaboration–based
relationships can be represented by configurations. In our example, this organization is
useful because the plumbing components can exist in different systems. You can imagine
the configurations and primary organizational units needed to represent a well and pump, or
a solar hot water heater.

What about related code in other classes? All parts of an application might
be neatly contained in classes. Frequently, though, methods will be sprinkled throughout
the class library.

Suppose a way to distinguish between other objects and plumbing components is needed.
It is reasonable for a developer to define a method in Object that answers whether the
receiver is a plumbing component (isPlumbingComponent). This method returns false. A
similar method implemented in PlumbingComponent returns true. All classes inheriting the

How Should Teams Organize 5 Juanita Ewing
Their Applications?

method from Object will answer false when asked if they are a plumbing component.
Subclasses are free to override the method.

Should code organization be based on classes? In our example, a single
method in an unrelated class has functionality that relates to another class. How should this
method be organized? Should the method in Object be associated with the class Object, or
should it be part of the plumbing component unit? Obviously, this method relates to
plumbing components, and not to the generalized behavior of objects in a Smalltalk system.
It should be associated with the plumbing component classes.

Organizing strictly along class boundaries is not flexible enough. I advocate a flexible
grouping scheme in which classes and methods can be organized together into primary
units. (We will refer to classes and methods as definitions.) Use the heuristic that
functionally–related definitions should be organized together without regard to class
boundaries.

In the plumbing system example, the classes composing the plumbing component hierarchy
and the method Object>isPlumbingComponent should be bundled into one primary unit.
Both implementations of isPlumbingComponent would be contained by the same primary
unit. It is likely that many of the definitions would be used together and maintained
together. In particular, if the meaning of Object>isPlumbingComponent is changed, then
PlumbingComponent>isPlumbingComponent is also likely to change.

Use these heuristics to organize your application:
• organize hierarchically–related classes together.
• use functionality to limit the size of hierarchically–based groups.
• organize collaborating classes together.
• put functionally–related definitions together.

Two types of organization are required to represent different kinds of relationships, and
retain the flexibility required in a highly productive environment like Smalltalk. With the
primary organization units, a developer can bundle definitions together that are closely
related—either through inheritance or collaboration. These definitions are maintained
together and reused together. Primary organizational units contain logical groups of
definitions that cannot stand alone.

Configurations are another level of organizational structure that represents secondary
relationships. The components of a configuration stand alone and are more likely to be used
in other situations. Developers should be encouraged to mix and match different
organizational units to extend the usability of a set of definitions. Secondary relationships,
represented by configurations, are the basis of mixing and matching.

Primary organizational units are suitable for organizing the development of an application.
Each team member should be assigned to implement one or more primary organizational
units, and the implemented units should be distributed to other team members.
Configurations are used to build up the various subsystems in an application and ultimately
specify the application itself.

