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Outline

• Background and Theory
– Terminology
– Components of recognition systems

 Features and models

• Evaluation and Performance
– Evaluation metrics and design
– Performance survey

• Following talk
– Factor analysis and discriminative training
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Speech Processing Technologies:
Extracting Information from Speech

Speaker
Recognition

Words
“How are you?”

Language Name
English

Speaker Name
John Q. Public

Speech Signal

Gender 
Identification

Speech
Recognition

Gender 
Male or Female

Language
Recognition

Goal: Automatically extract information 
transmitted in speech signal

http://images.google.com/imgres?imgurl=www.fortworthgov.org/cmo/pio/citypage/2001/cell_tower.gif&imgrefurl=http://www.fortworthgov.org/cmo/pio/citypage/2002/cp20020107.asp&h=179&w=150&prev=/images%3Fq%3Dcellular%2Btower%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8
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Speaker Recognition Applications

Access Control
Physical facilities

Computer networks and websites

Access Control
Physical facilities

Computer networks and websites

Transaction Authentication
Telephone banking

Remote credit card purchases

Transaction Authentication
Telephone banking

Remote credit card purchases

Speech Data Management
Voice mail browsing

Speech skimming

Speech Data Management
Voice mail browsing

Speech skimming

Personalization
Intelligent answering machine

Voice-web / device  customization

Personalization
Intelligent answering machine

Voice-web / device  customization

Law Enforcement
Forensics

Home parole 

Law Enforcement
Forensics

Home parole 
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Speech Modalities

• Recognition system knows 
text spoken by person

• Examples: fixed phrase, 
prompted phrase

• Used for applications with 
strong control over user 
input

• Knowledge of spoken text 
can improve system 
performance

Application dictates different speech modalities:

• Recognition system does not know 
text spoken by person

• Examples: User selected phrase, 
conversational speech

• Used for applications with less 
control over user input

• More flexible system but also more 
difficult problem

• Speech recognition can provide 
knowledge of spoken text

Text-dependent Text-independent
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Voice Biometric

Strongest
security

• Voice biometric can be combined with other forms of 
security

– Something you have - e.g., badge

– Something you know - e.g., password

– Something you are - e.g., voice

• Speaker verification is often referred to as a voice biometric
• Biometric: a human generated signal or attribute for 

authenticating a person’s identity
• Voice is a popular biometric:

– natural signal to produce
– does not require a specialized input device
– ubiquitous:  telephones and microphone equipped PC

HaveKnow

Are



MIT Lincoln Laboratory
7

JHU WS2008 Summer School 
© 2008 MIT

Speaker Recognition Tasks

?

?

?

?

Whose voice is this?Whose voice is this?
?

?

?

?

Whose voice is this?Whose voice is this?

Identification

?

Is this Bob’s voice?Is this Bob’s voice?

?

Is this Bob’s voice?Is this Bob’s voice?

Verification/Authentication/
Detection

Speaker B

Speaker A

Which segments are from 
the same speaker?
Which segments are from 
the same speaker?

Where are speaker 
changes?
Where are speaker 
changes?

Speaker B

Speaker A

Which segments are from 
the same speaker?
Which segments are from 
the same speaker?

Where are speaker 
changes?
Where are speaker 
changes?

Segmentation and Clustering (Diarization)



MIT Lincoln Laboratory
8

JHU WS2008 Summer School 
© 2008 MIT

Likelihood Ratio Test

Speaker detection decision approaches have roots in signal detection theory

• 2-class Hypothesis test:
 H0: the speaker is not the target speaker

H1: the speaker is the target speaker. 

