A Description of the Model-View-Controller User
Interface Paradigm in the Smalltalk-80 System

Glenn E. Krasner and Stephen T. Pope
ParcPlace Systems, Inc.

1550 Plymouth Street Mountain View, CA 94043 glenn@ParcPlace.com

Copyright © 1988 ParcPlace Systems. All Rights Reserved.

Abstract

This essay describes the Model-View-Controller (MVC) programming paradigm and
methodology used ithe Smalltalk-80" programmingsystemMVC programming is the

application of a three-way factoring, whereby objects of different classes take over the operations
related to the application domain, the display of the application's state, and the user interaction
with the model and the view. We present several extended examples of MVC implementations and
of the layout of composite application views. The Appendices provide reference materials for the
Smalltalk-80 programmer wishing to understand and use MVC better within the Smalltalk-80
system.

Contents
INtrodUCtioN 2
MVC and the Issues of Reusability and Pluggability 2
The Model-View-Controller Metaphor 3
An Implementation of Model-View-Controller 5
User Interface Component Hierarchy 10
Program Development Support Examples 13
View/Controller Factoring and Pluggable Views 16
MVC Implementation Examples 19
Counter View Example i 19
Hierarchical Text Organizer Example 24
FinancialHistory Example 28
SUMMAIY . oo e e e e e 31
APPENICES . . . oot 31
References 34

FurtherReading i e e 34

Introduction

The user interface of the Smalltalk-80 programming environment (see references, [Goldberg,
1983]) was developed using a particular strategy of representing information, display, and control.
This strategy was chosen to satisfy two goals: (1) to create the special set of system components
needed to support a highly interactive software development process, and (2) to provide a general
set of system components that make it possible for programmers to create portable interactive
graphical applications easily.

In this essay, we assume that the reader has basic knowledge of the Smalltalk-80 language and
programming environment. Interested readers not familiar with these are referred to [Goldberg
and Robson, 1983] and [Goldberg, 1983] for introductory and tutorial material.

MVC and the Issues of Reusability and Pluggability

When building interactive applications, as with other programs, modularity of components has
enormous benefits. Isolating functional units from each other as much as possible makes it easier
for the application designer to understand and modify each particular unit, without having to

know everything about the other units. Our experiences with the Smalltalk-76 programming
system showed that one particular form of modularity--a three-way separation of application
components--has payoff beyond merely making the designer's life easier. This three-way division
of an application entails separating (1) the parts that represent the model of the underlying
application domain from (2) the way the model is presented to the user and from (3) the way the
user interacts with it.

Model-View-Controller (MVC) programming is the application of this three-way factoring,

whereby objects of different classes take over the operations related to the application domain (the
model), the display of the application's state (the view), and the user interaction with the model
and the view (the controller). In earlier Smalltalk system user interfaces, the tools that were put
into the interface tended to consist of arrangements of four basic viewing idioms: paragraphs of
text, lists of text (menus), choice "buttons,” and graphical forms (bit- or pixel-maps). These tools
also tended to use three basic user interaction paradigms: browsing, inspecting and editing. A goal
of the current Smalltalk-80 system was to be able to define user interface components for
handling these idioms and paradigms once, and share them among all the programming
environment tools and user-written applications using the methodology of MVC programming.

We also envisioned that the MVC methodology would allow programmers to write an application
model by first defining new classes that would embody the special application domain-specific
information. They would then design a user interface to it by laying out a composite view
(window) for it by "plugging in" instances taken from the predefined user interface classes. This
"pluggability” was desirable not only for viewing idioms, but also for implementing the

controlling (editing) paradigms. Although certainly related in an interactive application, there is

an advantage to being able to separate the functionality between how the model is displayed, and

the methods for interacting with it. The use of pop-up versus fixed menus, the meaning attached to
keyboard and mouse/function keys, and scheduling of multiple views should be choices that can
be made independently of the model or its view(s). They are choices that may be left up to the
end user where appropriate.

The Model-View-Controller Metaphor

To address the issues outlined above, the Model-View-Controller metaphor and its application
structuring paradigm for thinking about (and implementing) interactive application components
was developedModelsare those components of the system application that actually do the work
(simulation of the application domain). They are kept quite distinct tiems,which display

aspects of the modelSontrollersare used to send messages to the model, and provide the
interface between the model with its associated views and the interactive user interface devices
(e.g., keyboard, mouse). Each view may be thought of as being closely associated with a
controller, each having exactly one model, but a model may have many view/controller pairs.

Models

The model of an application is the domain-specific software simulation or implementation of the
application's central structure. This can be as simple as an integer (as the model of a counter) or
string (as the model of a text editor), or it can be a complex object that is an instance of a subclass
of some Smalltalk-80 collection or other composite class. Several examples of models will be
discussed in the following sections of this paper.

Views

In this metaphor, views deal with everything graphical; they request data from their model, and
display the data. They contain not only the components needed for displaying but can also
contain subviews and be contained within superviews. The superview provides ability to perform
graphical transformations, windowing, and clipping, between the levels of this subview/superview
hierarchy. Display messages are often passed from the top-level view (the standard system view of
the application window) through to the subviews (the view objects used in the subviews of the tool
view).

Controllers

Controllers contain the interface between their associated models and views and the input devices
(keyboard, pointing device, time). Controllers also deal with scheduling interactions with other
view-controller pairs: they track mouse movement between application views, and implement
messages for mouse button activity and input from the input sensor. Although menus can be
thought of as view-controller pairs, they are more typically considered input devices, and
therefore are in the realm of controllers.

Broadcasting Change

In the scheme described above, views and controllers have exactly one model, but a model can
have one or several views and controllers associated with it. To maximize data encapsulation and
thus code reusability, views and controllers need to know about their model explicitly, but models
should not know about their views and controllers.

A change in a model is often triggered by a controller connecting a user action to a message sent
to the model. This change should be reflected in all of its views, not just the view associated with
the controller that initiated the change.

Dependents

To manage change notification, the notion of objecttependents/as developed. Views and

controllers of a model are registered in a list as dependents of the model, to be informed whenever
some aspect of the model is changed. When a model has changed, a message is broadcast to notify
all of its dependents about the change. This message can be parameterized (with arguments), so
that there can be many types of model change messages. Each view or controller responds to the
appropriate model changes in the appropriate manner.

A Standard for the Interaction Cycle

The standard interaction cycle in the Model-View-Controller metaphor, then, is that the user takes
some input action and the active controller notifies the model to change itself accordingly. The
model carries out the prescribed operations, possibly changing its state, and broadcasts to its
dependents (views and controllers) that it has changed, possibly telling them the nature of the
change. Views can then inquire of the model about its new state, and update their display if
necessary. Controllers may change their method of interaction depending on the new state of the
model. This message-sending is shown diagrammatically in Figure 1.

View messages

Controller View

% USQ!' input Dlsplay

U device —- layout’and

—_— S interaction Interaction .

e npu view 1spla
input iews Display
Sensors Model output

accsss and

editing \
messages

"= Dependents
change
messages

Dependents
change /

messages

Model

Application
domain
state and
havior

Figure 1: Model-View-Controller State and Message Sending

An Implementation of Model-View-Controller

The Smalltalk-80 implementation of the Model-View-Controller metaphor consists of three
abstract superclasses namvadel, ViewandController,plus numerous concrete subclasses. The
abstract classes hold the generic behavior and state of the three parts of MVC. The concrete
classes hold the specific state and behavior of the application facilities and user interface
components used in the Smalltalk-80 system. Since our primary set of user interface components
were those needed for the system's software development tools, the most basic concrete
subclasses of Model, View, and Controller are those that deal with scheduled views, text, lists of
text, menus, and graphical forms and icons.

Class Model

The behavior required of models is the ability to have dependents and the ability to broadcast
change messages to their dependents. Models hold onto a collection of their dependent objects.
The class Model has message protocol to add and remove dependents from this collection. In
addition, class Model contains the ability to broadcast change messages to dependents. Sending
the messagehanged to a Model causes the messagedate to be sent to each of its dependents.
Sending the messagbkanged: aParameter will cause the corresponding messageate:

aParameter to be sent to each dependent.

