
ations

tion

ns and

or the

0
A Description of the Model-View-Controller User

Interface Paradigm in the Smalltalk-80 System

Glenn E. Krasner and Stephen T. Pope

ParcPlace Systems, Inc.

1550 Plymouth Street Mountain View, CA 94043 glenn@ParcPlace.com

Copyright © 1988 ParcPlace Systems. All Rights Reserved.

Abstract

This essay describes the Model-View-Controller (MVC) programming paradigm and

methodology used in the Smalltalk-80TM programming system. MVC programming is the

application of a three-way factoring, whereby objects of different classes take over the oper

related to the application domain, the display of the application's state, and the user interac

with the model and the view. We present several extended examples of MVC implementatio

of the layout of composite application views. The Appendices provide reference materials f

Smalltalk-80 programmer wishing to understand and use MVC better within the Smalltalk-8

system.

Contents

Introduction . 2

MVC and the Issues of Reusability and Pluggability 2

The Model-View-Controller Metaphor . 3

An Implementation of Model-View-Controller . 5

User Interface Component Hierarchy . 10

Program Development Support Examples . 13

View/Controller Factoring and Pluggable Views . 16

MVC Implementation Examples . 19

Counter View Example . 19

Hierarchical Text Organizer Example . 24

FinancialHistory Example . 28

Summary . 31

Appendices . 31

References . 34

Further Reading . 34

rg,

ontrol.

onents

eneral

tive

e and

erg

as

t easier

o

g

n

ivision

y the

in (the

odel

 put

hs of

 tools

 A goal

ng.

ation

ific

This

e is

ed, and
Introduction

The user interface of the Smalltalk-80 programming environment (see references, [Goldbe

1983]) was developed using a particular strategy of representing information, display, and c

This strategy was chosen to satisfy two goals: (1) to create the special set of system comp

needed to support a highly interactive software development process, and (2) to provide a g

set of system components that make it possible for programmers to create portable interac

graphical applications easily.

In this essay, we assume that the reader has basic knowledge of the Smalltalk-80 languag

programming environment. Interested readers not familiar with these are referred to [Goldb

and Robson, 1983] and [Goldberg, 1983] for introductory and tutorial material.

MVC and the Issues of Reusability and Pluggability

When building interactive applications, as with other programs, modularity of components h

enormous benefits. Isolating functional units from each other as much as possible makes i

for the application designer to understand and modify each particular unit, without having t

know everything about the other units. Our experiences with the Smalltalk-76 programmin

system showed that one particular form of modularity--a three-way separation of applicatio

components--has payoff beyond merely making the designer's life easier. This three-way d

of an application entails separating (1) the parts that represent the model of the underlying

application domain from (2) the way the model is presented to the user and from (3) the wa

user interacts with it.

Model-View-Controller (MVC) programming is the application of this three-way factoring,

whereby objects of different classes take over the operations related to the application doma

model), the display of the application's state (the view), and the user interaction with the m

and the view (the controller). In earlier Smalltalk system user interfaces, the tools that were

into the interface tended to consist of arrangements of four basic viewing idioms: paragrap

text, lists of text (menus), choice "buttons," and graphical forms (bit- or pixel-maps). These

also tended to use three basic user interaction paradigms: browsing, inspecting and editing.

of the current Smalltalk-80 system was to be able to define user interface components for

handling these idioms and paradigms once, and share them among all the programming

environment tools and user-written applications using the methodology of MVC programmi

We also envisioned that the MVC methodology would allow programmers to write an applic

model by first defining new classes that would embody the special application domain-spec

information. They would then design a user interface to it by laying out a composite view

(window) for it by "plugging in" instances taken from the predefined user interface classes.

"pluggability" was desirable not only for viewing idioms, but also for implementing the

controlling (editing) paradigms. Although certainly related in an interactive application, ther

an advantage to being able to separate the functionality between how the model is display

hed to

t can

 the

ion

nts

work

vices

s.

f the

ter) or

bclass

be

and

rform

rview

 view of

e tool

evices

her

nt

e
the methods for interacting with it. The use of pop-up versus fixed menus, the meaning attac

keyboard and mouse/function keys, and scheduling of multiple views should be choices tha

be made independently of the model or its view(s). They are choices that may be left up to

end user where appropriate.

The Model-View-Controller Metaphor

To address the issues outlined above, the Model-View-Controller metaphor and its applicat

structuring paradigm for thinking about (and implementing) interactive application compone

was developed. Models are those components of the system application that actually do the

(simulation of the application domain). They are kept quite distinct from views, which display

aspects of the models. Controllers are used to send messages to the model, and provide the

interface between the model with its associated views and the interactive user interface de

(e.g., keyboard, mouse). Each view may be thought of as being closely associated with a

controller, each having exactly one model, but a model may have many view/controller pair

Models

The model of an application is the domain-specific software simulation or implementation o

application's central structure. This can be as simple as an integer (as the model of a coun

string (as the model of a text editor), or it can be a complex object that is an instance of a su

of some Smalltalk-80 collection or other composite class. Several examples of models will

discussed in the following sections of this paper.

Views

In this metaphor, views deal with everything graphical; they request data from their model,

display the data. They contain not only the components needed for displaying but can also

contain subviews and be contained within superviews. The superview provides ability to pe

graphical transformations, windowing, and clipping, between the levels of this subview/supe

hierarchy. Display messages are often passed from the top-level view (the standard system

the application window) through to the subviews (the view objects used in the subviews of th

view).

Controllers

Controllers contain the interface between their associated models and views and the input d

(keyboard, pointing device, time). Controllers also deal with scheduling interactions with ot

view-controller pairs: they track mouse movement between application views, and impleme

messages for mouse button activity and input from the input sensor. Although menus can b

thought of as view-controller pairs, they are more typically considered input devices, and

therefore are in the realm of controllers.

l can

on and

odels

e sent

d with

enever

t to notify

ts), so

s to the

 takes

he

 its

the

f

 of the
Broadcasting Change

In the scheme described above, views and controllers have exactly one model, but a mode

have one or several views and controllers associated with it. To maximize data encapsulati

thus code reusability, views and controllers need to know about their model explicitly, but m

should not know about their views and controllers.

A change in a model is often triggered by a controller connecting a user action to a messag

to the model. This change should be reflected in all of its views, not just the view associate

the controller that initiated the change.

Dependents

To manage change notification, the notion of objects as dependents was developed. Views and

controllers of a model are registered in a list as dependents of the model, to be informed wh

some aspect of the model is changed. When a model has changed, a message is broadcas

all of its dependents about the change. This message can be parameterized (with argumen

that there can be many types of model change messages. Each view or controller respond

appropriate model changes in the appropriate manner.

A Standard for the Interaction Cycle

The standard interaction cycle in the Model-View-Controller metaphor, then, is that the user

some input action and the active controller notifies the model to change itself accordingly. T

model carries out the prescribed operations, possibly changing its state, and broadcasts to

dependents (views and controllers) that it has changed, possibly telling them the nature of

change. Views can then inquire of the model about its new state, and update their display i

necessary. Controllers may change their method of interaction depending on the new state

model. This message-sending is shown diagrammatically in Figure 1.

he

te

onents

sts of

ast

bjects.

. In

ending

s.

