
Draft 0.6 — 1— Mon, July 17, 1994

A Smalltalk Virtual Machine Architectural Model

Allen Wirfs-Brock
Pat Caudill

Instantiations, Inc.

Allen_Wirfs-Brock@Instantiations.com
Pat_Caudill@Instantiations.com

Copyright 1999
Instantiations, Inc

All Rights Reserved

This document describes a bytecode architecture for an experimental Smalltalk virtual machine. The
architecture was originally developed by the authors at Digitalk Inc. in 1993-1994. This document is
published with the permission of ObjectShare Inc, the successor company to Digitalk.

This architecture is intended to be used for the representation of compiled methods in the context of a
dynamic translating ("JIT") virtual machine. As such, its main purpose is to provide information that
can be easily and efficiently processed by such a translator. An important design goal was the
minimization of the space needed to represent compiled methods. Because it was designed to be the input
to a translator, minimization of decoding time was not a consideration of the design. It was not intended
for direct interpretation and certain features, such as the "Label" construct would be inefficient if used by
an interpreter.

Architectural influences include the Smalltalk-80 virtual machine, Tektronix Smalltalk implementations,
and various Digitalk ("Smalltalk/V") virtual machines. The basic architecture is that of an
accumulator+stack machine. Unlike the Smalltalk-80 virtual machine but similar to the Digitalk vm's,
the architecture uses an explicit stack of activation records instead of a linked-list of context objects. Most
arguments and local variables are allocated in an activation record but an activation record may also
reference a heap allocated "context" object (in retrospect, "environments" would have been a better name
for these objects) that contain any local variables that have non-FIFO lifetimes. The bytecode compiler is
responsible for determining which methods require context objects and for determining which variables
need to be allocated in contexts.

The register+stack architecture was driven by these observations about Smalltalk programs:
• Deep call chains
• Frequent adjacent calls
• Most computation happens in primitives and leaf methods
• Most methods have 0 or 1 arguments (plus receiver)

The registers ensure that the receiver and arguments arrive at primitives or leaf methods in machine
registers. Such methods typically do not need full activation records and do not need to store the
arguments to the stack. Non-leaf methods save their arguments to the stack, where they stay across
sequences of adjacent calls.

The X (index) register is used for indirect address and is primarily used for up-level addressing of lexically
nested blocks.

Draft 0.6 — 2— Mon, July 17, 1994

Base Architectural Elements

SP: (Stack Pointer)

FP: (Frame Pointer)

PC: (Program Counter)

R: (Receiver/Result register)

A: (Argument register)

Stack

X: (indeX register)

The execution model of the virtual machine consists of a Stack and several
special purpose registers. The stack consists of a sequence of OOPS, the last of
which is pointed to by the SP register. Individual OOPS may be added or
removed from the stack by incrementing or decrementing the SP. Logically, the
stack is organized into a sequence of Stack Frames (or activation records) that
represent the state of individual procedure activations. The newest frame is
pointed to by the FP register. Each frame contains a back reference to the
preceding frame.

The PC register contains a value that identifies the next instruction to be
executed.

The R register contains the OOP of the object that is the receiver of a message
send instruction. Upon return from a message send, it contains the value
returned by the procedure.

The A register is used to pass the last (leftmost) argument to a procedure. Other
arguments are passed on the stack. The A register is volatile across procedure
calls. Upon return from a call its contents are undefined.

The X register is used as an index or base register to indirectly addess the fields
of objects. Certain instructions that perform explicit indirect access through
stack-based values also implicitly load the X register. The X register is volatile
across procedure calls. Upon return from a call its contents are undefined.

Draft 0.6 — 3— Mon, July 17, 1994

Stack Frame Format

Argument 1 (if two or more args)

Argument n-1 (if 3 or more args)

Return PC value

Previous FP value

Environment Pointer
or nil or special mark

Temporary Variable 1

Temporary Variable n

Dynamic Stack/
passed arguments

FP

Method

Contexts
A stack frame may reference an off-stack context through its environment
pointer. A context is used to contain the storage for any local variable that may
be referenced by nested blocks or which may need to be retained after the stack
frame is discarded. Contexts may be logically nested, the first field of a context
contains a reference to its enclosing context or nil if there is not an enclosing
context. A stack frame for a method must have a context if the method contains
any blocks with non-local (up-arrow) returns.