A simple yet sophisticated MVC example is the FinancialHistory view tutorial found in

[Goldberg and Robson, 1983]. A display of a FinancialHistory is shown in Figure 2 and its
implementation is discussed in the MVC implementation examples at the end of this essay. In it, a
view that displays a bar chart is created as a dependent of a dictionary of tagged numerical values

(for example, rent --> $500). The composite FinancialHistoryView has two subviews, with two
bar charts, whose models are two distinct dictionaries (incomes and expenditures). These are held
as instance variables of the central model, an instance of class FinancialHistory.

Figure 2 also shows the pop-up menu used by the FinancialHistoryController with the two items
labeled 'spend' and ‘receive' as well as the input prompter (a FillinTheBlank) querying for an
amount to be spent on 'good times'.

Financial History

spend
receive

How much for good times 7 |

rent food utils - pay Interest

Figure 2: FinancialHistoryView with its BarChart subviews, the Controller's menu, and an
interaction prompter (note that the menu and prompter are never visible at
the same time)

User action for interacting with the FinancialHistory application might be to pick an item from a
menu to add a new amount for rent. The controller then sends a message to the model (the
dictionary), and the model senstdf changed. As a result of this, the bar chart is sent the
messag@pdate. In response to that message, the bar chart gets the new values from the
dictionary and displays the new bars using the display messages.

A flow diagram for this MVC interaction might be:

BarChartView (dependent
of incomes) gets update messags

User picks menu item spend

A

FinancialHistory updates its
cashOnHand andthe
incomes Dictionary

inancialHistoryController
uses FilllnTheElanks to
query user forreason

nd amount of expenditure

BarChartView queries model
for keys and values of incomes

FinancialHistory sends the ™
message expenditures changed

inancialHistoryController
sends model the message
spend: amount for: reason

BarChartView redisplays
itself, updating screen view

—> = "Normal" message-passing
semoresaifiee = Dependents changed /update messages

Figure 3: Message-sending and dependency updating for an example from the
FinancialHistory application

The change messages with parameters {ek changed: someAspect) are used to pass

information from the model to its dependents about which aspect has changed, so as to minimize
the amount of view updating needed. For example, the object householdFinances (the model
mentioned earlier that holds onto the dictionaries of income and expenses), could have been the
model of two bar chart views, with separate protocols for displaying expenses and income. In this
case, the update message could contain a parameter saying which of the aspects (expenses or
income) had changed.

Depending on the application, many of the basic Smalltalk-80 system strtlatises can serve as
models of MVC systems. Views can be found in the system or user applications that use very simple
objects (numbers or strings), collection class instances (orderedCollections, dictionaries, bitmaps or
display-Texts) or complex composite objects (networks, databases, event lists or financial histories) as their
underlying models.

Class View

The abstract superclass, class View, contains the generic behavior of views in the system. This
includes model and controller interaction, subview and superview interaction, coordinate
transformation, and display rectangle actions. The many subclasses of View implement the
various display interaction tools used in the user interface.

Every instance of a view has exactly one model and exactly one controller. The model is normally
set explicitly. Because view and controller classes are often designed in consort, a view's
controller is often simply initialized to an instance of the corresponding controller class. To
support this, the messadefaultControllerClass, that returns the class of the appropriate

controller, is defined in many of the subclasses of View.

Views have the ability to have zero or more subviews, with flexible coordinate transformations
between one view and its super- and subviews. Instances of class View have instance variables for
their superviews and for a (possibly empty) collection of subviews, as well as for an instance of
class WindowingTransformation which represents the transformation (translation and scaling)
between that view's coordinate system and that of its superview. In addition, there is a default
protocol in View for adding and removing subviews, as well as a protocol for changing the
transformations. This allows views consisting of many subviews to be pieced together flexibly

and simply.

The third type of behavior in class View is that which relates to displaying. Because subclasses of
View are assumed to use display objects to actually do their displaying (Forms, Pens, Lines or
instances of other graphical classes), View only supports generic displaying behavior. In
particular, there is no instance variable for display objects. Class View assumes that the top level
of a subview structure displays on some medium (typically the display screen).

Views therefore cache the transformation from their own internal coordinate system to the
display's coordinate system (i.e., the composition of the view's transformation and all of its
superviews' transformations), so that it is faster to get from a view's internal space to display
space. View also has instance varialisgtDisplayBoxthe clipping rectangle within which the
view may display without overlapping other viewsrderWidthandborderColor,to define the
(non-scaled) borders between a view and its superiisideColorto define the color (if any)
with which a view colors its insetDisplayBox before actually displaying its contents; and
boundingBoxto describe the extent of display objects within the view's coordinate system.

By default, the messageodel: anObject, when sent to a view, initializes the view's controller to

be a new instance of the view's default controller class. It estabdisldgectas the model for

both the view and the controller, and establishes the view as a dependent of the model. This one
message is typically sufficient for setting up the MVC structure.

The messageelease, used when closing a hierarchy of views (i.e., the sub-views of one top-level
window), gives the programmer the opportunity to insert any finalization activity. By default,
release breaks the pointer links between the view and controller. The messagealso

removes the view from its model's dependents collection, breaking reference circularities between
them.

Class Controller

It is a controller's job to handle the control or manipulation (editing) functions of a model and a
particular view. In particular, controllers coordinate the models and views with the input devices
and handle scheduling tasks. The abstract superclass Controller contains three instance variables:
mode] view, andsensor, the last of which is usually an instance of class InputSensor representing
the behavior of the input devices.

Because the interpretation of input device behavior is very dependent on the particular
application, class Controller implements almost none of this behavior. The one such behavior that
is implemented is the determination of whether or not the controller's view contains the cursor.

Class Controller does include default scheduling behavior. It takes the point of view that only one
controller is to be active at a time; that is, only one controller at a time mediates user input actions.
Other views could be displaying information in parallel, but the user's actions are to be interpreted
by a single controller. Thus, there is behavior in class Controller for determining whether a
controller needs to receive or maintain control. In addition, there is behavior to signal initiation
and termination of control, since many controllers will need to have special initiation and
termination behavior.

The query messagea<ontrolWanted andisControlActive are overridden in concrete subclasses of
Controller if they require a different behavior for determining whether to receive or maintain
control. By default, these messages use the messagedToNextLevel (pass it on down) and
viewHasCursor (a query) in such a way that the controller of the lowest subview in the hierarchy
that contains the cursor in its display box will take and retain control.

Once a controller obtains control, the default behavior is to send it the messag#siitialize,
controlLoop, andcontrolTerminate. This message sequence is found in the medtaodlp. The
messagesontrollnitialize andcontrolTerminate are overridden in subclasses that want specific
behavior for starting and ending their control sequences (for example, many of the list controllers
have a scroll bar appear to their left only when they have cordsatyolLoop is implemented as

a loop that sends the messagstrolActivity as long as the controller retains control. This

message is overridden in many controller classes to do the "real” work of the user interface.

StandardSystemView and StandardSystemcontroller

Subclasses of View and Controller are the various classes that implement more specific types of
view and controller behavior. ClassgtandardSystemVieandStandardSystemControllare the
implementation of "window system" behavior. StandardSystemController contains the definition
of the standartlue-button men(normally assigned to the right-hand mouse button), used for
accessing operations of closing, collapsing, and resizing the top-level view on the display. It also
contains the behavior for scheduling the view as one of the active views. StandardSystemView
contains the behavior for top-level view labels, for displaying when collapsed or not (possibly
using icons), and for the size (minimum, maximum, changing) of the view on the display.
Interactive applications typically exist inside system views, that is, the views and controllers for
the application are created as subviews of a StandardSystemView (the application's top-level
view).

In addition to StandardSystemController, the system provides other abstract controller classes
with default behavior. Instances bControllerwill never take control; they are often used in
conjunction with "read-only" views. ClassouseMenuControlleincludes behavior for

producing pop-up menus when any of the mouse buttons is pressed. Most controllers in the user
interface are subclasses of MouseMenuController, including StandardSystemController itself,
because of the extensive use of pop-up menus. Another example of these abstract classes is class
ScrollController,which implements scroll bars.