 In it, a

l values
Figure 1: Model-View-Controller State and Message Sending

An Implementation of Model-View-Controller

The Smalltalk-80 implementation of the Model-View-Controller metaphor consists of three

abstract superclasses named Model, View, and Controller, plus numerous concrete subclasses. T

abstract classes hold the generic behavior and state of the three parts of MVC. The concre

classes hold the specific state and behavior of the application facilities and user interface

components used in the Smalltalk-80 system. Since our primary set of user interface comp

were those needed for the system's software development tools, the most basic concrete

subclasses of Model, View, and Controller are those that deal with scheduled views, text, li

text, menus, and graphical forms and icons.

Class Model

The behavior required of models is the ability to have dependents and the ability to broadc

change messages to their dependents. Models hold onto a collection of their dependent o

The class Model has message protocol to add and remove dependents from this collection

addition, class Model contains the ability to broadcast change messages to dependents. S

the message changed to a Model causes the message update to be sent to each of its dependent

Sending the message changed: aParameter will cause the corresponding message update:

aParameter to be sent to each dependent.

A simple yet sophisticated MVC example is the FinancialHistory view tutorial found in

[Goldberg and Robson, 1983]. A display of a FinancialHistory is shown in Figure 2 and its

implementation is discussed in the MVC implementation examples at the end of this essay.

view that displays a bar chart is created as a dependent of a dictionary of tagged numerica

o

re held

tems

n

m a

e
(for example, rent --> $500). The composite FinancialHistoryView has two subviews, with tw

bar charts, whose models are two distinct dictionaries (incomes and expenditures). These a

as instance variables of the central model, an instance of class FinancialHistory.

Figure 2 also shows the pop-up menu used by the FinancialHistoryController with the two i

labeled 'spend' and 'receive' as well as the input prompter (a FillInTheBlank) querying for a

amount to be spent on 'good times'.

Figure 2: FinancialHistoryView with its BarChart subviews, the Controller's menu, and an

interaction prompter (note that the menu and prompter are never visible at

the same time)

User action for interacting with the FinancialHistory application might be to pick an item fro

menu to add a new amount for rent. The controller then sends a message to the model (th

dictionary), and the model sends self changed. As a result of this, the bar chart is sent the

message update. In response to that message, the bar chart gets the new values from the

dictionary and displays the new bars using the display messages.

A flow diagram for this MVC interaction might be:

inimize

del

en the

In this

es or

le

r

as their

 This

rmally

Figure 3: Message-sending and dependency updating for an example from the

FinancialHistory application

The change messages with parameters (i.e., self changed: someAspect) are used to pass

information from the model to its dependents about which aspect has changed, so as to m

the amount of view updating needed. For example, the object householdFinances (the mo

mentioned earlier that holds onto the dictionaries of income and expenses), could have be

model of two bar chart views, with separate protocols for displaying expenses and income.

case, the update message could contain a parameter saying which of the aspects (expens

income) had changed.

Depending on the application, many of the basic Smalltalk-80 system structure classes can serve as

models of MVC systems. Views can be found in the system or user applications that use very simp

objects (numbers or strings), collection class instances (orderedCollections, dictionaries, bitmaps o

display-Texts) or complex composite objects (networks, databases, event lists or financial histories)

underlying models.

Class View

The abstract superclass, class View, contains the generic behavior of views in the system.

includes model and controller interaction, subview and superview interaction, coordinate

transformation, and display rectangle actions. The many subclasses of View implement the

various display interaction tools used in the user interface.

Every instance of a view has exactly one model and exactly one controller. The model is no

set explicitly. Because view and controller classes are often designed in consort, a view's

controller is often simply initialized to an instance of the corresponding controller class. To

support this, the message defaultControllerClass, that returns the class of the appropriate

controller, is defined in many of the subclasses of View.

ns

bles for

e of

g)

ult

ly

ses of

s or

 level

y

o

is one

evel

,

tween

d a

vices

riables:

nting
Views have the ability to have zero or more subviews, with flexible coordinate transformatio

between one view and its super- and subviews. Instances of class View have instance varia

their superviews and for a (possibly empty) collection of subviews, as well as for an instanc

class WindowingTransformation which represents the transformation (translation and scalin

between that view's coordinate system and that of its superview. In addition, there is a defa

protocol in View for adding and removing subviews, as well as a protocol for changing the

transformations. This allows views consisting of many subviews to be pieced together flexib

and simply.

The third type of behavior in class View is that which relates to displaying. Because subclas

View are assumed to use display objects to actually do their displaying (Forms, Pens, Line

instances of other graphical classes), View only supports generic displaying behavior. In

particular, there is no instance variable for display objects. Class View assumes that the top

of a subview structure displays on some medium (typically the display screen).

Views therefore cache the transformation from their own internal coordinate system to the

display's coordinate system (i.e., the composition of the view's transformation and all of its

superviews' transformations), so that it is faster to get from a view's internal space to displa

space. View also has instance variables insetDisplayBox, the clipping rectangle within which the

view may display without overlapping other views; borderWidth and borderColor, to define the

(non-scaled) borders between a view and its superview, insideColor, to define the color (if any)

with which a view colors its insetDisplayBox before actually displaying its contents; and

boundingBox, to describe the extent of display objects within the view's coordinate system.

By default, the message model: anObject, when sent to a view, initializes the view's controller t

be a new instance of the view's default controller class. It establishes anObject as the model for

both the view and the controller, and establishes the view as a dependent of the model. Th

message is typically sufficient for setting up the MVC structure.

The message release, used when closing a hierarchy of views (i.e., the sub-views of one top-l

window), gives the programmer the opportunity to insert any finalization activity. By default

release breaks the pointer links between the view and controller. The message release also

removes the view from its model's dependents collection, breaking reference circularities be

them.

Class Controller

It is a controller's job to handle the control or manipulation (editing) functions of a model an

particular view. In particular, controllers coordinate the models and views with the input de

and handle scheduling tasks. The abstract superclass Controller contains three instance va

model, view, and sensor, the last of which is usually an instance of class InputSensor represe

the behavior of the input devices.

ior that

sor.

ly one

tions.

preted

ion

of

chy

rollers

.

es of

ition

r

It also

iew

ly

 for

el

ses
Because the interpretation of input device behavior is very dependent on the particular

application, class Controller implements almost none of this behavior. The one such behav

is implemented is the determination of whether or not the controller's view contains the cur

Class Controller does include default scheduling behavior. It takes the point of view that on

controller is to be active at a time; that is, only one controller at a time mediates user input ac

Other views could be displaying information in parallel, but the user's actions are to be inter

by a single controller. Thus, there is behavior in class Controller for determining whether a

controller needs to receive or maintain control. In addition, there is behavior to signal initiat

and termination of control, since many controllers will need to have special initiation and

termination behavior.

The query messages isControlWanted and isControlActive are overridden in concrete subclasses

Controller if they require a different behavior for determining whether to receive or maintain

control. By default, these messages use the messages controlToNextLevel (pass it on down) and

viewHasCursor (a query) in such a way that the controller of the lowest subview in the hierar

that contains the cursor in its display box will take and retain control.