temporary variables

enclosing context

Context Object

temporary variables

nil

Context Object

slot 0

slot 0

slot 1

slot n

slot 1

slot n

Draft 0.6 — 4— Mon, July 17, 1994

Blocks
A block1 is an object that when sent the message value (or one of its variants)
executes a block of code in some pre-specified environment. A block object is
created each time a literal code block (code enclosed within square brackets) is
encountered during program execution. The block object contains a copy of the
environment pointer of the stack frame that was active when the block was
created and a reference to a compiled method that contains the executable code
for the block (Each literal block is compiled as an independent compiled
method).

compiled method reference

environment reference slot 0

slot 1

Block Object

slot 2home method reference

Compiled Methods
A Compiled Method is an object that encodes the executable form of a method
or block. It consists of a set of bytecodes that encode the actual statements to be
executed and a set of literals which are references to objects used by the code. A
Compiled Method is actually a composite object structure of the following form:

Bytecode Array

Bytecode Array Object

Other Instance Variables

(Indexable Part)

Literals

CompiledMethod Object
(Object-indexable)

(Byte-indexable)

Selector

1Block Closure would be a technically more correct name, but is probably less descriptive to the
Smalltalk programmer. Intuitively, such a programmer would expect the value of the variable
x, after execution of the statement:

x := […].
to be a "block" .

Draft 0.6 — 5— Mon, July 17, 1994

The majority of the information about a compiled method is encoded in its
bytecode array. The first few bytes (at least 1) is a declarative header that
describes the execution environment required for the method. This is normally
followed by actual bytecodes that describe the imperative actions to be
performed by the methods. In a few situations, the header is sufficient to
describe the method and no bytecodes are required.

1 primitive
code 0 type args save

code size sizesave
code

Primitive Type Frame Context

0 or more 1 required 1 required
if type =
2… 5

1 required
if type = 3 or
5

Type Meaning Argument
 1 leaf number of arguments
 2 simple method number of arguments
 3 method w/context number of arguments
 4 simple block number of arguments
 5 block w/context number of arguments
 6 accesser/setter 0=accessor, 1=setter
 0,7 reserved

Save Code Meaning
 0 Don't save any registers
 1 Save R in first temp slot
 2 Save A in first temp slot
 3 Save R in 1st temp slot
 and A in 2nd temp slot

Bytecode Header

Slot

1 required
if type =6

inst var offset

Primitive Byte
If a method invokes a virtual machine primitive, the first byte of the bytecode
header is a primitive byte. A primitive byte is identified by its high order bit
being set to one. The low order 7 bits of a primitive byte encode the primitive
number. A bytecode header may begin with several primitive bytes. In case the
primitive number is formed by concatenating in left-to-right order the low order
7 bits of each primitive byte. A single primitive byte can encode primitive
numbers in the range 0-127. Two bytes are need to encode primitive in the range
128-16384. The encoding for larger primitive numbers is defined but not
currently supported by the virtual machine.

Type Byte
Every bytecode header contains a type byte. If the method has no primitive
bytes then the type byte will be the first byte of the header. If there are primitive
bytes, the type byte is the first byte following the last primitive byte. A type
byte is distinguished from a primitive byte by having its most significant bit set
to zero.

Draft 0.6 — 6— Mon, July 17, 1994

The three bit type field identifies the execution environment required for the
method. It also defines the interpretation of the argument field and of any
additional header bytes.

Method Types
Type 1 — Leaf Methods and Blocks
Type code 1 identifies a method that is a leaf method and does not need to have
an activation record created for it. The argument field specifies the number of
arguments that are passed to the method. A method is a leaf method if it
contains no message sends or other operations that could result in the activation
of another method or block and does not require any temporary variables. In
addition a Leaf Method may be used to represent a block if the block does not
make use of its environment reference. This is only the case when the block does
not reference any variables defined outside the block or does not contain any
out-of-scope returns.

Type 2 — Simple Method Frame
Type code 2 identifies a method (not a block) that requires a simple activation
record. That is, an activation record that does not include a heap allocated
context (environment). The environment pointer field of the activation record
will be set to nil. The argument field specifies the number of arguments that are
passed to the method. The type byte is immediately followed by a Frame Byte.
The lower 6 bits specify how many temporary variables should be allocated
within the activation record. All temporary variables are initialized to nil except
the first two which may be initialized to the values of the R and A registers
depending upon the setting of the high order two bits of the Frame Byte.