Because views are often composed of parts (composite views), with one application view
containing multiple subviews (as the FinancialHistoryView shown in Figure 2 has subviews for

the two bar chart views), the instance variables for views have different meanings in an
application's StandardSystemView than in their subviews. Of the many subclasses of View, some
are meant to behave as top-level views (such as StandardSystemView), and others are meant to be
used as subviews (single subviews within a structured view) and "plugged in" to other views as
components (such as the SelectioninListViews used in many types of applications).

Figure 4 is a schematic diagram of the state and interrelationships of the relevant MVC objects
used in the CounterView example showing the values of some of their variables. The complete
source code for this example is included below in the section called "MVC Implementation
Examples.” The interdependencies are shown by the arrows linking the model, view and
controller together via instance variables and dependents.

value: 0 *model: a Counter
dependents: , _ o—>1 /Pcontroller: a_CounterController
OrderedCollection (a CounterView) superView: ca) gtanggrdSystem\iliew
y subViews: OrderedColiection (
Counter insetDisplayBox: 421@34 corner: 568@104
borderWidth: 2@2 corner: 2@2
borderColor: a Form
model: a Counter® insideColor: a Form
view: a CounterView? s
yellowButtonMenu: a PopUpMenu CounterView
yellowButtonMessages: (increment decrement)
sensor: an InputSensor Interaction devices
T— er
CounterController (mouse, keyboard) Us

Figure 4: Instance variables of an MVC Triad for a running CounterView

User Interface Component Hierarchy

The classes View and Controller, along with the other abstract classes, provide the framework for
views and controllers in the Smalltalk-80 implementation of the Model-View-Controller

metaphor. The system also contains various subclasses of View and Controller that provide the
pieces of user interface functionality required by interactive applications. These user interface
components include menus, text, and forms. These components are pieced together to form the
standard system views of the Smalltalk-80 application development environment, and can be
reused or subclassed for system applications. They form the kernel of the component library of
model-building tools and user interaction components that can be easily "pulled off the shelf" and
"plugged" together to create interactive applications. We list some of them here, but in most cases

we only use the names of the subclasses of View; it is assumed that each is used with one or more
appropriate Controller subclasses.

SwitchViewandListVieware two subclasses of View that provide static or dynamic menu

behavior. SwitchViews are used, for example, in the instance/class switch of the system browser
or the iconic menu of the form editor. They behave as a switch; they can either be on or off, and
when the user clicks the mouse button on them, they will notify their model. These are typically
used as menus of text or forms, or "buttons."

A ListView is a scrolling menu of text items, such as those used in the upper four subviews of the
system browser (shown in Figure 11). It will inform its model when the user has made a new
selection in the list. Figure 5 shows examples of the use of subclasses of SwitchViews (in the
iconic menu of the FormEditor, the paint program) and ListViews (in the Browser's category
subview).

Collections=-Support
Graphics=Primitives
Graphics=Display Objects|
Graphics-Paths

Graphics~Views

Graphics-Editors
® n Graphics~Support

Kernel-Cbjects

Kernei-Classes

Figure 5: SwitchView and ListView examples

PromptersandConfirmersare simple views that can be input. They are started up by giving them
a string for their query or prompt, and can return either a string value (in the case of Prompters) or
a Boolean value (in the case of Confirmers).

Flease typa a file name: Are you certain that you
want to ramave this method?
fileNama.st
yes g no

Figure 6: Examples of a Prompter and a Confirmer

Because they can be considered as belonging more to the controller-sensor interface, pop-up
menus are implemented as a special kind of MVC class. BigddpMenus a subclass of

Objectand provides its own scheduling and displaying behavior. They are typically invoked by a
MouseMenuController when the user pushes a mouse button. When invoked, PopUpMenus by
default return a numerical value that the invoking controller uses to determine the action to
perform. There are several subclasses of PopUpMenu, some that implement hierarchical (multi-
level) menus and others that return symbols instead of numerical values upon item selection.
Examples of typical menus are shown in Figure 7.

again restore dispiay
unde . garbage ¢ollect
copy exit project
cut browser blank
paste workspace pnswer
@ 1t file list o forward
rin " N
irp-usooct h::r:ﬁ::r undelete Crion requesy
accepl mail reader move
cancel project hardcopy
format Screan saver
spawn system transcript
explain Isvstem waorkspace
AracooV suspend
style save
font Quit

Figure 7: Examples of Simple and Hierarchical Menus

A number of view/controller subclasses provide text handling components. Class
StringHolderViewand clasSextViewprovide views of text used in Workspaces, Editors,
Transcripts and other instances where text is displayed. The Controller subclasses
ParagraphEditorandTextEditorhave the standard text editing functionality and are used in many
text editor subviews. The layout of a file-based text editor view is shown in Figure 8 along with
the names of its components.

../HSEvon(u:chw-Hs:urf1..1:'
3et up variables *

TO Vxew = box * saif InsecD| again k. .
Sta}:xdards temVi | e bexren ey Subview =
0 . .
ysiemview battom * box bo cup‘y - —— TextEditorView

left + box lefr. aste
right * box righe.| do it

print It
inspact

Count numbar of oct

octave « ((botto, ifila i¢ , Conh'oller =
put .
(5 + (pitcnscate * 4_ger TextEditor (manages
pitchGrain))) asintag(3cawn the pop_up menu)

4aPen * *QD"Pen naw.

Figure 8: File-based TextEditorView and Menus

In addition to these view types, there are several other classes provided within the system that are
used in building MVC user interfaces. These include the special controller classes mentioned
earlier:MouseMenuControlleandNoController;and the claskputSensothat is used for

monitoring user input. There is a global object caBedsothat is the sole instance of the class
InputSensor. It is used to model the user's input devices such as the mouse and the keyboard. One
can send query messages to Sensor suahyBsttonPressed, or one can wait for a user action

with messages such asitBlueButton. One need normally never refer to Sensor, since it is used

in the implementation of the more basic controller classes, but many types of special user
interface components, especially those that track the mouse directly (for rubber-band lines, for

example), use it.

Program Development Support Examples

Workspaces, inspectors, browsers, debuggers and various editors are among the system views
provided in the Smalltalk-80 software development support environment. They serve now as
examples of piecing together subviews from the view and controller components collection with
appropriate models to provide useful and flexible front-ends for interactive applications.

Workspaces

The workspaces in the system are StringHolderView/StringHolderController combinations
installed as the single subview of a StandardSystemView. Their model is an instance of
StringHolder, which merely holds onto an instance of Text, a String with formatting information.
The menu messages implemented by StringHolderController correspond to the basic text editing
and Smalltalk-80 code evaluation commands as shown in the menu in Figure 9.

‘wompncnl

J+4 7

again
undo
<opy
cut
pasta
30 it

.......
accapt
cancst

Figure 9: Simple Workspace View and Menu

Inspectors

The inspectors in the system are implemented as two views. A ListView contains the instance
variable list (left side)and a TextView displays the value of the selected instance variable (right
side). An instance of InspectorView serves as their common superview, and an instance of
StandardSystemView serves as its superview for scheduling purposes. The model for these views
is an instance of Inspector.

Inspectors can be used to view any object. A separate Iciggsctorserves as the intermediary

or filter for handling access to any aspects of any object. As a result, no extra protocol is needed in
class Object. Using intermediary objects between views and "actual” models is a common way to
further isolate the viewing behavior from the modeling application.

It is possible to build a more appropriate interactive interface to composite objects by subclassing
the inspector for use with classes such as arrays and dictionaries. There are also specialized
inspectors for complex objects such as MVC triads themselves or application-specific classes
such as event lists.