Once a controller obtains control, the default behavior is to send it the messages controlInitialize,

controlLoop, and controlTerminate. This message sequence is found in the method startUp. The

messages controlInitialize and controlTerminate are overridden in subclasses that want specific

behavior for starting and ending their control sequences (for example, many of the list cont

have a scroll bar appear to their left only when they have control). controlLoop is implemented as

a loop that sends the message controlActivity as long as the controller retains control. This

message is overridden in many controller classes to do the "real" work of the user interface

StandardSystemView and StandardSystemcontroller

Subclasses of View and Controller are the various classes that implement more specific typ

view and controller behavior. Classes StandardSystemView and StandardSystemController are the

implementation of "window system" behavior. StandardSystemController contains the defin

of the standard blue-button menu (normally assigned to the right-hand mouse button), used fo

accessing operations of closing, collapsing, and resizing the top-level view on the display.

contains the behavior for scheduling the view as one of the active views. StandardSystemV

contains the behavior for top-level view labels, for displaying when collapsed or not (possib

using icons), and for the size (minimum, maximum, changing) of the view on the display.

Interactive applications typically exist inside system views, that is, the views and controllers

the application are created as subviews of a StandardSystemView (the application's top-lev

view).

In addition to StandardSystemController, the system provides other abstract controller clas

with default behavior. Instances of NoController will never take control; they are often used in

conjunction with "read-only" views. Class MouseMenuController includes behavior for

e user

lf,

 is class

 for

, some

ant to be

s as

ects

lete

ork for

e the

ce

m the

be

ry of

f" and

t cases
producing pop-up menus when any of the mouse buttons is pressed. Most controllers in th

interface are subclasses of MouseMenuController, including StandardSystemController itse

because of the extensive use of pop-up menus. Another example of these abstract classes

ScrollController, which implements scroll bars.

Because views are often composed of parts (composite views), with one application view

containing multiple subviews (as the FinancialHistoryView shown in Figure 2 has subviews

the two bar chart views), the instance variables for views have different meanings in an

application's StandardSystemView than in their subviews. Of the many subclasses of View

are meant to behave as top-level views (such as StandardSystemView), and others are me

used as subviews (single subviews within a structured view) and "plugged in" to other view

components (such as the SelectionInListViews used in many types of applications).

Figure 4 is a schematic diagram of the state and interrelationships of the relevant MVC obj

used in the CounterView example showing the values of some of their variables. The comp

source code for this example is included below in the section called "MVC Implementation

Examples." The interdependencies are shown by the arrows linking the model, view and

controller together via instance variables and dependents.

Figure 4: Instance variables of an MVC Triad for a running CounterView

User Interface Component Hierarchy

The classes View and Controller, along with the other abstract classes, provide the framew

views and controllers in the Smalltalk-80 implementation of the Model-View-Controller

metaphor. The system also contains various subclasses of View and Controller that provid

pieces of user interface functionality required by interactive applications. These user interfa

components include menus, text, and forms. These components are pieced together to for

standard system views of the Smalltalk-80 application development environment, and can

reused or subclassed for system applications. They form the kernel of the component libra

model-building tools and user interaction components that can be easily "pulled off the shel

"plugged" together to create interactive applications. We list some of them here, but in mos

or more

owser

, and

cally

of the

w

the

em

ers) or

-up

 by a

s by

(multi-

n.
we only use the names of the subclasses of View; it is assumed that each is used with one

appropriate Controller subclasses.

SwitchView and ListView are two subclasses of View that provide static or dynamic menu

behavior. SwitchViews are used, for example, in the instance/class switch of the system br

or the iconic menu of the form editor. They behave as a switch; they can either be on or off

when the user clicks the mouse button on them, they will notify their model. These are typi

used as menus of text or forms, or "buttons."

A ListView is a scrolling menu of text items, such as those used in the upper four subviews

system browser (shown in Figure 11). It will inform its model when the user has made a ne

selection in the list. Figure 5 shows examples of the use of subclasses of SwitchViews (in

iconic menu of the FormEditor, the paint program) and ListViews (in the Browser's category

subview).

Figure 5: SwitchView and ListView examples

Prompters and Confirmers are simple views that can be input. They are started up by giving th

a string for their query or prompt, and can return either a string value (in the case of Prompt

a Boolean value (in the case of Confirmers).

Figure 6: Examples of a Prompter and a Confirmer

Because they can be considered as belonging more to the controller-sensor interface, pop

menus are implemented as a special kind of MVC class. Class PopUpMenu is a subclass of

Object and provides its own scheduling and displaying behavior. They are typically invoked

MouseMenuController when the user pushes a mouse button. When invoked, PopUpMenu

default return a numerical value that the invoking controller uses to determine the action to

perform. There are several subclasses of PopUpMenu, some that implement hierarchical

level) menus and others that return symbols instead of numerical values upon item selectio

Examples of typical menus are shown in Figure 7.

any

with

hat are

ed

rd. One

ed

, for
Figure 7: Examples of Simple and Hierarchical Menus

A number of view/controller subclasses provide text handling components. Class

StringHolderView and class TextView provide views of text used in Workspaces, Editors,

Transcripts and other instances where text is displayed. The Controller subclasses

ParagraphEditor and TextEditor have the standard text editing functionality and are used in m

text editor subviews. The layout of a file-based text editor view is shown in Figure 8 along

the names of its components.

Figure 8: File-based TextEditorView and Menus

In addition to these view types, there are several other classes provided within the system t

used in building MVC user interfaces. These include the special controller classes mention

earlier: MouseMenuController and NoController; and the class InputSensor that is used for

monitoring user input. There is a global object called Sensor that is the sole instance of the class

InputSensor. It is used to model the user's input devices such as the mouse and the keyboa

can send query messages to Sensor such as anyButtonPressed, or one can wait for a user action

with messages such as waitBlueButton. One need normally never refer to Sensor, since it is us

in the implementation of the more basic controller classes, but many types of special user

interface components, especially those that track the mouse directly (for rubber-band lines

example), use it.

iews

s

 with

tion.

diting

ce

ght

e views

ded in

way to

assing

ed

es
Program Development Support Examples

Workspaces, inspectors, browsers, debuggers and various editors are among the system v

provided in the Smalltalk-80 software development support environment. They serve now a

examples of piecing together subviews from the view and controller components collection

appropriate models to provide useful and flexible front-ends for interactive applications.

Workspaces

The workspaces in the system are StringHolderView/StringHolderController combinations

installed as the single subview of a StandardSystemView. Their model is an instance of

StringHolder, which merely holds onto an instance of Text, a String with formatting informa

The menu messages implemented by StringHolderController correspond to the basic text e

and Smalltalk-80 code evaluation commands as shown in the menu in Figure 9.

Figure 9: Simple Workspace View and Menu

Inspectors

The inspectors in the system are implemented as two views. A ListView contains the instan

variable list (left side), and a TextView displays the value of the selected instance variable (ri

side). An instance of InspectorView serves as their common superview, and an instance of

StandardSystemView serves as its superview for scheduling purposes. The model for thes

is an instance of Inspector.

Inspectors can be used to view any object. A separate class, Inspector, serves as the intermediary

or filter for handling access to any aspects of any object. As a result, no extra protocol is nee

class Object. Using intermediary objects between views and "actual" models is a common

further isolate the viewing behavior from the modeling application.

It is possible to build a more appropriate interactive interface to composite objects by subcl

the inspector for use with classes such as arrays and dictionaries. There are also specializ

inspectors for complex objects such as MVC triads themselves or application-specific class

such as event lists.

ior. An

e

 As

es,

ss and

of the

ct of the

changed.

that

Figure 10: Inspector Examples - Simple, Array and Dictionary Inspectors

Browsers

As with inspectors, intermediary objects are used to model the system code browser behav

instance of class Browser is the intermediary model for each system browser, representing th

query paths through the system class hierarchy to the class organization and the classes.

dependents of the Browser model, there are the four list views (for Class Categories, Class

Message Protocols and Messages), a code (text) view (for the method code of the selected

message or a class definition template), and two switch views (for selective browsing of cla

instance messages as shown in Figure 11). Class Browser has separate protocol for each

various subviews of the browsers.