Type 3 — Method Frame with Context
Type code 3 identifies a method (not a block) that requires an activation record
that includes a heap allocated context (environment). The environment pointer
field of the activation record references the context which is allocated as an
instance of the class identified in slot TBD of the known object table. The
argument field specifies the number of arguments that are passed to the method.
The type byte is immediately followed by a Frame Byte. The lower 6 bits specify
how many temporary variables should be allocated within the activation record.
All temporary variables are initialized to nil except the first two which may be
initialized to the values of the R and A registers depending upon the setting of
the high order two bits of the Frame Byte. The Frame Byte is immediately
followed by a Context Byte. The lower 6 bits specify how many temporary
variables should be allocated within the context. All temporary variables are
initialized to nil except the second and third which may be initialized to the
values of the R and A registers depending upon the setting of the high order two
bits of the Context Byte. Note that the first field of the context (the enclosing
environment reference) is set to nil.

Draft 0.6 — 7— Mon, July 17, 1994

Type 4 — Simple Block Frame
Type code 4 identifies a block (not a method) that requires a simple activation
record. That is, an activation record that does not include a heap allocated
context. The block object is referenced by register R. The environment pointer
field of the activation record is set to the value in the environment reference field
of the block. The argument field specifies the number of arguments that are
passed to the block. The type byte is immediately followed by a Frame Byte.
The lower 6 bits specify how many temporary variables should be allocated
within the activation record. All temporary variables are initialized to nil except
the first two which may be initialized to the values of the R and A registers
depending upon the setting of the high order two bits of the Frame Byte.

Type 5 — Block Frame with Context
Type code 3 identifies a block (not a method) that requires an activation record
that includes a heap allocated context. The block object is referenced by register
R. The environment pointer field of the activation record references the context
which is allocated as an instance of the class identified in slot TBD of the known
object table. The enclosing environment field of the activation record is set to the
value in the environment reference field of the block. The argument field
specifies the number of arguments that are passed to the method. The type byte
is immediately followed by a Frame Byte. The lower 6 bits specify how many
temporary variables should be allocated within the activation record. All
temporary variables are initialized to nil except the first two which may be
initialized to the values of the R and A registers depending upon the setting of
the high order two bits of the Frame Byte. The Frame Byte is immediately
followed a Context Byte. The lower 6 bits specify how many temporary
variables should be allocated within the context. All temporary variables are
initialized to nil except the second and third which may be initialized to the
values of the R and A registers depending upon the setting of the high order two
bits of the Context Byte.

Type 6 — Accessor/Setter Methods
Type code 6 identifies a method whose only action is to immediately return the
value of one of the receiver's instance variables (a accessor) or to immediately
assign the value of the A register to one of the receiver's instance variables (a
setter). The argument field specifies the number of arguments that are passed to
the method and whether this is an accessor or a setter. A value of 0 indicates a
accessor while a value of 1 indicates a setter. The offset of the instance variable
within the receiver is specified in the byte that immediately follows the type
byte. Type 6 methods do not require the creation of an activation record.

Bytecodes

Draft 0.6 — 8— Mon, July 17, 1994

Label n Define label n
(0=n=7) Code 00+n
(8=n= 39) Code F0:00+n-8
(40=n= 8231) Code F0:20+(n-39>>8):(n-39&ff)

Identifes a branch point within the method which is the target of one or more
conditional or unconditional jump instructions.

Jump n Unconditional jump to label n
(0=n=7) Code 08+n
(8=n= 39) Code F0:40+n-8
(40=n= 8231) Code F0:60+(n-39>>8):(n-39&ff)

JumpT n Conditional jump to label n if true
(0=n=7) Code 10+n
(8=n= 39) Code F0:80+n-8
(40=n= 8231) Code F0:A0+(n-39>>8):(n-39&ff)

JumpF n Conditional jump to label n if false
(0=n=7) Code 18+n
(8=n= 39) Code F0:C0+n-8
(40=n= 8231) Code F0:E0+(n-39>>8):(n-39&ff)

Control is either conditionally or unconditionally transfered to the bytecode
immediately following the Label or XLabel bytecode identified by the parameter
n. JumpT and XJumpT transfers control if the R register contains the value true.
JumpF and XJumpF transfers control if the R register contains the value false. If
the label target of the jump is earlier in the method (a backwards branch) a
virtual machine interrupt may occur.