‘ Systlmoictionuryl
| CRFiilin TRa8!{ a DispltayScreaen
Arruyl CShailPort P
....... (1234) Cursor
o ,1,, YT Curva
l 2 unga nspact
...... 5533 2 opY raferences agan
Ser : cut add Red | undo
X paste remove |9 copy
Y 30 it : cut
----- !n:u-c:} rint it Dictlonary pasta
Dictionaryiny a0 1t
nsoect
hecapt FOTsplay print it
cancel QisplayBitmaj nsgact
DisplayMaaly acsapt
DisplayObjed] cancal
CisptayScand

Figure 10: Inspector Examples - Simple, Array and Dictionary Inspectors

Browsers

As with inspectors, intermediary objects are used to model the system code browser behavior. An
instance of clasBrowseris the intermediary model for each system browser, representing the
query paths through the system class hierarchy to the class organization and the classes. As
dependents of the Browser model, there are the four list views (for Class Categories, Classes,
Message Protocols and Messages), a code (text) view (for the method code of the selected
message or a class definition template), and two switch views (for selective browsing of class and
instance messages as shown in Figure 11). Class Browser has separate protocol for each of the
various subviews of the browsers.

Category, Class, Protocol and Message Lists

Syst
ciu "": 5"’*‘; 4 = Systam Brnwurl
actions~Arrayq DisplayObject initializa=rylease | -—~~=—-aeean -

Collactions-Strean DisplayScraan agcassin extant: Inn;r.n <o fila out KX —
Collactions~Suppaf Display Taxt copying extant:atrset: n-;“’::‘ h print out file out fila out
rgrapmcs-?mmtlvow_— displaying [sxtancorriacsicey ",“w" bee spawn print aut print out
{(Graphic3-Display { InfinitaForm display box accas{offsat TR L3 | S8awn hierarchyl spawn 303 wn
Graphics-Paths | OpaqueForm pattam offsat: "n‘t;goq t hierarchy ada protoco. 3anaars
Graphics-Viaws bordaring size o L dafinition renamae [mplemantars

.....) -_:.p':+: commant Famova me3sagas b
axtent: - i : abitmap d nove
on sxtont offse aPoi s api ecit ail cu{ T3t var Fa 5 pn as an - "":;"
Craate a virtua/ bisefap with width = (eaxtant x) and height = fing ciass class var refs again |’
(axtant y) unda
class rafs
with tha bits o aBitmap.* rasuic | Tenama copy
3aif controlTe remove cut
width « extght x resuie © o
haight * axfant y. model daitAecaivar class evaluatorClal :;:g“;g
offsat + aghint. avaluata: sqif selectionAsStrajnsoect
bits » agifmap In: modal doitContext pccept
ta: medal doltAecaivar cancal
format
spawn
xolain
.
.instance/class Code view
switches

Figure 11: System Browser View Layout and Browser Menus

Each of the subviews sends different messages to the model to query the values of an aspect of the
system code. Each of the controllers sends different messages when the aspect should be changed.

For example, when the user selects a new class in the class list subview, the controller for that
subview sends the messagggssName: newClassName to the Browser. The Browser sets up its
new state accordingly. This involves sending the messa{feézhanged: #protocol andself

changed: #text. In response to the correspondupglate: messages, the category subview, the

class and instance switches, and the class subview do nothing. The protocol subview asks the
Browser for the new list of protocols to display and displays it. The message list subview clears
itself, and the text subview asks the Browser for the current text to display, which is the new class
template. In this way, the six view/controller pairs sharing the single model work to produce the
desired effect.

There are several other types of Browser found in the Smalltalk-80 system. Note the middle group
of menu items in the upper-right subview (the MessageList) of the System Browser shown above.
The menu items senders, implementors and messages can be used to open new browsers (called
Message-Set Browsems) a small subset of the system messages-namely all the senders of the
currently selected message, all other implementors of the same message, or all messages sent
from within the method of the currently selected message. Other Browsers exist, for example, to
assist in change managem@hangeSet Browsersy system recover§ChangelList Browsers).

Debuggers

ClassDebuggeris defined as a subclass of class Browser, so that it can inherit the cross-
referencing behavior (menu messages for querying senders, implementors and messages used in a
method). It also inherits and augments the code view behavior. The upper subview, which is a
context list (i.e., a message-sending stack), is a list view that uses protocol defined in class
Debugger for displaying the system's message sending context stack as a list view.

Unlike the system browser, the Debugger is not the only model involved in the debugging
application. There is a separate Inspector model for each of the two inspector subviews that
comprise the four lower subviews. The Debugger instance holds onto those two Inspector objects
as two of its instance variables; it explicitly changes the objects they are inspecting whenever a
new context is selected. This is an example of using cooperating model objects with independent
coordinated views. It also shows an advantage to having the Inspector class as a filter on the
object: the object used as the "model" of the Inspector object can change, while the views and
controllers refer to a consistent model.

Message-Sending Stack List

User lnurrupt[—§l
Smallintager class(Behaviar))nnentsfrom; Jser Intarmipt
Smallintager(Object))disKindOt jRectanqiasyexpancgy:
Ractanglea)dexpandBy: prowacsinwdViaw)>3displayBox
Browsarviaw(Yiaw)>ddisplayBox Al stack fviaw)ddcontainsPaint:
BrowsaerYiaw(View)>dcontainsPoint; Proceed FseandardSystamview)ddcontainsPaint:
restary again
4 Sllﬂdlf'l ta undo
P 1TQr; copy
maessaqes la Rectangle that s oud cyt the recaiver by
’“g aste
320 Rectangie, Point, or g 89 T
ring jt
(deita IskindOf: Rectangle) ,”;:;“
pt
Selected Method IfTrue: [*Raectangte cancal
3 origin: origin -~ doformatin
Code View “‘:‘"_ cogrn spawn
d ar + L xotain maer}
ifFaise: (*Aactangle
origin: origin - dalta
2 cormnar + deita)
again again
---------------- undo undg
i:l_f --------------] 0@70 cof copy | | ~===—-=- Q c3py
= 64@ 104 cut oTta eut
\ * ::f.l:,“c pastal [o==—===7] saste
30 it [psoacd g3 1t
------- rnc it print it
\ nipecy— o ——— 30t
i accapt mccept
Receiver Object Method temporary Sa0cd) sance
Inspector variable Inspector

Figure 12: Debugger View Layout and Debuggers Menus

Object Editors in Smalltalk-80 Applications

Along with the user interaction paradigms of browsing and inspecting, editing is one of the most
important aspects of applications and software development tools. Among the standard editors
available in Smalltalk-80 systems are text and file editors, form and bitmap editors for graphics,
and file system editors for source code and resource management. Many Smalltalk-80-based
applications implement new graphical editors for the structured objects that are specific to their
application domains, such as charts, graphs, maps, networks, spreadsheets, animations, event lists,
or database contents.

View/Controller Factoring and Pluggable Views

Originally, the program environment tools were implemented so as to have the models know
nothing about their views and controllers and to use sub-classing as the style for differentiating
behavior. In this style, for example, all the knowledge for creating the appropriate pop-up menus

is in the class, and there is a different class for each type of view. Each of these classes has class
variables to hold the menu and the corresponding messages, and those class variables are bound to
instance variables at instance creation time. Associated with each of these different controller
classes was a new view class. This is still how some of the system views are implemented, and it
has a number of advantages, such as clean factoring of system components.

We noticed, however, that many of these different controller and view classes shared a large
number of properties, especially those that implemented list views. One similarity was that the
models were almost always some sort of filter class that already knew about the lists and the
selected item in the list.

The view classes tended to be identical except for the one medsfagkControllerClass, which

is used to create the different controllers. The controllers were quite similar except for the
particular set of menu items and the messages they sent themselves when an item was selected.
Finally, the controller messages were almost always passed directly on to the model; that is, the
method for messageMessage, which was sent to the controller when the menu item aMessage
was selected, was almost always implementedrasiel aMessage.

It would be easier for the application developer if these differences (e.g., the message sent to the
model to generate the list) were not implemented by different view/controller classes, but were
made parameters (instance variables) of a single class. This is the notioplogigdle views.

Rather than building a new kind of view (e.g., a new kind of list view) by creating two new
classes, the developer creates an instance of an existing class, such as class
SelectioninListController and SelectioninListView, with appropriate parameters for the menus
and list item selection definltions.

In some sense, this is an engineering trade-off, because it has less flexibility than entirely new
class definitions and can lead to having controller information in the models. It does, however,
reduce the number of different things the developer needs to do to get an application together, as
well as the number of different classes needed.