Figure 11: System Browser View Layout and Browser Menus

Each of the subviews sends different messages to the model to query the values of an aspe

system code. Each of the controllers sends different messages when the aspect should be

For example, when the user selects a new class in the class list subview, the controller for

subview sends the message className: newClassName to the Browser. The Browser sets up its

new state accordingly. This involves sending the messages self Changed: #protocol and self

 the

ears

 class

 the

 group

bove.

 (called

 the

 sent

ple, to

used in a

s a

t

bjects

er a

ndent

he

and
changed: #text. In response to the corresponding update: messages, the category subview, the

class and instance switches, and the class subview do nothing. The protocol subview asks

Browser for the new list of protocols to display and displays it. The message list subview cl

itself, and the text subview asks the Browser for the current text to display, which is the new

template. In this way, the six view/controller pairs sharing the single model work to produce

desired effect.

There are several other types of Browser found in the Smalltalk-80 system. Note the middle

of menu items in the upper-right subview (the MessageList) of the System Browser shown a

The menu items senders, implementors and messages can be used to open new browsers

Message-Set Browsers) on a small subset of the system messages-namely all the senders of

currently selected message, all other implementors of the same message, or all messages

from within the method of the currently selected message. Other Browsers exist, for exam

assist in change management (ChangeSet Browsers) or system recovery (ChangeList Browsers).

Debuggers

Class Debugger is defined as a subclass of class Browser, so that it can inherit the cross-

referencing behavior (menu messages for querying senders, implementors and messages

method). It also inherits and augments the code view behavior. The upper subview, which i

context list (i.e., a message-sending stack), is a list view that uses protocol defined in class

Debugger for displaying the system's message sending context stack as a list view.

Unlike the system browser, the Debugger is not the only model involved in the debugging

application. There is a separate Inspector model for each of the two inspector subviews tha

comprise the four lower subviews. The Debugger instance holds onto those two Inspector o

as two of its instance variables; it explicitly changes the objects they are inspecting whenev

new context is selected. This is an example of using cooperating model objects with indepe

coordinated views. It also shows an advantage to having the Inspector class as a filter on t

object: the object used as the "model" of the Inspector object can change, while the views

controllers refer to a consistent model.

most

itors

hics,

ed

their

ent lists,

w

ting

enus

s class

 bound to

ller

, and it

e

the

e
Figure 12: Debugger View Layout and Debuggers Menus

Object Editors in Smalltalk-80 Applications

Along with the user interaction paradigms of browsing and inspecting, editing is one of the

important aspects of applications and software development tools. Among the standard ed

available in Smalltalk-80 systems are text and file editors, form and bitmap editors for grap

and file system editors for source code and resource management. Many Smalltalk-80-bas

applications implement new graphical editors for the structured objects that are specific to

application domains, such as charts, graphs, maps, networks, spreadsheets, animations, ev

or database contents.

View/Controller Factoring and Pluggable Views

Originally, the program environment tools were implemented so as to have the models kno

nothing about their views and controllers and to use sub-classing as the style for differentia

behavior. In this style, for example, all the knowledge for creating the appropriate pop-up m

is in the class, and there is a different class for each type of view. Each of these classes ha

variables to hold the menu and the corresponding messages, and those class variables are

instance variables at instance creation time. Associated with each of these different contro

classes was a new view class. This is still how some of the system views are implemented

has a number of advantages, such as clean factoring of system components.

We noticed, however, that many of these different controller and view classes shared a larg

number of properties, especially those that implemented list views. One similarity was that

models were almost always some sort of filter class that already knew about the lists and th

selected item in the list.

lected.

s, the

ge

 to the

ere

us

ew

er,

her, as

he list

d when

ed. The

troller,

hanges,

r model

iew is

 for

angle
The view classes tended to be identical except for the one message, defaultControllerClass, which

is used to create the different controllers. The controllers were quite similar except for the

particular set of menu items and the messages they sent themselves when an item was se

Finally, the controller messages were almost always passed directly on to the model; that i

method for message aMessage, which was sent to the controller when the menu item aMessa

was selected, was almost always implemented as ↑model aMessage.

It would be easier for the application developer if these differences (e.g., the message sent

model to generate the list) were not implemented by different view/controller classes, but w

made parameters (instance variables) of a single class. This is the notion called pluggable views.

Rather than building a new kind of view (e.g., a new kind of list view) by creating two new

classes, the developer creates an instance of an existing class, such as class

SelectionInListController and SelectionInListView, with appropriate parameters for the men

and list item selection definltions.

In some sense, this is an engineering trade-off, because it has less flexibility than entirely n

class definitions and can lead to having controller information in the models. It does, howev

reduce the number of different things the developer needs to do to get an application toget

well as the number of different classes needed.

An example of the use of pluggable views is the implementation of the system browser list

subviews. The original implementation had a special subclass of ListController for each of t

subviews. Each of these classes had its own definition of the menus and messages to sen

the menu item was selected, and its own message to send when a new list item was select

current pluggable implementation has four instances of the same class, SelectionInListCon

with parameters that represent the messages to be sent to the model when the selection c

and to create an appropriate menu when the proper mouse button is pressed. The Browse

knows about the four local menus and receives the corresponding messages.

The use of the setup message for adding a pluggable SelectionInListView to a composite v

demonstrated in the Figure 13. This code segment comes from the actual view initialization

the BrowserView. It defines a SelectionInListView in the subview area described by the rect

myAreaRectangle. It uses the messages and the menu referred to in the figure.

classListview ← SelectionlnListview "an instance of SelectionlnListView"

on: aBrowser "model of the SelectionlnListview"

aspect: #className "message to get the selected item"

change: #className: "message sent on item selection"

list: #classList "message sent to generate list"

menu: #classMenu "message sent to get menu"

initialSelection: #className. "message sent to get initial selection"

self addSubview: classListView "Add a subview to the TopView"

in: myAreaRectangle "relative area filled by SubView"

borderWidth: 1 "border to adjacent SubViews"

ely

is

lable

ws

e, one

ss its

he

s the

de the

nd

 prompt
Figure 13: Setup Message for the class list view in the Browser using a pluggable

SelectionlnListView

The pluggability of SelectionInListViews is afforded by the class message shown here, nam

on:aspect:change:list:menu:initialSelection:. The message addSubView:in:borderWidth: is

defined in class View for the composition of complex view/subview layouts. Messages of th

type are the essence of sub-view pluggability and examples of their use and utility are avai

through out the system's user interface classes. Several other classes of pluggable sub-vie

implement similar instantiation (plugging) messages.

Another example of a pluggable view is the text view used in many system views. In this cas

wants to plug a text editor subview into a view and tell it the messages needed for it to acce

new text contents, to set its model's text, and to display its menu. The message that is

implemented in the class CodeView for this is on:aspect:change:menu:initialselection: (note the

similarity between this and the message used above for a pluggable SelectionInListView). T

example message in Figure 14 is the entire method used to define a FileEditor view such a

one shown in Figure 8.

FileModel class methodsFor: 'Instance creation'

open: aFileModel named: astring

"Scheduled a view whose model is aFlieModel and whose label is aString."