LATmp n Load A register from stack temporary n
(0=n=7) Code 20+n
(0=n= 63) Code F1:00+n

LRTmp n Load R register from stack temporary n
(0=n=7) Code 28+n
(0=n= 63) Code F1:80+n

The value contained in temporary slot n of the current activation record is
loaded into the A or R register.

Draft 0.6 — 9— Mon, July 17, 1994

LALit n Load A register from literal n
(0=n=7) Code 30+n
(8=n=255) Code F2:00+n

LRLit n Load R register from literal n
(0=n=7) Code 38+n
(8=n= 255) Code F3:00+n

The value contained in literal slot n of the current method is loaded into the A or
R register. Literal slot 0 is the first indexable field of the literal array, slot 1 is the
second field, etc.

LAAsc n Load A register from association in literal n
(0=n=7) Code 40+n
(8=n=255) Code F4:00+n

LRAsc n Load R register from association in literal n
(0=n=7) Code 48+n
(8=n= 255) Code F5:00+n

The 2nd instance variable (slot 1) of the object contained in literal slot n of the
current method is loaded into the A or R register. Literal slot 0 is the first
indexable field of the literal array, slot 1 is the second field, etc. The object
stored in the literal is normally an Association.
LAEnv n Load A indirect through environment pointer

(0=n=7) Code 50+n
(0=n= 63) Code F6:00+n

LREnv n Load R indirect through environment pointer
(0=n=7) Code 58+n
(0=n= 63) Code F6:40+n

The environment pointer from the active stack frame is loaded into the X
register. The value contained in slot n of the context object referenced by the
environment pointer from the active stack frame is loaded into the A or R
register.

LAT0 n Load A register indirect through temporary 0
(0=n=7) Code 60+n
(0=n= 255) Code F7:00+n

LRT0 n Load R register indirect through temporary 0
(0=n=7) Code 68+n
(0=n= 255) Code F8:00+n

The value of temporary variable 0 of the active stack frame is loaded into the X
register. The value contained in slot n of the object referenced by temporary
variable 0 of the active stack frame is loaded into the A or R register.

Draft 0.6 — 10— Mon, July 17, 1994

LAI n Load A register indirect through X register
(0=n=3) Code 70+n
(4=n= 67) Code F6:80+n-4
(4=n= 255) Code F6:BF:n

LRI n Load R register indirect through X register
(0=n=3) Code 74+n
(4=n= 67) Code F6:C0+n-4
(4=n= 255) Code F6:FF:n

The value contained in slot n of the object referenced by register X is loaded into
the A or R register.

LXTmp n Load X register from stack temporary n
(0=n=7) Code E3:20+n
(0=n= 63) Code E3:F1:00+n

LXLit n Load X register from literal n
(0=n=7) Code E3:30+n
(8=n=255) Code E3:F2:00+n

LXAsc n Load X register from association in literal n
(0=n=7) Code E3:40+n
(8=n=255) Code E3:F4:00+n

LXEnv n Load X register from environment variable n
(0=n=7) Code E3:50+n
(8=n=255) Code E3:F6:00+n

LXT0 n Load X register from environment variable n
(0=n=7) Code E3:60+n
(8=n=255) Code E3:F7:00+n

LXI n Load X register indirect through X register
(0=n=3) Code E3:70+n
(4=n= 66) Code E3:F6:80+n-4
(4=n= 255) Code E3:F6:BF:n

The the designate value is loaded into the X register. Note that the encoding of
these instructions consist of the ALT byte 16rE3 followed by the instruction
encoding of the corresponding instruction to load the A register.

LAArg n Load A register from stacked argument n
(0=n=1) Code 94+n
(2=n= 14) Code F9:A0+n

LRArg n Load R register from stacked argument n
(0=n=1) Code 96+n
(2=n= 14) Code F9:B0+n

The value contained in stacked argument slot n of the active stack frame is
loaded into the A or R register. Slot 0 corresponds to the second to last (second

Draft 0.6 — 11— Mon, July 17, 1994

to leftmost) argument of a method with two or more arguments (the leftmost
argument is always passed in register A). For a method with m (2=m=15))
arguments the stacked argument slot for the i’th argument from the right
(1=i<m) is m-i-1.