An example of the use of pluggable views is the implementation of the system browser list
subviews. The original implementation had a special subclass of ListController for each of the list
subviews. Each of these classes had its own definition of the menus and messages to send when
the menu item was selected, and its own message to send when a new list item was selected. The
current pluggable implementation has four instances of the same class, SelectioninListController,
with parameters that represent the messages to be sent to the model when the selection changes,
and to create an appropriate menu when the proper mouse button is pressed. The Browser model
knows about the four local menus and receives the corresponding messages.

The use of the setup message for adding a pluggable SelectioninListView to a composite view is
demonstrated in the Figure 13. This code segment comes from the actual view initialization for
the BrowserView. It defines a SelectioninListView in the subview area described by the rectangle
myAreaRectangle. It uses the messages and the menu referred to in the figure.

classListview — SelectionInListview "an instance of SelectionInListView"
on: aBrowser "model of the SelectionInListview"
aspect: #className "message to get the selected item"
change: #className: "message sent on item selection”
list: #classList "message sent to generate list"
menu: #classMenu "message sent to get menu"
initialSelection: #className. "message sent to get initial selection”
self addSubview: classListView "Add a subview to the TopView"
in: myAreaRectangle "relative area filled by SubView"

borderWidth: 1 "border to adjacent SubViews"

Figure 13: Setup Message for the class list view in the Browser using a pluggable
SelectioniInListView

The pluggability of SelectionInListViews is afforded by the class message shown here, namely
on:aspect:change:list:menu:initialSelection:. The messagaddSubView:in:borderwidth: is

defined in class View for the composition of complex view/subview layouts. Messages of this
type are the essence of sub-view pluggability and examples of their use and utility are available
through out the system's user interface classes. Several other classes of pluggable sub-views
implement similar instantiatiofplugging)messages.

Another example of a pluggable view is the text view used in many system views. In this case, one
wants to plug a text editor subview into a view and tell it the messages needed for it to access its
new text contents, to set its model's text, and to display its menu. The message that is
implemented in the class CodeView for thisisaspect:change:menu:initialselection: (note the
similarity between this and the message used above for a pluggable SelectioninListView). The
example message in Figure 14 is the entire method used to define a FileEditor view such as the
one shown in Figure 8.

FileModel class methodsFor: 'Instance creation’
open: aFileModel named: astring
"Scheduled a view whose model is aFlieModel and whose label is aString."
| topView codeView I "local variable for my top-level view and 1 sub-
view"
"set up the top-level standard system view"
topView ~ StandardSystemview model: aFileModel

label: aString
minimumSize: 180@180.

codeView ~ CodeView "pluggable CodeView setup message”
on: aFileModel "it takes its model and the following:"
aspect: #text "message sent to the model to get the text”
change: #acceptText:from: "message sent to accept a new text"
menu: #textMenu "message sent to get text view's menu*"
initialSelection: nil. "initially-selected text"

TopView addSubView: codeView "add the code view as the sole subview"
in: (0@O0 extent: 1@1) "use the entire view's area"
borderWidth: 1. "with a 1-pixel border”

topView controller open "open the default controller to start up view"

Figure 14: Open Message for a FileEditorView using a Pluggable CodeView

Several of the other views can be used with pluggable instantiation messages. These include the
switch views (which one passes a label, the messages they send to determine their state and
respond to being pressed), and confirmers and prompters (one passes them a message or prompt
and they return strings or Boolean values).

Models and MVC Usage

Class Object contains behavior that supports Model's functionality, i.e., the ability for any object

to have dependents, and the ability to broadcast change messages to its dependents. Dependents
are implemented through a global dictionary (a class variable of class Object called
DependentsFields)yhose keys are models and whose corresponding values are collections of
those models' dependents. Class Object also implements the message protocol to deal with adding
and removing dependents. For example, when some object (like aModel) receives the message
addDependent: someView, then someView is added to the collection found in the
DependentFielddictionary at key aModel.

Since views and controllers hold direct pointers to their models, the DependentFields dictionary
creates a type of circularity that most storage managers cannot reclaim. One by-product of the
release mechanism is to remove an object's dependents which will break these circularities, so this
is typically not a problem except when developing an MVC application. The corresponding
circularities that result from using instances of Model are the direct kind that most storage
managers can reclaim. Therefore, we encourage the use and sub-classing of Model.

There are several more sophisticated aspects of advanced MVC application that are not covered in
this paper. These include the use of windows and viewports, flexible scrolling frameworks, text
composition and fonts, and view composition with non-scaling subviews. These issues can be
studied via their usage within the Smalltalk-80 system or through examples found in Smalltalk-80
system applications. Interested readers are also referred to back issues of the ParcPlace Newsletter
(previously the Smalltalk-80 Newsletter) and the OOPSTAD HOOPLA Newsletter (see

references).

MVC Implementation Examples

Presented next are three MVC implementation examples: one a full application for a very simple
view type (a Counter view); one a new application view using pluggable components (the
Organizer view); and one a condensed listing for the viewing components of a more complex
application (the FinancialHistory view discussed earlier and shown in Figure 2).

Counter View Example

The Counter demonstration and tutorial example is part of the standard Smalltalk-80 Version VI
2.2 release package and was originally written by Michael Hanus of the University of Dortmund.
It implements a model (an instance of cl@ssinter)that is a simple numerical value and view (a
CounterViewpn it which shows the value of the Counter. The contr@@ieunterController)
implements a menu allowing one to increment or decrement the Counter's value. The complete
code for these three classes follows.

First, one must define a class nan@alinteras a subclass of Model in the system class category
namedDemo-Counter.Counter has one instance variable for its value.

Model subclass: #Counter
instanceVariableNames: 'value '
classVariableNames: '’
poolDictionaries: '
category: 'Demo-Counter’

Next, one adds methods@ounter for initializing new counter instances and for accessing their
values. These messages will then be understood by all Counter instances.

Counter methods For: 'Initialize-release’
Initialize
"Set the initial value to 0."
self value: 0
Counter methodsFor: 'accessing'
value
"Answer the current value of the receiver.”
tvalue
value: aNumber
"Initialize the counter to value aNumber."
value — aNumber.
self changed "to update displayed value”
Counter methodsFor: 'operations’
decrement
"Subtract 1 from the value of the counter.”
self value: value -1
Increment
"Add 1 to the value of the counter."
self value: value + 1

Add the method to class Counter to be used for getting a new counter instance.

Counter class methodsFor: 'instance creation'
new
"Answer an initialized instance of the receiver."
t super new initialize "return a new instance of the receiver"
Now define a class for the controller, along with the methods to define the menu it uses and those

that implement the menu functions by passing them along to the model. The controller inherits all
its instance variables from its superclasses.

Mouse MenuController subclass: #CounterController
instanceVariableNames: '
classVariableNames: "'
poolDictionaries: '
category: 'Demo-Counter’
CounterController methodsFor: 'initialize-release'
initialize
"Initialize a menu of commands for changing the value of the model."
super initialize.
Self yellowButtonMenu: (PopUpMenu labels: 'Increment\Decrement’ withCRSs)

yellowButtonMessages: #(increment decrement)

CounterController methodsFor: ‘'menu messages'
decrement

"Subtract 1 from the value of the counter.”

self model decrement
increment

"Add 1 to the value of the counter."

self model increment
CounterController methodsFor: 'control defaults'
isControlActlve

"Take control when the blue button is not pressed.”

1 super isControlActive & sensor blueButtonPressed not

Next, define the class CounterView as a subclass of View with no additional instance variables.

View subclass: #Countervliew
instanceVariableNames: '
classVariableNames: "'
poolDictionaries: '
category: 'Demo-Counter’

Add to it methods for displaying the state of its model (a Counter) in the view.

CounterView methodsFor: 'displaying’
displayView
"Display the value of the model in the receiver's view."
| box pos displayText |
box ~ self insetDisplayBox."get the view's rectangular area for displaying”
"Position the text at the left side of the area, 1/3 of the
way down"
pos — box origin + (4 @ (box extenty / 3)).
"Concatenate the components of the output string and
display them"
displayText — (‘value:', self model value printString) asDisplayText.
displayText displayAt: pos
Define a method for updating the view when the model changes. The model's sestfing a
changed message will cause the view to be sent an update message.