I topView codeView I "local variable for my top-level view and 1 sub-

view"

"set up the top-level standard system view"

topView ← StandardSystemview model: aFileModel

label: aString

minimumSize: 180@180.

codeView ← CodeView "pluggable CodeView setup message"

on: aFileModel "it takes its model and the following:"

aspect: #text "message sent to the model to get the text"

change: #acceptText:from: "message sent to accept a new text"

menu: #textMenu "message sent to get text view's menu"

initialSelection: nil. "initially-selected text"

TopView addSubView: codeView "add the code view as the sole subview"

in: (0@0 extent: 1@1) "use the entire view's area"

borderWidth: 1. "with a 1-pixel border"

topView controller open "open the default controller to start up view"

Figure 14: Open Message for a FileEditorView using a Pluggable CodeView

Several of the other views can be used with pluggable instantiation messages. These inclu

switch views (which one passes a label, the messages they send to determine their state a

respond to being pressed), and confirmers and prompters (one passes them a message or

and they return strings or Boolean values).

bject

endents

 of

 adding

ssage

nary

f the

, so this

ered in

text

 be

lk-80

wsletter

imple

ex

n VI

und.

a

plete

ory
Models and MVC Usage

Class Object contains behavior that supports Model's functionality, i.e., the ability for any o

to have dependents, and the ability to broadcast change messages to its dependents. Dep

are implemented through a global dictionary (a class variable of class Object called

DependentsFields), whose keys are models and whose corresponding values are collections

those models' dependents. Class Object also implements the message protocol to deal with

and removing dependents. For example, when some object (like aModel) receives the me

addDependent: someView, then someView is added to the collection found in the

DependentFields dictionary at key aModel.

Since views and controllers hold direct pointers to their models, the DependentFields dictio

creates a type of circularity that most storage managers cannot reclaim. One by-product o

release mechanism is to remove an object's dependents which will break these circularities

is typically not a problem except when developing an MVC application. The corresponding

circularities that result from using instances of Model are the direct kind that most storage

managers can reclaim. Therefore, we encourage the use and sub-classing of Model.

There are several more sophisticated aspects of advanced MVC application that are not cov

this paper. These include the use of windows and viewports, flexible scrolling frameworks,

composition and fonts, and view composition with non-scaling subviews. These issues can

studied via their usage within the Smalltalk-80 system or through examples found in Smallta

system applications. Interested readers are also referred to back issues of the ParcPlace Ne

(previously the Smalltalk-80 Newsletter) and the OOPSTAD HOOPLA Newsletter (see

references).

MVC Implementation Examples

Presented next are three MVC implementation examples: one a full application for a very s

view type (a Counter view); one a new application view using pluggable components (the

Organizer view); and one a condensed listing for the viewing components of a more compl

application (the FinancialHistory view discussed earlier and shown in Figure 2).

Counter View Example

The Counter demonstration and tutorial example is part of the standard Smalltalk-80 Versio

2.2 release package and was originally written by Michael Hanus of the University of Dortm

It implements a model (an instance of class Counter) that is a simple numerical value and view (

CounterView) on it which shows the value of the Counter. The controller (CounterController)

implements a menu allowing one to increment or decrement the Counter's value. The com

code for these three classes follows.

First, one must define a class named Counter as a subclass of Model in the system class categ

named Demo-Counter. Counter has one instance variable for its value.

ir

 those

rits all
Model subclass: #Counter

instanceVariableNames: 'value '

classVariableNames: ' '

poolDictionaries: ' '

category: 'Demo-Counter'

Next, one adds methods to Counter for initializing new counter instances and for accessing the

values. These messages will then be understood by all Counter instances.

Counter methods For: 'Initialize-release'

Initialize

"Set the initial value to 0."

self value: 0

Counter methodsFor: 'accessing'

value

"Answer the current value of the receiver."

↑value

value: aNumber

"Initialize the counter to value aNumber."

value ← aNumber.

self changed "to update displayed value"

Counter methodsFor: 'operations'

decrement

"Subtract 1 from the value of the counter."

self value: value -1

Increment

"Add 1 to the value of the counter."

self value: value + 1

Add the method to class Counter to be used for getting a new counter instance.

Counter class methodsFor: 'instance creation'

new

"Answer an initialized instance of the receiver."

↑super new initialize "return a new instance of the receiver"

Now define a class for the controller, along with the methods to define the menu it uses and

that implement the menu functions by passing them along to the model. The controller inhe

its instance variables from its superclasses.

Mouse MenuController subclass: #CounterControIler

instanceVariableNames: ' '

classVariableNames: ' '

poolDictionaries: ' '

category: 'Demo-Counter'

CounterController methodsFor: 'initialize-release'

initialize

"Initialize a menu of commands for changing the value of the model."

super initialize.

Self yellowButtonMenu: (PopUpMenu labels: 'Increment\Decrement' withCRs)

les.

rView.

ller for
yellowButtonMessages: #(increment decrement)

CounterController methodsFor: 'menu messages'

decrement

"Subtract 1 from the value of the counter."

self model decrement

increment

"Add 1 to the value of the counter."

self model increment

CounterController methodsFor: 'control defaults'

isControlActlve

"Take control when the blue button is not pressed."

↑super isControlActive & sensor blueButtonPressed not

Next, define the class CounterView as a subclass of View with no additional instance variab

View subclass: #Countervlew

instanceVariableNames: '

classVariableNames: ' '

poolDictionaries: '

category: 'Demo-Counter'

Add to it methods for displaying the state of its model (a Counter) in the view.

CounterView methodsFor: 'displaying'

displayView

"Display the value of the model in the receiver's view."

| box pos displayText I

box ← self insetDisplayBox."get the view's rectangular area for displaying"

"Position the text at the left side of the area, 1/3 of the

way down"

pos ← box origin + (4 @ (box extent y / 3)).

"Concatenate the components of the output string and

display them"

displayText ← ('value:', self model value printString) asDisplayText.

displayText displayAt: pos

Define a method for updating the view when the model changes. The model's sending a self

changed message will cause the view to be sent an update message.

CounterView methodsFor: 'updating'

update: aParameter

"Simply redisplay everything."

self display

Another method is needed to return the class of the default controller used within a Counte

CounterView methodsFor: 'controller access'

defaultControllerClass

"Answer the class of a typically useful controller."

↑CounterControlIer

Finally, a method is needed to open up a new CounterView and set up the model and contro

it. The resulting view and its menu are shown in Figure 15.

e now

d

by
CounterView class methodsFor: 'instance creation'

open

"Open a view for a new counter."

"select and execute this comment to test this method"

"CounterView open."

| aCounterView topView |

"create the counter display view"

aCounterView ¨ CounterView new "a new CounterView instance"

model: Counter new. "with a Counter as its model"

aCounterView borderWidth: 2. "give it a borderWidth"

aCounterView insideColor: Form white."and white insides"

"the top-level view"

TopView ¨ StandardSystemView new "a new system window"

label: 'Counter'. "labelled 'Counter'"

topView minimumSize: 80@40. "at least this big"

"add the counterView as a subView"

topView addSubView: aCounterView.

"start up the controller"

topView controller open

Figure 15: View Layout and Menu of the Simple CounterView

Discussion

The code presented so far is the most trivial sort of complete MVC implementation. Suppos

that we wish to add push-buttons to the view instead of having menu items to increment an

decrement the value of the counter. Using pluggable button views, this can easily be done

writing a new open method for the CounterView.