• Statistic computed on test utterance S as likelihood ratio: 

Likelihood S came from speaker model
Likelihood S did not come from speaker model

Λ  = log

Λ

< θ   reject

Feature 
extraction
Feature 

extraction

Speaker
Model

Speaker
Model

Background
Model

Background
Model

DecisionDecisionΣ
+

-

> θ   acceptΛ

ΛS
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Phases of Speaker Detection System

Two distinct phases to any speaker detection system

Feature 
extraction
Feature 

extraction
Model 

training
Model 

training

Training speech for 
each speaker

Bob

Sally

Model for each 
speaker

Sally

Bob

Training Training 
PhasePhase

Detected!Feature 
extraction
Feature 

extraction
Deection
decision

Deection
decision

Hypothesized identity: 
Sally

Detection Detection 
PhasePhase
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Features for Speaker Recognition

• Humans use several levels of perceptual cues for speaker 
recognition

Semantics, idiolect, 
pronunciations, 
idiosyncrasies 

Socio-economic 
status, education, 
place of birth 

Prosodics, rhythm, 
speed intonation, 
volume modulation 

Personality type, 
parental influence 

Acoustic aspect of 
speech, nasal, 
deep, breathy, 
rough 

Anatomical structure 
of vocal apparatus  

 

 

Semantics, idiolect, 
pronunciations, 
idiosyncrasies 

Socio-economic 
status, education, 
place of birth 

Prosodics, rhythm, 
speed intonation, 
volume modulation 

Personality type, 
parental influence 

Acoustic aspect of 
speech, nasal, 
deep, breathy, 
rough 

Anatomical structure 
of vocal apparatus  

 

 

High-level cues 
(learned traits)

Low-level cues 
(physical traits)

Easy to 
automatically 
extract

Difficult to 
automatically 
extract

Hierarchy of Perceptual Cues

• There are no exclusive speaker identity cues
• This workshop will primarily focus on acoustic cues
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Features for Speaker Recognition

• Desirable attributes of features for an automatic system 
(Wolf ‘72)

• Occur naturally and frequently in speech
• Easily measurable
• Not change over time or be affected by speaker’s health
• Not be affected by reasonable background noise nor 

depend on specific transmission characteristics
• Not be subject to mimicry

• Occur naturally and frequently in speech
• Easily measurable
• Not change over time or be affected by speaker’s health
• Not be affected by reasonable background noise nor 

depend on specific transmission characteristics
• Not be subject to mimicry

Practical

Robust

Secure

• No feature has all these attributes

• Features derived from spectrum of speech have proven to 
be the most effective in automatic systems
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Speech Production

• Speech production model:  source-filter interaction
– Anatomical structure (vocal tract/glottis) conveyed in speech spectrum

Vocal tractGlottal pulses

Time (sec)

Speech signal

Time (sec)
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Vocal Tract Configurations

• Different speakers will have different spectra for similar 
sounds 

Cross Section of
Vocal Tract

/AE/
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• Differences are in location and magnitude of peaks in 
spectrum

– Peaks are known as formants and represent resonances of 
vocal cavity

• The spectrum captures the formant location and, to some 
extent, pitch without explicit formant or pitch tracking
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Spectral Analysis

• Speech is a continuous evolution of the vocal tract  
– Need to extract time series of spectra
– Use a sliding window  - 20 ms window, 10 ms shift

...

Fourier 
Transform
Fourier 

Transform MagnitudeMagnitude

• Produces time-frequency evolution of the spectrum

Fr
eq

ue
nc

y 
(H

z)

Time (sec)
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Spectral Features

Cepstral
Vectors

Short-time
Spectral

Magnitude

Short-time
Spectral

Magnitude
Filter BankFilter Bank

Discrete
Cosine

Transform

Discrete
Cosine

Transform

• Difference (delta) cepstra are often appended to vector
• Typical feature vector dimension: 25-49
• Additional front-end processing

– Speech activity detection
– Compensation for channel variability 

 blind deconvolution, mean and variance norm, etc.

log()log()
3.4
3.6
2.1
0.0

-0.9
0.3
.1

3.4
3.6
2.1
0.0

-0.9
0.3
.1

...10ms
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Spectral Features

Fourier 
Transform
Fourier 

Transform MagnitudeMagnitude Log()Log() Cosine 
transform
Cosine 

transform
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Phases of Speaker Detection System
Speaker Models