CounterView methodsFor: 'updating'
update: aParameter
"Simply redisplay everything."
self display
Another method is needed to return the class of the default controller used within a CounterView.

CounterView methodsFor: ‘controller access'
defaultControllerClass
"Answer the class of a typically useful controller.”
t CounterController
Finally, a method is needed to open up a new CounterView and set up the model and controller for

it. The resulting view and its menu are shown in Figure 15.

CounterView class methodsFor: ‘'instance creation’
open
"Open a view for a new counter."
"select and execute this comment to test this method"
"CounterView open."
| aCounterView topView |
"create the counter display view"
aCounterView " CounterView new "a new CounterView instance"

model: Counter new. "with a Counter as its model"
aCounterView borderWidth: 2. "give it a borderWidth"
aCounterView insideColor: Form white."and white insides"

"the top-level view"
TopView ~ StandardSystemView new "a new system window"

label: '‘Counter. "labelled 'Counter"

topView minimumsSize: 80@40. "at least this big"

"add the counterView as a subView'
topView addSubView: aCounterView.

"start up the controller"”

topView controller open

Counter

value: O
Increment
Decrement

Figure 15: View Layout and Menu of the Simple CounterView

Discussion

The code presented so far is the most trivial sort of complete MVC implementation. Suppose now
that we wish to add push-buttons to the view instead of having menu items to increment and
decrement the value of the counter. Using pluggable button views, this can easily be done by
writing a new open method for the CounterView.

CounterView class methodsFor: 'Instance creation'

openwlthGraphlcalButtons

"Open a view for a new counter that has fixed graphical buttons (whose forms are generated from
the '+' and '-' characters and displayed on white backgrounds) for incrementing and decre-
menting the value."

"CounterView openWithGraphicalButtons"

| aCounterView topView inorButton decrButton incrSwitchView decrSwitchView |

"top view StandardSystemView"

topView — StandardSystemView new label: ‘Counter'.

topView minimumsSize: 120 @ 80.
topView maximumsSize: 600 @ 300.
topView borderWidth: 2 "set window border"

"main counter subview"
aCounterView — CounterView new model: Counter new.
aCounterView insideColor: Form white.
"add main CounterView to topView in the right-hand

60%"
topView addSubView: aCounterView
in: (0.4 @ O extent: 0.6 @ 1) "a view's area is defined to be"
borderWidth: 0. "the rectangle 0@0 to 1@1"
incrButton — Button newOff. "define increment button

and give it its action

Buttons are used in Switches"
incrButton onAction: [aCounterView model increment].

"put it in a switchView"
incrSwitchView « SwitchView new model: incrButton.

"whose label is a form"
incrSwitchView label: ('+' asDisplayText form magnifyBy: 2@2).

"surrounded by white"
incrSwitchView insideColor: Form white.

"add the increment switch to topView"
topView addSubView: incrSwitchView

in: (0 @ 0 extent: 0.4 @ 0.5) "put it in the top-left corner”
borderWidth: (O@0 extent: 2@1). "Border is defined as left, top, right, bot-
tom"

decrButton — Button newOff. "define the decrement switch"

decrButton onAction: [aCounterView model decrement].
decrSwitchView « SwitchView new model: decrButton.
"its form is also put in there"
decrSwitchView label: (-' as DisplayText form magnifyBy: 2@?2).
decrSwitchView insideColor: Form white.
topView addSubView: decrSwitchView
in: (0 @ 0.5 extent: 0.4 @ 0.5) "add it in the lower-left"
borderWidth: (0@1 extent: 2@0). "under the increment button"
"start up topView's controller"
topView controller open

0.4@0 Counter
0@oo— 2§
-+

0@05 O——¢ 0.4@0.5 val: O

Q1@1

Figure 16: Coordinate system and resulting View Layout of a CounterView with graphical
Buttons

In this open method, one sees the setup of the view as a composition of its three subviews. The
subview placement is done via the definition of relative rectangles. These relative rectangles are
displayed in the left-hand figure in Figure 16. The definitions of the two SwitchViews and their
Buttons sets their actions so that they senéhthhement anddecrement messages to the model of

the view. This will then have the desired effect of changing the value of the model (a Counter).

Hierarchical Text Organizer Example

The second example is the implementation of a simple browser view on a 2-level hierarchical text.
It presents a view with two subviews: a list of topics and a text view for the selected topic's text.
The model is an organizer, which holds onto its organization in a dictionary of text keys and text
values. The keys are used in the topic list view and the values are the contents of the text view. The
layout and menus of an organizer are shown in Figure 17.

The Organizer is included here as an example of a more sophisticated use of pluggable views and
also as an example of MVC class factoring. In this example, the single class (Organizer)
implements the functionality of the model and the view and also defined the menus used in the
views two subviews.

System Workspace Organizerl

C: Files

D Changes

E: System Support

F: Terminal Support add category
G: Clocks femave
Smalltalk noChanges. “empty the change set”

(FileStream fileNamed: fileName.st’) fileOutChanges. again
(FileStream fileNamed: ’fileName.st’) fileOutChangesf undo

5S.
copy
ChangelistView open, "browse the current chd p::Ee
- do It
Smalltalk changes. *access the change setfprint it

*remove all changes to 2 class from the chalASRect

accept
Stream removeFromChanges. canc%l

Figure 17: Organizer view showing list and text views and menus

The organizer class has two instance variables; its organization dictionary and the currently
selected category (topic, section).

Model subclass: #Organizer
instanceVariableNames: 'organization currentCategory'
classVariableNames: '
poolDictionaries: '
category: 'Interface-Outlines'

The most basic messages to an organizer are for setting it up and for accessing the organization by
category.

Organizer methodsFor: 'initialize-release’
initialize
"set up a new empty Organizer. Its organization is an empty dictionary."
organization — Dictionary new
Organizer methodsFor: 'organization list'
currentCategory
t currentCategory “return the currently selected category"
organizationList
"return the list of organization keys (topics), the keys of the dictionary"
1 organization keys asSortedCollection
organization: aCategory
"set the current category and signal that the organization text has changed"
currentCategory — aCategory.
self changed: #text
add Category
"add a new category, prompting the user (with a FilllnTheBlank) for its name"
| newCategory |

newCategory — FilllnTheBlank request: ‘New Category' initialAnswer: (').
newCategory =" IfTrue: [1 self].
organization at: newCategory put: Text new.
currentCategory — newCategory.
self changed: #organization
removeCategory
"prompt the user and remove the current category from the organization”
(BinaryChoice message: 'Are you certain that you want to
remove category', currentCategory, '?") ifTrue:
[organization removeKey: currentCategory.
currentCategory nil.
self changed: #organization]
renameCategory
"prompt the user for a new name and rename the current category"
| newCategory |
newCategory — FilllnTheBlank request: ‘New Category'
initialAnswer: (currentCategory).
newCategory =" ifTrue: [1 self].
organization at: newCategory put: (organization at: currentCategory).
organization removekey: currentCategory.
currentCategory — newCategory.
self changed: #organization
organizationMenu
"return the menu to be used in the topic key list"
currentCategory == nil
ifTrue: [1 ActionMenu labels: 'add category' selectors: #(addCategory)].
t ActionMenu labels: 'add category\rename\remove' withCRs
selectors: #(addCategory renameCategory removeCategory)
The text-related messages allow the user to query and set the text value for the currently selected

category.

Organizer methodsFor: 'text'

text
"answer the text for the current category"
currentCategory == nil ifTrue: [t Text new].
torganization at: currentCategory copy

acceptText: aText
"this is sent to accept the changed text from the text subview"
currentCategory == nil ifTrue: [1 false].
organization at: currentCategory put: aText copy.
ttrue

textMenu
"answer the menu used in the text subview"
1 ActionMenu
labels: ‘again\undo\copy\cut\paste\do it\print it\inspect\accept\cancel' withCRs
lines: #(2 5 8)

selectors: #(again undo copySelection cut paste dolt printlt inspectlt accept cancel)

The methods used to parse streams assume that special strings are used for separating entries from
their keys and for separating different entries. Making these strings variables allows many

common file formats (such as System Workspaces, password files, or tables) to be parsed into
organizers.