CounterView class methodsFor: 'Instance creation'

openwlthGraphlcalButtons

"Open a view for a new counter that has fixed graphical buttons (whose forms are generated from

the '+' and '-' characters and displayed on white backgrounds) for incrementing and decre-

menting the value."

"CounterView openWithGraphicalButtons"

| aCounterView topView inorButton decrButton incrSwitchView decrSwitchView |

"top view StandardSystemView"

topView ← StandardSystemView new label: 'Counter'.

topView minimumSize: 120 @ 80.

topView maximumSize: 600 @ 300.

topView borderWidth: 2 "set window border"

"main counter subview"

aCounterView ← CounterView new model: Counter new.

aCounterView insideColor: Form white.

"add main CounterView to topView in the right-hand

60%"

topView addSubView: aCounterView

in: (0.4 @ 0 extent: 0.6 @ 1) "a view's area is defined to be"

borderWidth: 0. "the rectangle 0@0 to 1@1"

incrButton ← Button newOff. "define increment button

and give it its action

Buttons are used in Switches"

incrButton onAction: [aCounterView model increment].

"put it in a switchView"

incrSwitchView ← SwitchView new model: incrButton.

"whose label is a form"

incrSwitchView label: ('+' asDisplayText form magnifyBy: 2@2).

"surrounded by white"

incrSwitchView insideColor: Form white.

"add the increment switch to topView"

topView addSubView: incrSwitchView

in: (0 @ 0 extent: 0.4 @ 0.5) "put it in the top-left corner"

borderWidth: (O@0 extent: 2@1). "Border is defined as left, top, right, bot-

tom"

decrButton ← Button newOff. "define the decrement switch"

decrButton onAction: [aCounterView model decrement].

decrSwitchView ← SwitchView new model: decrButton.

"its form is also put in there"

decrSwitchView label: ('-' as DisplayText form magnifyBy: 2@2).

decrSwitchView insideColor: Form white.

topView addSubView: decrSwitchView

in: (0 @ 0.5 extent: 0.4 @ 0.5) "add it in the lower-left"

borderWidth: (0@1 extent: 2@0). "under the increment button"

"start up topView's controller"

topView controller open

. The

s are

eir

f

er).

l text.

text.

 text

w. The

ws and

 the
Figure 16: Coordinate system and resulting View Layout of a CounterView with graphical

Buttons

In this open method, one sees the setup of the view as a composition of its three subviews

subview placement is done via the definition of relative rectangles. These relative rectangle

displayed in the left-hand figure in Figure 16. The definitions of the two SwitchViews and th

Buttons sets their actions so that they send the increment and decrement messages to the model o

the view. This will then have the desired effect of changing the value of the model (a Count

Hierarchical Text Organizer Example

The second example is the implementation of a simple browser view on a 2-level hierarchica

It presents a view with two subviews: a list of topics and a text view for the selected topic's

The model is an organizer, which holds onto its organization in a dictionary of text keys and

values. The keys are used in the topic list view and the values are the contents of the text vie

layout and menus of an organizer are shown in Figure 17.

The Organizer is included here as an example of a more sophisticated use of pluggable vie

also as an example of MVC class factoring. In this example, the single class (Organizer)

implements the functionality of the model and the view and also defined the menus used in

views two subviews.

ation by
Figure 17: Organizer view showing list and text views and menus

The organizer class has two instance variables; its organization dictionary and the currently

selected category (topic, section).

Model subclass: #Organizer

instanceVariableNames: 'organization currentCategory'

classVariableNames: ' '

poolDictionaries: ' '

category: 'Interface-Outlines'

The most basic messages to an organizer are for setting it up and for accessing the organiz

category.

Organizer methodsFor: 'initialize-release'

initialize

"set up a new empty Organizer. Its organization is an empty dictionary."

organization ← Dictionary new

Organizer methodsFor: 'organization list'

currentCategory

↑currentCategory "return the currently selected category"

organizationList

"return the list of organization keys (topics), the keys of the dictionary"

↑organization keys asSortedCollection

organization: aCategory

"set the current category and signal that the organization text has changed"

currentCategory ← aCategory.

self changed: #text

add Category

"add a new category, prompting the user (with a FillInTheBlank) for its name"

I newCategory |

elected
newCategory ← FillInTheBlank request: 'New Category' initialAnswer: (' ').

newCategory = " IfTrue: [↑self].

organization at: newCategory put: Text new.

currentCategory ← newCategory.

self changed: #organization

removeCategory

"prompt the user and remove the current category from the organization"

(BinaryChoice message: 'Are you certain that you want to

remove category', currentCategory, '?') ifTrue:

[organization removeKey: currentCategory.

currentCategory ← nil.

self changed: #organization]

renameCategory

"prompt the user for a new name and rename the current category"

| newCategory |

newCategory ← FillInTheBlank request: 'New Category'

initialAnswer: (currentCategory).

newCategory ='' ifTrue: [↑self].

organization at: newCategory put: (organization at: currentCategory).

organization removekey: currentCategory.

currentCategory ← newCategory.

self changed: #organization

organizationMenu

"return the menu to be used in the topic key list"

currentCategory == nil

ifTrue: [↑ActionMenu labels: 'add category' selectors: #(addCategory)].

↑ActionMenu labels: 'add category\rename\remove' withCRs

selectors: #(addCategory renameCategory removeCategory)

The text-related messages allow the user to query and set the text value for the currently s

category.

Organizer methodsFor: 'text'

text

"answer the text for the current category"

currentCategory == nil ifTrue: [↑Text new].

↑organization at: currentCategory copy

acceptText: aText

"this is sent to accept the changed text from the text subview"

currentCategory == nil ifTrue: [↑false].

organization at: currentCategory put: aText copy.

↑true

textMenu

"answer the menu used in the text subview"

↑ActionMenu

labels: 'again\undo\copy\cut\paste\do it\print it\inspect\accept\cancel' withCRs

lines: #(2 5 8)

tries from

 into

e
selectors: #(again undo copySelection cut paste dolt printlt inspectlt accept cancel)

The methods used to parse streams assume that special strings are used for separating en

their keys and for separating different entries. Making these strings variables allows many

common file formats (such as System Workspaces, password files, or tables) to be parsed

organizers.

Organizer methodsFor: 'parsing'

parseFrom: aStream entrySeparatorStrlng: entryStr keySeparatorStrlng: aKeyStr

"read an organization from the given stream using the two given strings to

parse the contents into entries and values"

| tmp key body |

[aStream atEnd] while False:

[tmp ← ReadStream on: (aStream upToAll: entryStr).

key ← tmp upToAll: aKeyStr.

body ← tmp upTo End asText.

organization at: key put: body]

The class messages for organizers provide for the creation of new instances and the simpl

loading of standard files.

Organizer class methods For: ’creation'

new

"make a default new Organizer"

↑super new initialize

Organizer class methods For: 'loading'

load: aFileName

"Read a new Organization in from the given file using empty lines and double empty lines as

the default separators. Many other formats can be parsed.'

"Organizer load: 'DT.ws'."

| file org cr |

file ← (FileStream oldFileNamed: aFileName).

cr ← Character cr.

org ← self new.

org parseFrom: file

entrySeparatorString: (String with: cr with: cr with: cr)

keySeparatorString: (String with: cr with: cr).

↑org

Organizer class methodsFor: 'view creation'

openFlie: aName

"read a new Organizer from the given file"

"Organizer openFile: 'DT.ws'."