LAconst x Load the designated constant into the A register
(x=nil) Code EA
(x=true) Code EC
(x=false) Code EE
(x=0) Code D8
(x=1) Code D9
(x=2) Code DA
(x=n, -32=n=31) Code F9:C0+n (encoded as 6-bit excess-32 integer)

LRconst x Load the designated constant into the R register
(x=nil) Code EB
(x=true) Code ED
(x=false) Code EF
(x=0) Code E3:D8
(x=1) Code E3:D9
(x=2) Code E3:DA
(x=n, -32=n=31) Code E3:F9:C0+n (encoded as 6-bit excess-32 integer)

The designated constant is loaded into either the A or R register. Nil, true, and
false are the values contained in slots TDB of the known object table..

LRStk n Load R register from the stack
(0=n=2) Code DC+n
(0=n= 5) Code F9:80+n

The value contained on the stack in the n'th slot below the top of stack is loaded
into the R register. n=0 load the value currently on the top of the stack.

SRTmp n Store R register into stack temporary n
(0=n=7) Code 78+n
(0=n= 63) Code F9:00+n

The value contained in register R is stored in temporary slot n of the current
activation record.

SATmp n Store A register into stack temporary n
(0=n=7) Code E378+n
(0=n= 63) Code E3F9:00+n

The value contained in register A is stored in temporary slot n of the current
activation record.

Draft 0.6 — 12— Mon, July 17, 1994

SREnv n Store R register indirect through environment pointer
(0=n=7) Code 80+n
(0=n= 63) Code F9:40+n

The value contained in register R is stored in slot n of the context object
referenced by the environment pointer of the active stack frame.

SAEnv n Store A register indirect through environment pointer
(0=n=7) Code E3:80+n
(0=n= 63) Code E3:F9:40+n

The value contained in register A is stored in slot n of the context object
referenced by the environment pointer of the active stack frame.

ST0 n Store R register indirect through temporary 0
(0=n=7) Code 88+n
(0=n= 255) Code FA:00+n

The value contained in register R is stored into slot n of the object referenced by
temporary variable 0 of the active stack frame.

SI n Store R register indirect through X register
(0=n=3) Code 90+n
(0=n= 255) Code FB:00+n

The value contained in register R is stored into slot n of the object referenced by
register X.

RtoA Move R register to A register
Code E8

AtoR Move A register to R register
Code E3:E8

The value contained in register R is copied into the A register. The R register is
not modified.

PushR Push R register onto stack
Code E6

The value contained in register R is pushed onto the stack. The R register is not
modified.

Draft 0.6 — 13— Mon, July 17, 1994

PopA Pop A register from stack
Code E4

PopR Pop R register from stack
Code E5

The value currently contained in the top element of the stack is placed into the
designated register. The element is removed from the stack.

DeleteTOS Delete top stack element
Code E7

The value contained in top element of the stack is removed from the stack and
discarded

BlockA Create a Block object in the R register
Code E3:E9

BlockR Create a Block object in the A register
Code E9

A new block object is created. The current value of the designated register is
placed into the Method slot of the block and the environment pointer from the
current stack frame is placed in the environment slot of the block. The Class of
blocks is contained in known object slot TBD. A reference to the newly created
block is left in the designated register.

SendC n Send a message with a common selector
(0=n=39) Code B0+n

SendLit x,n Send a x argument message with a literal selector
(0=n=11,0=x=1) Code 98+(n*2)+x
(12=n=43,x=0) Code FC:00+(n-12)
(12=n=43,x=1) Code FC:20+(n-12)
(0=n=31,2=x=4) Code FC:((x-1)<<6)+n
(0=n=2047,0=x=15) Code FD:(x<<3)+(n>>8):n&FF

LRSendDrop x,n Load R, Send a x argument message, Delete TOS
(0=n=31,2=x=4) Code FC:((x-1)<<6)+20+n
(0=n=2047,0=x=15) Code FD:80+(x<<3)+(n>>8):n&FF

The message lookup algorithm using the designated messge selector is applied
to the object contained in Register R. The resulting method is evaluated. After
evaluation, register R will contain the value returned from the method and the
contexts of the X and A register are undefined. Any stacked arguments will
have been removed from the stack.
The bytecode encodes the number of arguments except for the common selector
bytecodes where the argument count is obtained from the byte vector accessed
as known object TDB.