Organizer methodsFor: 'parsing'’
parseFrom: aStream entrySeparatorString: entryStr keySeparatorString: aKeyStr
"read an organization from the given stream using the two given strings to
parse the contents into entries and values"
| tmp key body |
[aStream atEnd] while False:
[tmp —~ ReadStream on: (aStream upToAll: entryStr).
key — tmp upToAll: aKeyStr.
body — tmp upTo End asText.
organization at: key put: body]
The class messages for organizers provide for the creation of new instances and the simple

loading of standard files.

Organizer class methods For: 'creation’
new
"make a default new Organizer"
t super new initialize
Organizer class methods For: 'loading'
load: aFileName
"Read a new Organization in from the given file using empty lines and double empty lines as
the default separators. Many other formats can be parsed.'
"Organizer load: 'DT.ws"."
| file org cr |
file — (FileStream oldFileNamed: aFileName).
cr — Character cr.
org — self new.
org parseFrom: file
entrySeparatorString: (String with: cr with: cr with: cr)
keySeparatorString: (String with: cr with: cr).
torg

Organizer class methodsFor: 'view creation’
openFlie: aName
"read a new Organizer from the given file"
"Organizer openFile: 'DT.ws"."
1 self openOn: (self load: aName) label: aName

openOn: anOrganization label: aLabel
"open an Organizer view on the given organization”
"Organizer openOn: Organizer new label: 'Maintenance

| topView listView textView |

topView ~ StandardSystemView "top-level view"
model: anOrganization
label: aLabel
minimumSize: 250@250.

topView borderWidth: 1.

listView — SelectionInListView "plug in topic list view"
on: anOrganization "model of list"
aspect: #organization
change: #organization: "message sent to set new list"
list: #organizationList "message sent to get list"
menu: #organizationMenu "message sent to get menu"
initialSelection: #currentCategory.
textView ~ CodeView "plug in text editor view"
on: anOrganization "with its model"
aspect:#text "and its aspect accessing message"
change: #acceptText: "and change message"
menu: #textMenu. "and its menu accessing message"

"plug in a special controller for the text view"
textView controller: AlwaysAcceptCodeController new.
"plug the subviews into the top view"
topView addSubView: listView
in: (0@0 extent: 1@0.3) "list view in the top 30%"
borderWidth: 1.
topView addSubView: texiView
in: (0@0.3 extent; 1@0.7) "text view in the bottom 70%"

borderWidth: 1.

topView controller open
The organizer described above can be used, for example, for creating a browser on the contents of

the Smalltalk-80 system's System Workspace, as shown in Figure 17.

FinancialHistory Example

On the following pages is a condensed version of the source code for the classes FinancialHistory,
FinancialHistoryView and FinancialHistoryController as described in depth in [Goldberg and
Robson, 1983] and the ParcPlace Systems Smalltalk-80 VI 2.3 release fileset. Figure 2 shows the
view layout and standard menu for the FinancialHistory example. Included here is the method
text for the MVC-related setup and interaction messages.

The controller class implements the default menus for use within FinancialHistoryView as shown
below. It carries out user queries and sends messages to the model to change the state (such as
after spending or receiving money).

MouseMenuController subclass: #FinancialHIstoryController
instanceVariableNames: '

classVariableNames: 'FHYellowButtonMenu FHYellowButtonMessages '
poolDictionaries: '
category: 'Demo-FinancialTools'
FinancialHistoryController methodsFor: 'initialize-release’
initialize
“initialize me and set up the appropriate menus"
super initialize.
self initialize YellowButtonMenu
FinancialHistoryController methodsFor: 'private’
initialize YellowButtonMenu
"plug in my menu and its messages from the class variables"
"The message yellowButtonMenu: yellowButtonMessages: is
implemented for all mouse-menu-controllers"
self yellowButtonMenu: FHYellowButtonMenu
yellowButtonMessages: FHYellowButtonMessages
FinancialHistoryController class methodsFor: ‘class initialization'
initialize
"Specify the yellow button menu items and actions."
FHYellowButtonMenu —~ PopUpMenu labels: 'spend\receive’ withCRs.
FHYellowButtonMessages — #(spend receive).
FinancialHistoryController methodsFor: 'menu messages'
receive
"Ask what amount is being received from what and send the appropriate
message to the model."
| receiveFrom amount |
"prompt the user with a FilllnTheBlank prompter"
receiveFrom ~ FillinTheBlank request: 'Receive from what?".
receiveFrom = " ifTrue: [t self]. "return if he/she answers blank"
amount — FillinTheBlank request: 'How much from ', receiveFrom,'?".
amount =" ifTrue: [1 self].
"read a number out of this string"
amount — Number readFrom: (ReadStream on: amount).
model receive: amount from: receiveFrom."send it on to the model"

Only thereceivemessage for the controller is shown above; the spend message is closely
analogous to it.

The class FinancialHistoryView simply contains the view setup message for plugging the two
BarChartViews into a topView and starting the appropriate controller.

View subclass: #FinancialHistoryView

instanceVariableNames: "'

classVariableNames: '’

poolDictionaries: '’

category: 'Demo-FinancialTools'
FinancialHistoryView methodsFor: ‘controller access'
defaultControllerClass

t FinancialHistoryController

The setup message defines the topView and inserts the subviews into it. The BarChartViews are
defined in the support classes for the FinancialHistory example and are the bar chart elements
seen in Figure 2.

FinancialHistoryView class methodsFor: 'instance creation'

open: aFHModel
"open and schedule the MVC application for the Financial History given as the argument to
this message"

| aFHView aBCView topView | "define the top view (application window)"
topView ~ StandardSystemView new.

topView model: aFHModel. “plug in the model"
topView borderWidth: 2.
topView insideColor: Form lightGray. "make the background light gray"

topView label: 'Financial History'. "label the view"
topView minimumsSize: 400@300. "make it big"

"make the FHView for insertion into top-
View"

aFHView — FnancialHistoryView new model: aFHModel.
"add the FHView as a subview of topview"
topView addSubView: aFHView. "use the entire area of topView"
"define the expenditures BarChart"
aBCView ~ BarChartView new
model: aFHModel expenditures. "its model is the expenditures dictionary"
"its area is the given absolute region"
aBCView insideColor: Form white.
aBCView borderWidth: 2.
"it has no controller"
aBCView controller: NoController new.

"add it as a subview"
aFHView addSubView: aBCView

in: (0.04@0.05 extent: 0.44@0.9)

borderWidth: 2.
"define the incomes BarChart similarly"
"its model is the incomes dictionary"
aBCView ~ BarChartView new model: aFHModel incomes.
aBCView insideColor: Form white.
aBCView borderWidth: 2.
aBCView controller: NoController new.
"add it as a subview"

aFHView addSubView: aBCView
in: (0.52@0.05 extent: 0.44@0.9)

borderWidth: 2.
"open the new top-level controller for the application”
topView controller open

The three examples presented here show some of the sophistication possible using the Model-
View-Controller paradigm and methodology in the Smalltalk-80 system. Readers are encouraged
to browse the Smalltalk-80 system interface classes or read the other references to see many more
examples of MVC programming.

Summary

The Model-View-Controller metaphor is a way to design and implement interactive application
software that takes advantage of modularity, both to help the conceptual development of the
applications, and to allow pieces already developed for one application to be reused in a new
application.

The metaphor imposes a separation of behavior between the actual model of the application
domain, the views used for displaying the state of the model, and the editing or control of the
model and views.

We have implemented the metaphor in the Smalltaik-80 system and have used this
implementation both to create the basic programming development tools used in the system, and
to develop a diverse collection of applications.

Appendices

As further reference materials, we include below excerpts from the subclass hierarchies of the
abstract classes Model, View and Controller.

Subclass Hierarchies of the Basic MVC Classes

For the lists of the MV C-related class hierarchies, the class names and their instance variables are
included.