↑self openOn: (self load: aName) label: aName

openOn: anOrganization label: aLabel

"open an Organizer view on the given organization"

"Organizer openOn: Organizer new label: 'Maintenance"'

tents of

istory,

ws the

hod

hown

ch as
| topView IistView textView |

topView ← StandardSystemView "top-level view"

model: anOrganization

label: aLabel

minimumSize: 250@250.

topView borderWidth: 1.

IistView ← SelectionlnListView "plug in topic list view"

on: anOrganization "model of list"

aspect: #organization

change: #organization: "message sent to set new list"

list: #organizationList "message sent to get list"

menu: #organizationMenu "message sent to get menu"

initialSelection: #currentCategory.

textView ← CodeView "plug in text editor view"

on: anOrganization "with its model"

aspect:#text "and its aspect accessing message"

change: #acceptText: "and change message"

menu: #textMenu. "and its menu accessing message"

"plug in a special controller for the text view"

textView controller: AlwaysAcceptCodeController new.

"plug the subviews into the top view"

topView addSubView: IistView

in: (0@0 extent: 1@0.3) "list view in the top 30%"

borderWidth: 1.

topView addSubView: texiView

in: (0@0.3 extent: 1@0.7) "text view in the bottom 70%"

borderWidth: 1.

topView controller open

The organizer described above can be used, for example, for creating a browser on the con

the Smalltalk-80 system's System Workspace, as shown in Figure 17.

FinancialHistory Example

On the following pages is a condensed version of the source code for the classes FinancialH

FinancialHistoryView and FinancialHistoryController as described in depth in [Goldberg and

Robson, 1983] and the ParcPlace Systems Smalltalk-80 VI 2.3 release fileset. Figure 2 sho

view layout and standard menu for the FinancialHistory example. Included here is the met

text for the MVC-related setup and interaction messages.

The controller class implements the default menus for use within FinancialHistoryView as s

below. It carries out user queries and sends messages to the model to change the state (su

after spending or receiving money).

MouseMenuController subclass: #FinancialHlstoryController

instanceVariableNames: ' '

o
classVariableNames: 'FHYellowButtonMenu FHYellowButtonMessages '

poolDictionaries: ' '

category: 'Demo-FinancialTools'

FinancialHistoryController methodsFor: 'initialize-release'

initialize

"initialize me and set up the appropriate menus"

super initialize.

self initializeYellowButtonMenu

FinancialHistoryController methodsFor: 'private'

initializeYellowButtonMenu

"plug in my menu and its messages from the class variables"

"The message yellowButtonMenu: yellowButtonMessages: is

implemented for all mouse-menu-controllers"

self yellowButtonMenu: FHYellowButtonMenu

yellowButtonMessages: FHYellowButtonMessages

FinancialHistoryController class methodsFor: 'class initialization'

initialize

"Specify the yellow button menu items and actions."

FHYellowButtonMenu ← PopUpMenu labels: 'spend\receive' withCRs.

FHYellowButtonMessages ← #(spend receive).

FinancialHistoryController methodsFor: 'menu messages'

receive

"Ask what amount is being received from what and send the appropriate

message to the model."

| receiveFrom amount |

"prompt the user with a FillInTheBlank prompter"

receiveFrom ← FillInTheBlank request: 'Receive from what?'.

receiveFrom = '' ifTrue: [↑self]. "return if he/she answers blank"

amount ← FillInTheBlank request: 'How much from ', receiveFrom,'?'.

amount =" ifTrue: [↑self].

"read a number out of this string"

amount ← Number readFrom: (ReadStream on: amount).

model receive: amount from: receiveFrom."send it on to the model"

Only the receive message for the controller is shown above; the spend message is closely

analogous to it.

The class FinancialHistoryView simply contains the view setup message for plugging the tw

BarChartViews into a topView and starting the appropriate controller.

View subclass: #FinancialHistoryView

instanceVariableNames: ' '

classVariableNames: ' ’

poolDictionaries: ' ’

category: 'Demo-FinancialTools'

FinancialHistoryView methodsFor: 'controller access'

defaultControllerClass

s are

nts
↑FinanciaIHistoryController

The setup message defines the topView and inserts the subviews into it. The BarChartView

defined in the support classes for the FinancialHistory example and are the bar chart eleme

seen in Figure 2.

FinancialHistoryView class methodsFor: 'instance creation'

open: aFHModeI

"open and schedule the MVC application for the Financial History given as the argument to

this message"

| aFHView aBCView topView | "define the top view (application window)"

topView ← StandardSystemView new.

topView model: aFHModel. "plug in the model"

topView borderWidth: 2.

topView insideColor: Form lightGray. "make the background light gray"

topView label: 'Financial History'. "label the view"

topView minimumSize: 400@300. "make it big"

"make the FHView for insertion into top-

View"

aFHView ← FnancialHistoryView new model: aFHModeI.

"add the FHView as a subview of topview"

topView addSubView: aFHView. "use the entire area of topView"

"define the expenditures BarChart"

aBCView ← BarChartView new

model: aFHModel expenditures. "its model is the expenditures dictionary"

"its area is the given absolute region"

aBCView insideColor: Form white.

aBCView borderWidth: 2.

"it has no controller"

aBCView controller: NoController new.

"add it as a subview"

aFHView addSubView: aBCView

in: (0.04@0.05 extent: 0.44@0.9)

borderWidth: 2.

"define the incomes BarChart similarly"

"its model is the incomes dictionary"

aBCView ← BarChartView new model: aFHModel incomes.

aBCView insideColor: Form white.

aBCView borderWidth: 2.

aBCView controller: NoController new.

"add it as a subview"

del-

raged

ny more

ion

e

w

n

e

, and

the

les are
aFHView addSubView: aBCView

in: (0.52@0.05 extent: 0.44@0.9)

borderWidth: 2.

"open the new top-level controller for the application"

topView controller open

The three examples presented here show some of the sophistication possible using the Mo

View-Controller paradigm and methodology in the Smalltalk-80 system. Readers are encou

to browse the Smalltalk-80 system interface classes or read the other references to see ma

examples of MVC programming.

Summary

The Model-View-Controller metaphor is a way to design and implement interactive applicat

software that takes advantage of modularity, both to help the conceptual development of th

applications, and to allow pieces already developed for one application to be reused in a ne

application.

The metaphor imposes a separation of behavior between the actual model of the applicatio

domain, the views used for displaying the state of the model, and the editing or control of th

model and views.

We have implemented the metaphor in the Smalltaik-80 system and have used this

implementation both to create the basic programming development tools used in the system

to develop a diverse collection of applications.

Appendices

As further reference materials, we include below excerpts from the subclass hierarchies of

abstract classes Model, View and Controller.

Subclass Hierarchies of the Basic MVC Classes

For the lists of the MVC-related class hierarchies, the class names and their instance variab

included.