Draft 0.6 — 14— Mon, July 17, 1994

If the message lookup fails, the arguments, receiver, and selector are placed into
a Message object. Any stacked arguments are removed from the stack. The
message #doesNotUnderstand is sent to the object in the R register.
LRSendDrop is just like a normal message send except that immediately before
the send the R register is loaded from the stack location immediately preceding
the first argument to the send. For an x argument method this is equivalent to
having a LRStk x-1 bytecode immediate preceding the send bytecode. In
addition, upon return from the send the top element of the stack (the same
location that was loaded into R) is deleted. This is equivalent to following the
send with a DeleteTOS instruction.

Alt Alternative Semantic Variation Prefix
Code E3

The immediately following bytecode is to be interpreted using its alternative
semantics. The byte may only prefix the following bytecodes:

SendC
SendLit Send to super
LATmp LXTmp— Load X from Stack Temp
LALit LXLit— Load X from literal
LAAsc LXASC— Load X from literal association
LAEnv LXENV— Load X from environment variable
LAI LXI— Load X indirect through X
LAConst 0 LRConst 0— Load R with constant 0
LAConst 1 LRConst 1— Load R with constant 1
LAConst 2 LRConst 2— Load R with constant 2
LAConst n LRConst n— Load R with constant n
RtoA AtoR — Load R with value from A
LRStk n LAStk— Load A with Stack value n
SRTmp n SATmp— Store A into temp n
SREnv n SAEnv— StoreA into Environment variable n

Ret Return value of R register
Code E0

RetT0 Return value of Temporary 0
Code E1

The designated value is loaded into the R register, if necessary. The current stack
frame is discarded including any stacked arguments. The previous stack frame
is made the current frame. The SP, FP, and PC registers are restored to their
previous values. The contents of the A and X registers are undefined.

Draft 0.6 — 15— Mon, July 17, 1994

RetHome Return From Home Activation
Code E2

Return from the home activation for the current method. For a block this returns
from the invocation of the method that created the block. If any protected blocks
have been specified between the home method and the current block then the
protected blocks are evaluated before the return is done.

Draft 0.6 — 16— Mon, July 17, 1994

0-7 8-F
0 Label Jump
1 JumpT JumpF
2 loada1 temp loadr temp
3 loada1 lit loadr lit
4 loada1 assoc loadr assoc
5 loada1 (env) loadr (env)
6 loada1 (temp0) loadr (temp0)
7 loada/r (X) 0-3 store temp (a)
8 store (env) (a) store (temp0)
9 store (X) 0-3/ loada,r args 1-2 send literal selector2

A send literal selector2 send literal selector2

B send common selector2 send common selector2

C send common selector2 send common selector2

D send common selector2 misc
E misc misc
F misc misc

0 1 2 3 4 5 6 7 8 9 A B C D E F
D send send send send send send send send a:= 0 a:=1 a:=2 LR

TOS
LR 1
TOS

LR 2
TOS2

E RET RET
T0

RET
Home

alt POP
A

POP
R

PUSH
R

drop
tos

a := r a:=
block

a:=nil r:=nil a:=
true

r:=
true

a:=
false

r:=
true

F MPx
Label

LTMP LALI
T

LRLiT LASC LASC LENV
LI

LRT0 LRT0 X1 STO SI send
literal

xx
send

rese
rve
d

X1 second byte encoding:
00+n Extended store R into stack temp n
40+n Extended store R indirect through environment pointer
80+n Load A from stack entry n (0=n=15)
A0+n Load A from stacked argument n
B0+n Load R from stacked argument n
C0+n Load A with excess-32 encoded integer n (-32=n=31)

1 Escaped to load X register
2 Escaped to send to Super.

Bytecode Encodings

Draft 0.6 — 17— Mon, July 17, 1994

To Do

Interrupt Frames, especially for frameless methods.
Callback frames.