Two distinct phases to any speaker Detection system

Feature 
extraction
Feature 

extraction
Model 

training
Model 

training

Training speech for 
each speaker

Bob

Sally

Model for each 
speaker

Sally

Bob

Training Training 
PhasePhase

Accepted!Feature 
extraction
Feature 

extraction
Detection
decision

Detection
decision

Hypothesized identity: 
Sally

Detection Detection 
PhasePhase
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Speaker Models

• Speaker models are used to represent the speaker-
specific information conveyed in the feature vectors

• Desirable attributes of a speaker model
– Theoretical underpinning
– Generalizable to new data
– Parsimonious representation (size and computation)

• Many different modeling techniques have been applied to 
speaker recognition problems

– Generative, discriminative, parametric, non-parametric, etc.
– We will focus on two popular and successful approaches

GMM-UBM – Gaussian Mixture Models adapted from a 
Universal Background Model

SVM-GSV – Support Vector Machines using GMM 
SuperVectors
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3.4
3.6
2.1
0.0

-0.9
0.3
.1

1xr

Gaussian Mixture Model

• Treat speaker as a hidden random source generating 
observed feature vectors

– Source has “states” corresponding to different speech 
sounds

Speaker 
(source)

Hidden speech 
state

3.4
3.6
2.1
0.0

-0.9
0.3
.1

2xr

3.4
3.6
2.1
0.0

-0.9
0.3
.1

3xr

…

Observed 
feature 
vectors
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Gaussian Mixture Model

• Hypothesize feature vectors 
generated from each state 
follow a Gaussian distribution

– Total pdf is a Hidden Markov 
Model

)(|( xbpxp
i

iis
rr ∑

Μ

1=

 = )λ ),, iiis p Σ( = μλ r

Transition 
probability

Feature distribution 
for state i 

2,1 ssπ

• Parameters can be estimated 
from training speech using 
Expectation Maximization (EM) 
algorithm

Variance

Mean

M
ixture W

eight

Variance

Mean

M
ixture W

eight

• Transition between states 
based on modality of speech

– Text-dependent case will 
have ordered states

– Text-independent case will 
allow all transitions

• For text-independent case, pdf
is a Gaussian Mixture Model
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Gaussian Mixture Model
Background Model

• We now can use the GMM to compute a log-likelihood ratio 
score

Front-end 
processing
Front-end 
processing

Speaker modelSpeaker model

Background 
model

Background 
model

Σ Λ

-

+

Reject  
Accept  

θ
θ

<Λ
>Λ

• The H1 likelihood is computed using the claimed speaker 
GMM

• But we also need an alternative model for H0 likelihood

)0|(log)1|(log HSpHSpLLR −=Λ=
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Background Modeling

• There are two main approaches for creating an alternative 
model for the likelihood ratio test

Speaker 
model

Speaker 
model

/

Bkg 1
model

Bkg 1
modelBkg 2

model
Bkg 2
modelBkg 3

model
Bkg 3
model

Cohorts/Likelihood Sets/Background 
Sets (Higgins, DSPJ91)

– Use a collection of other speaker 
models

– The likelihood of the alternative is 
some function, such as average, of 
the individual impostor model 
likelihoods

),...,1  ),(|(()0|( BbbBkgSpfHSp ==

Speaker 
model

Speaker 
model

/

Universal
model

Universal
model

General/World/Universal Background Model
(Carey, ICASSP91)

– Use a single speaker-independent model
– Trained on speech from a large number 

of speakers to represent general speech 
patterns

– Often MAP adaptation used to derive 
speaker model (Reynolds 96)

)|()0|( UBMSpHSp =
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GMM-UBM
Relevance MAP from UBM

• The target speaker model is derived from the UBM using 
unsupervised Bayesian adaptation

Target
Model

x xx
x x

xx
x x

UBM

Target 
training 
data– Probabilistically align target 

training data into UBM mixture 
states

– Update mixture weights, 
means and variances based 
on the number of occurrences 
in mixtures

• Based on development 
experiments, only means are 
adapted

μtgt = γ μtrn + (1−γ) μubm
γ = n / (n+r)

• Adaptation only updates parameters representing acoustic events 
seen in target training data

– Unseen events in testing do not count as evidence for or against target
• Other adaptation techniques can be applied