Subclass Hierarchy of Class Model (excerpt)
Model ('dependents')

BinaryChoice ('trueAction' 'falseAction' 'actionTaken')

Browser ('organization' 'category' 'className' 'meta' 'protocol' 'selector' 'textMode')

Debugger ('context' 'receiverlnspector' 'contextlnspector' 'shortStack' 'sourceMap'

sourceCode' 'processHandle')

MethodListBrowser ('methodList' 'methodNarne')

Explainer ('class' 'selector' 'instance' 'context' 'methodText')

FileModel ('fileName')

File List ('list' 'myPattem' 'isReading')

HierarchicalFileList ('selectionName' 'isDirectory' 'emptyDir' 'myDirectory')

Icon ('form' 'textRect')

Inspector ('object' 'field')

Contextlnspector ('tempNames')

DictionaryInspector ('ok')

OrderedCollectionlnspector ()

StringHolder ('contents' 'isLocked')

ChangeList ('listName' 'changes' 'selectionlndex' 'list' 'filter' 'removed' 'filterList'

'filterKey' 'changeDict' 'doltDict' 'checkSystem' 'fieldList')

FillInTheBlank ('actionBlock' 'actionTaken')

Project ('projectWindows' 'projectChangeSet' 'projectTranscript' 'projectHolder')

TextColIector ('entryStream')

Terminal ('displayProcess' 'serialPort' 'localEcho' 'ignoreLF' 'characterLimit')

Switch ('on' 'onAction' 'offAction')

Button ()

OneOnSwitch ('connection')

SyntaxError ('class' badText' 'processHandle')

Subclass Hierarchy of Class View (excerpt)
View ('model' 'controller' 'superView' 'subViews' 'transformation' viewpont' 'window'

'displayTransformation' 'insetDisplayBox' 'borderWidth'

'borderColor' 'insideColor' 'boundingBox')

BinaryChoiceView ()

DisplayTextView ('rule' 'mask' 'editParagraph' 'centered')

FormMenuView ()

FormView ('rule' 'mask')

FormHolderView ('displayedForm')

IconView ('iconText' 'isReversed')

ListView ('list' 'selection' 'topDelimiter' 'bottomDelimiter' 'lineSpacing' 'isEmpty' 'emphasisOn')

ChangeListView ()

SelectionlnListView ('itemList' 'printltems' 'oneltem' 'partMsg' 'initialSelectionMsg'

 'changeMsg' 'listMsg' 'menuMsg')

StandardSysternView ('labelFrame' 'labelText' 'isLabelComplemented' 'savedSubViews'

'minimumSize' 'maximumSize' 'iconview' 'iconText' 'lastFrame' 'cacheRefresh')

ClockView ('myProiect' 'date')

BrowserView ()

FileUstView ()

InspectorView ()

NotiflerView ('contents')

StringHolderView ('displayContents')

FilllnTheBlankView ()

ProiectView ()

TextCollectorView ()

TerminalView ()

SwitchView ('complemented' 'label' 'selector' 'keyCharacter' 'highlightForm' 'arguments'

'emphasisOn')

BooleanView ()

TextView ('partMsg' 'acceptMsg' 'menuMsg')

CodeView ('initialSelection')

OnlyWhenSelectedCodeView ('selectionMsg')

Subclass Hierarchy of Class Controller (excerpt)
Controller ('model' 'view' 'sensor')

BinaryChoiceController ()

FormMenuController ()

MouseMenuController ('redButtonMenu' 'redButtonMessages' 'yellowButtonMenu'

'yellowButtonMessages' 'blueButtonMenu' 'blueButtonMessages')

ClockController ('clockProcess')

BitEditor ('scale' 'squareForm' 'color')

FormEditor ('form' 'tool' 'grid' 'togglegrid' 'mode' 'previousTool' 'color'

'unNormalizedColor' 'xgridOn' 'ygridOn' 'toolMenu' 'underToolMenu')

lconController ()
ProjectIconController ()

ScreenController ()

ScrollController ('scroIIBar' 'marker')

ListController ()

LockedListController ()

ChangeListController ()

SelectionlnListController ()

ParagraphEditor ('paragraph' 'startBlock' 'stopBlock' 'beginTypeInBlock'

'emphasisHere' 'initialText' 'selectionShowing')

TextEditor ()

StringHolderController ('isLockingOn')

ChangeController ()

FillInTheBlankController ()

CRFilllnTheBlankController ()

TextFilllnTheBlankController ()

ProjectController ()

TextCollectorController ()

TerminalController ()

TextController ()

CodeController ()

StandardSystemController ('status' 'labelForm' 'viewForm')

NotifierController ()

NoController ()

SwitchController ('selector' 'arguments' 'cursor')

IndicatorOnSwitchController ()

LockedSwitchController ()

.

e

ed

enders

ght be

s

 For
References

Adele Goldberg, 1983. Smalltalk-80: The Interactive Programming Environment. Addison-
Wesley Publishers, Menio Park, 1983

Adele Goldberg and David Robson, 1983. Smalltalk-80: The Language and its Implementation
Addison-Wesley Publishers, Menio Park, 1983

ParcPlace Newsletter (previously called the Smalltalk-80 Newsletter). Numbers 1-12 Availabl
from ParcPlace Systems, 2400 Geng Road, Palo Alto, CA 94303

HOOPLA! (Hooray for Object-Oriented Programming Languages!), Newsletter of OOPSTAD
(Object-Oriented Programming for Smalltalk Applications Developers Association).
Available from OOPSTAD, P.O. Box 1565, Everett, WA 98206

Further Reading

Stephen T. Pope. "Smalltalk-80 Applications Bibliography," Smalltalk-80 Newsletter #11,
ParcPlace Systems, September, 1987

Trygve Reenskaug. "User-Oriented Descriptions of Smalltalk Systems" printed in: Byte, The
Small Systems Journal, Special Smalltalk-80 Issue, August, 1981

Ralph E. Johnson. "Model/View/Controller" Department of C.S., U. of Illinois, Urbana-
Champaign, November, 1987

Journal of Object-Oriented Programming. P.O.Box 6338, 773 Woodland West Drive, Woodland
Park, CO 80866

Sam A. Adams. "MetaMethods: The MVC Paradigm" in HOOPLA! Volume l Number 4, July,
1988

To find out more about the use of the MVC classes within the Smalltalk-80 system, interest

readers are referred to the system itself. Using the MessageSet browsers for browsing all s

of the pluggable view initialization messages can be very informative. Examples of these mi

found in the "plugging" message on:aspect:change:menu:initialSelection: which is implemented

in class CodeView or the parallel messages in the other pluggable view classes such as

SelectionInListView or SwitchView.

One can also browse all references to the simple interactive user interface classes (such a

FillInTheBlank or BinaryChoice), or the open messages for the system's application views.

examples of advanced interaction usage, looking at implementors of the message controlActivity

can be instructional.

	Abstract
	Contents
	Introduction
	MVC and the Issues of Reusability and Pluggability
	The Model-View-Controller Metaphor
	Models
	Views
	Controllers
	Broadcasting Change
	Dependents
	A Standard for the Interaction Cycle

	An Implementation of Model-View-Controller
	Class Model
	Class View
	Class Controller
	StandardSystemView and StandardSystemcontroller

	User Interface Component Hierarchy
	Program Development Support Examples
	Workspaces
	Inspectors
	Browsers
	Debuggers
	Object Editors in Smalltalk-80 Applications

	View/Controller Factoring and Pluggable Views
	Models and MVC Usage

	MVC Implementation Examples
	Counter View Example
	Discussion
	Hierarchical Text Organizer Example
	FinancialHistory Example

	Summary
	Appendices
	Subclass Hierarchies of the Basic MVC Classes
	Subclass Hierarchy of Class Model (excerpt)
	Subclass Hierarchy of Class View (excerpt)
	Subclass Hierarchy of Class Controller (excerpt)

	References
	Further Reading