Subclass Hierarchy of Class Model (excerpt)
Model (‘dependents’)

BinaryChoice (‘trueAction’ 'falseAction' 'actionTaken')

Browser (‘organization' ‘category' ‘className' 'meta’ 'protocol' 'selector' 'textMode")
Debugger (‘context' 'receiverinspector' ‘contextinspector' 'shortStack' ‘'sourceMap’

sourceCode' ‘processHandle")

MethodListBrowser (‘methodList' ‘methodNarne’)

Explainer (‘class' 'selector' 'instance' 'context' 'methodText')

FileModel (‘fileName")
File List (list' 'myPattem' 'isReading')

HierarchicalFileList ('selectionName' 'isDirectory' ‘emptyDir' ‘myDirectory")
Icon (‘form' 'textRect')

Inspector (‘object’ ‘field")
Contextlnspector (‘tempNames')
Dictionarylnspector (‘ok’)
OrderedCollectionlnspector ()

StringHolder (‘contents' 'isLocked')
ChangelList (listName' '‘changes' 'selectionindex’ 'list' filter' ‘removed' ffilterList'
filterKey' 'changeDict' 'doltDict' '‘checkSystem' ‘fieldList')
FillinTheBlank (‘actionBlock' ‘actionTaken')
Project (‘projectWindows' 'projectChangeSet' 'projectTranscript’ '‘projectHolder’)
TextCollector (‘'entryStream’)

Terminal (‘displayProcess' 'serialPort' 'localEcho’ 'ignoreLF' ‘characterLimit’)

Switch (‘'on' 'onAction’ 'offAction’)

Button ()

OneOnSwitch (‘connection’)
SyntaxError (‘class' badText' 'processHandle’)

Subclass Hierarchy of Class View (excerpt)
View ('model' ‘controller' 'superView' 'subViews' 'transformation’ viewpont' 'window'
'displayTransformation' ‘insetDisplayBox' 'borderWidth'
'borderColor' 'insideColor' 'boundingBox')
BinaryChoiceView ()
DisplayTextView (‘rule' 'mask’ 'editParagraph’ ‘centered')
FormMenuView ()
FormView (‘rule' 'mask’)
FormHolderView (‘displayedForm’)
IconView (‘iconText' isReversed’)
ListView ('list' 'selection’ 'topDelimiter' 'bottomDelimiter' 'lineSpacing' isEmpty' ‘emphasisOn’)
ChangelistView ()
SelectionInListView ('itemList' 'printltems’ 'oneltem’ ‘partMsg' 'initialSelectionMsg'
‘changeMsg' 'listMsg' 'menuMsg’)
StandardSysternView (‘'labelFrame’ 'labelText' 'isLabelComplemented' 'savedSubViews'
'minimumSize' 'maximumsSize' 'iconview' 'iconText' 'lastFrame' 'cacheRefresh’)
ClockView (‘'myProiect' 'date’)
BrowserView ()
FileUstView ()
InspectorView ()
NotiflerView (‘contents’)

StringHolderView (‘displayContents’)
FilllnTheBlankView ()
ProiectView ()
TextCollectorView ()

TerminalView ()
SwitchView (‘complemented' 'label' 'selector' 'keyCharacter' ‘highlightForm' ‘arguments'
‘emphasisOn’)
BooleanView ()
TextView (‘partMsg' ‘acceptMsg' 'menuMsg’)
CodeView (‘initialSelection")
OnlyWhenSelectedCodeView (‘selectionMsg')

Subclass Hierarchy of Class Controller (excerpt)
Controller (‘'model' 'view' 'sensor’)

BinaryChoiceController ()

FormMenuController ()

MouseMenuController (‘redButtonMenu’ 'redButtonMessages' 'yellowButtonMenu'

'vellowButtonMessages' 'blueButtonMenu’ 'blueButtonMessages')

ClockController (‘clockProcess')
BitEditor ('scale’ 'squareForm' ‘color’)

FormEditor (‘form' 'tool' 'grid" 'togglegrid' 'mode’ 'previousTool' ‘color’

‘unNormalizedColor' 'xgridOn' 'ygridOn' ‘toolMenu' 'underToolMenu’)

IconController ()
ProjecticonController ()

ScreenController ()
ScrollController (‘scrollBar' ‘'marker’)
ListController ()
LockedListController ()
ChangelListController ()
SelectionInListController ()
ParagraphEditor (‘paragraph’ 'startBlock' ‘stopBlock’ ‘beginTypelnBlock'
‘emphasisHere' 'initial Text' 'selectionShowing')
TextEditor ()
StringHolderController (‘isLockingOn')
ChangeController ()
FillinTheBlankController ()
CREFilllnTheBlankController ()
TextFilllnTheBlankController ()
ProjectController ()
TextCollectorController ()
TerminalController ()
TextController ()
CodeController ()
StandardSystemController ('status' 'labelForm' ‘'viewForm')
NotifierController ()
NoController ()
SwitchController (‘selector' '‘arguments' 'cursor’)
IndicatorOnSwitchController ()
LockedSwitchController ()

References

Adele Goldberg, 1983Smalltalk-80: The Interactive Programming Environméuadison-
Wesley Publishers, Menio Park, 1983

Adele Goldberg and David Robson, 19&nalltalk-80: The Language and its Implementation.
Addison-Wesley Publishers, Menio Park, 1983

ParcPlace Newslettdpreviously called the Smalltalk-80 Newsletter). Numbers 1-12 Available
from ParcPlace Systems, 2400 Geng Road, Palo Alto, CA 94303

HOOPLA! (Hooray for Object-Oriented Programming Languagdséwsletter of OOPSTAD
(Object-Oriented Programming for Smalltalk Applications Developers Association).
Available from OOPSTAD, P.O. Box 1565, Everett, WA 98206

Further Reading

Stephen T. Pope. "Smalltalk-80 Applications Bibliograp®ymialltalk-80 Newsletter #11,
ParcPlace Systems, September, 1987

Trygve Reenskaug. "User-Oriented Descriptions of Smalltalk Systems" prini@gténThe
Small Systems Journal, Special Smalltalk-80 Is&ugust, 1981

Ralph E. JohnsoriModel/View/Controller'Department of C.S., U. of lllinois, Urbana-
Champaign, November, 1987

Journal of Object-Oriented ProgrammingO.Box 6338, 773 Woodland West Drive, Woodland
Park, CO 80866

Sam A. Adams. "MetaMethods: The MVC ParadigmH@OPLA!\Volume | Number 4, July,
1988

To find out more about the use of the MVC classes within the Smalltalk-80 system, interested
readers are referred to the system itself. Using the MessageSet browsers for browsing all senders
of the pluggable view initialization messages can be very informative. Examples of these might be
found in the "plugging" message:aspect:.change:menu:initialSelection: which is implemented

in class CodeView or the parallel messages in the other pluggable view classes such as
SelectionInListView or SwitchView.

One can also browse all references to the simple interactive user interface classes (such as
FillinTheBlank or BinaryChoice), or the open messages for the system's application views. For
examples of advanced interaction usage, looking at implementors of the nuessadctivity

can be instructional.

	Abstract
	Contents
	Introduction
	MVC and the Issues of Reusability and Pluggability
	The Model-View-Controller Metaphor
	Models
	Views
	Controllers
	Broadcasting Change
	Dependents
	A Standard for the Interaction Cycle

	An Implementation of Model-View-Controller
	Class Model
	Class View
	Class Controller
	StandardSystemView and StandardSystemcontroller

	User Interface Component Hierarchy
	Program Development Support Examples
	Workspaces
	Inspectors
	Browsers
	Debuggers
	Object Editors in Smalltalk-80 Applications

	View/Controller Factoring and Pluggable Views
	Models and MVC Usage

	MVC Implementation Examples
	Counter View Example
	Discussion
	Hierarchical Text Organizer Example
	FinancialHistory Example

	Summary
	Appendices
	Subclass Hierarchies of the Basic MVC Classes
	Subclass Hierarchy of Class Model (excerpt)
	Subclass Hierarchy of Class View (excerpt)
	Subclass Hierarchy of Class Controller (excerpt)

	References
	Further Reading