– MLLR, Eigen-voices
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Generative vs. Discriminative Models
Support Vector Machines

• The GMM-UBM is considered a generative
model

– The model is focused on representing the 
total distribution of the speaker data

– Parameters estimated with Maximum 
likelihood or Maximum A-Posteriori criteria

– Competition with other models comes 
through likelihood ratio

• Support Vector Machines (SVMs) are an 
example of discriminative models

– The model is focused on representing the 
boundary between competing speaker data

– Parameters are estimated with a maximum 
margin (separation boundary) criteria

– Competition with other classes directly 
optimized in model training

Class 0
Class 1

Class 0Class 1
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Support Vector Machine
Maximum Margin Hyperplane

• Can map non-separable data to higher dimensional space 
where a hyperplane can be found
– x b(x)
– Define kernel (distance) in high-dimensional space 

 K(x,y) = b(x)tb(y)

• Classifier that uses a 
maximum-margin separating  
hyperplane boundary 
provides good generalization
– Minimizes expected 

classification error on 
unseen test samples

– Only one hyperplane
maximizes margin

• Margin: Distance from the separating hyperplane to the 
nearest training sample

Maximum-margin
Hyperplane

Class 0

Class 1
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• SVM discriminant function

where
 weights
1  (class labels)

( , )  kernel function
support vectors

i

i

i

y
K

α =
= ±
• • =
=x

cKyf
i

iii += ∑ ),()( xxx α

Class 1
f(x)<0

Class 0
f(x)>0

Support Vector Machine 
Support Vectors

• Number of training samples retained as support vectors is 
often small 

• Projection into high-dimensional space can be explicit 
(b(x)) or implicit in kernel

• With explicit projection, scoring is a single dot-product

f(x)=0

cbcbybcbbyf t

i
iii

t

i
i

t
ii +=+⎥

⎦

⎤
⎢
⎣

⎡
=+= ∑∑ mxxxxxx )()()()()()( αα
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SVM using GMM Super Vectors
SVM-GSV

• The SVM-GSV is a merging of GMM-UBM and SVM 
classifiers

⎥
⎥
⎥

⎦
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μ
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MAP
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Adaptation
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Non-Target
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⎢

⎣
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1

ubmλTarget

Non-
target

Use a KL-based 
kernel 

Project each utterance 
into a high-dimensional 
space – stack mean 
vectors from GMM 

MAP
Adaptation

MAP
Adaptation

ubmλ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

nμ

μ
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SVM 
Scoring
SVM 

Scoring

m

Detection score
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Speaker Detection Systems
Feature/Models Recap

• Cepstral Features:
– Capture salient 

speaker information 
from speech signal

– Short-time spectral 
features convey 
information about 
vocal apparatus 

Feature 
extraction
Feature 

extraction
Model 

training
Model 

training

Training speech for 
each speaker

Bob

Sally

Model for each 
speaker

Sally

Bob

Model for each 
speaker

Sally

Bob

Training Training 
PhasePhase

Detected!Detected!Feature 
extraction
Feature 

extraction
Detection
decision

Detection
decision

Detection Detection 
PhasePhase

• GMM-UBM models:
– GMMs model the 

distribution of feature 
vectors (generative)

– Roughly capture 
underlying sound 
classes in speech

– Likelihood ratio 
formed with a UBM

– MAP adaptation from 
UBM used to derive 
speaker models

• SVM-GSV models:
– SVMs model the 

boundary between 
classes (discriminative)

– GMM-UBM stacked 
mean vectors form 
SuperVector

– SVM learns speaker-
dependent likelihood 
ratio 
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Speaker Detection Systems 
Channel/Session Effects

• Variability refers to changes in channel effects between 
training and successive detection attempts

• Channel/session effects encompasses several factors
– The microphones

 Carbon-button, electret, hands-free, array, etc
– The acoustic environment

 Office, car, airport, etc.
– The transmission channel

 Landline, cellular, VoIP, etc.
• Anything which affects the spectrum can cause problems

– Speaker and channel effects are bound together in spectrum 
and hence features used in speaker verifiers

• Channel/session compensation occurs at several levels 
– Features: blind-deconvolution
– Models: Eigen-channels
– Scores: Z-norm, T-norm

The largest challenge to practical use of speaker detection 
systems is channel/session variability

The largest challenge to practical use of speaker detection 
systems is channel/session variability
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Z Score Normalization
Znorm

• Target model LR scores have different biases and scales 
for test data

• Znorm attempts to remove these bias and scale differences 
from the LR scores

pooled

Tgt1 scores

Tgt2 scores

LR scores znorm scores– Estimate mean and standard-
deviation of non-target, same-
sex utterances from data 
similar to test data

– During testing normalize LR 
score

– Align each model’s non-target 
scores to N(0,1)

Tgt

TgtTgt
Tgt

x
xZ

σ
μ−Λ

=
)(

)(
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Test Score Normalization
Tnorm

• Introduced in 1999 by Ensigma (DSP Journal January 2000)
• Estimates bias and scale parameters for score 

normalization using fixed “cohort” set of speaker models
– Normalizes target score relative to a non-target model 

ensemble
– Similar to standard cohort normalization except for standard 

deviation scaling

coh

cohtgt
tgt

u
uT

σ
μ−Λ

=
)(

)(Target 
model

Target 
model

Cohort 
model

Cohort 
modelCohort 

model
Cohort 
modelCohort 

model
Cohort 
model

), cohcoh σμ(

Tnorm
score

Tnorm
score

• Used cohorts of same gender as target 
• Can be used in conjunction with Znorm

– ZTnorm or TZnorm depending on order
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Speaker Recognition Systems
Score Fusion

Feature 
extraction
Feature 

extraction GMM-UBMGMM-UBM

Feature 
extraction
Feature 

extraction SVM-GSVSVM-GSV

ubmλ

b

a1

a2

Fusion/calibration

Detection 
score

• Scores from different types of features/models can be combined 
using a simple fuser

– Requires scores from some development data to train fuser
• A generalized linear regression fuser works well
• An added benefit is we can get calibrated scores 

– E.g. [0-1] posterior probability estimates 
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Outline

• Background and Theory
– Terminology
– Components of recognition systems

 Features and models

• Evaluation and Performance
– Evaluation metrics and design
– Performance survey
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Evaluation Metrics

• In speaker detection, there are two types of errors that can 
occur

Miss: incorrectly reject a target trial
Also known as a false reject or Type-I error 

False Alarm: incorrectly accept a non-target trial
Also known as a false accept or Type-II error

• The performance of a detection system is a measure of the 
trade-off between these two errors

– The tradeoff is usually controlled by adjustment of the 
decision threshold

• In an evaluation, Ntarget target trials (test speaker = model 
speaker) and Nnon-target non-target trials (test speaker != 
model speaker) are conducted and error probabilities are 
estimated at threshold θ

target-nontarget N
  scores altarget tri-non #  )|alarm falsePr(      

N
  scores ial target tr#  )|missPr( θθθθ >

=
<

=
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Evaluation Metrics
ROC and DET Curves

Plot of Pr(miss) vs. Pr(fa) shows system performance
DET plots Pr(miss) and Pr(fa) on normal deviate scale

Receiver Operator 
Characteristic 

(ROC)

Decreasing 
threshold

Decreasing 
threshold

Better 
performance

Detection 
Error Tradeoff 

(DET)

PROBABILITY OF FALSE ALARM (in %) PROBABILITY OF FALSE ALARM (in %)

PR
O

B
A

B
IL

IT
Y 

O
F 

M
IS

S 
(in

 %
)

PR
O

B
A

B
IL

IT
Y 

O
F 

M
IS

S 
(in

 %
)
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Evaluation Metrics
DET Curve

PROBABILITY OF FALSE ACCEPT (in %)

PR
O

B
A

B
IL

IT
Y 

O
F 

FA
LS

E 
R

EJ
EC

T 
(in

 %
)

Equal Error Rate 
(EER) = 1 %

Wire Transfer:

False acceptance 
is very costly

Users may tolerate 
rejections for 
security

Toll Fraud:

False rejections 
alienate customers

Any fraud rejection 
is beneficial 

Equal Error Rate 
(EER) is often quoted 
as a summary 
performance measure

High Convenience

High Security

Balance

Application operating point depends on relative costs of the two errors
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Evaluation Metrics
Decision Cost Function

• In addition to EER, a decision cost function (DCF) is also 
used to measure performance

)|n)Pr(faC(fa)Pr(no)|missPr(tgt)C(miss)Pr(  )DCF( θθθ +=

C(miss) = cost of a miss

Pr(tgt) = prior probability of target trial

Pr(non) = 1-Pr(tgt) = prior probability of non-target trial

C(fa) = cost of a false alarm

• For application specific costs and priors, we can compare 
systems based on value of DCF
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Evaluation Design
Data Selection Factors

• Performance numbers are only meaningful when evaluation 
conditions are known

Speech qualitySpeech quality – Channel and microphone characteristics
– Ambient noise level and type
– Variability between enrollment and 

verification speech
Speech modalitySpeech modality – Fixed/prompted/user-selected phrases

– Free text

Speech durationSpeech duration – Duration and number of sessions of 
enrollment and verification speech 

Speaker populationSpeaker population – Size and composition
– Experience

The evaluation data and design should match the
application domain of interest
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Evaluation Design 
NIST Speaker Recognition Evaluations

• Annual NIST evaluations of speaker 
verification technology (since 1995)

• Aim: Provide a common paradigm for 
comparing technologies

• Focus: Conversational telephone & 
microphone speech (text-independent)

Evaluation Coordinator

Linguistic Data Consortium

Data Provider Comparison of 
technologies on 
common task

Evaluate

Improve

http://www.nist.gov/speech/tests/spk/index.htm

Technology Consumers

Application domain / parameters

Technology Developers
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Performance Survey
Range of Performance

Probability of False Accept (in %)

Pr
ob

ab
ili

ty
 o

f F
al

se
 R

ej
ec

t (
in

 %
)

Increas
ing co

nstr
aints

Text-dependent 
(Combinations)

Clean Data

Single microphone

Large amount of 
train/test speech

Text-dependent 
(Combinations)

Clean Data

Single microphone

Large amount of 
train/test speech

0.1%

Text-dependent 
(Digit strings)

Telephone Data

Multiple 
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Performance
NIST SRE 2008

• Large number of conditions broadly covering 
– Language: English, non-English (33 languages represented)
– Channels: Telephone, microphones (various locations)
– Sessions: Multiple 2.5 minute training telephone calls
– Duration: Train and test with 10 sec of speech
– Mutli-speakers: More than one speaker in train/test data

• 46 sites participated employing > 100 systems for all 
conditions

– Many variations and different system fusions
– GMM-UBM, SVM-GSV and channel compensation common 

components over almost all systems

• Workshop will focus on 1-2 conditions from SRE08
– Telephone 1-8 conversation train, 1 conversation test
– Cross-microphone train/test 
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SRE08
Telephone Train/Test

US-ENG ENG ALL
EER DCF EER DCF

3.6 1.7
0.571.3

EER DCF
1c/1c 3.7 1.6 6.0 2.9
8c/1c 1.5 0.43 2.4 1.3

GMM
+GSV

English train/test

• Results are representative of most GMM-UBM and SVM-
GSV systems

• Language and channel/session can have large effects
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SRE08
Interview Microphones Train/Test

All Microphones

• Analysis found improvements with better speech activity 
detection and channel compensation

3U+ASRSAD Submit
EER DCF EER DCF

Intmic/
intmic 3.3 1.9 5.0 2.6

ALL 
GMM+

GSV
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Summary

• This talk provided a broad overview of speaker recognition 
technology conveying

– An understanding of the major concepts behind modern 
speaker recognition systems

 Feature and models
– The identification of key elements in evaluating performance 

of a speaker recognition system
– An indication of the range of expected performance

• The following talk will focus on new and powerful 
techniques used with speaker recognition systems to 
improve robustness and accuracy 
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