
  

Perfect hashing using graph 
theory

TID 12.11. 2008

Jan Kaštil



  

Motivation
● Dictionary problem 

– Old and important
– How to efficiently access data in dictionary
– Sorted lists, hash tables , etc.

● Hash Table
– Collision solving
– Memory overhead



  

Hash function
● Lets U be universe of all possible keys
● Let S be set of all actual keys
● Let M be output interval:

● Hash function h is mapping:  U → M
● Synonyms: 
● Collision for two synonyms:

S⊂U
∣S∣≪∣U∣

∣M∣∣S∣yet∣M∣≪∣U∣

h x1=h  x2∧x1≠x2

x1∈S∧x2∈S



  

Good hash function
● Uniformly distributed output

– Birthday paradox 

● Fast computation
● Application specific need

– Cryptographic properties
– Order preserving

∣S∣=1,25∣M∣

Then probability of collision is about 50%



  

Perfect hash
● Lets have set K

m
 such that 
m∈M

K m={x∣x∈S∧h x =m }

Lets have set K
m
 such that 

than hash function is l-perfect, if
∀m∈M :∣K m∣l

● Perfect Hash is 1-perfect hash
● Minimal Perfect Hash is Perfect Hash with

∣M∣=∣S∣



  

Needed Graph Theory
● Graph is ordered pair G(V,E) where V is set of 

vertices and E is set of edges.
– Edge e is n-tuple  
– Edge of graph is couple
– Edge of hypergraph (r-graph) is r-tuple

● Degree of Vertex
● Random graph is Graph, created from graph 

with empty set of edges by adding new edges 
connecting randomly chosen vertices.

e=v1 , v2 , ... , vn∧∀ in : v i∈V

Deg V =∣{x∣x∈E∧∃ i : xi=V }∣



  

Needed Graph Theory 2

● Acyclic graph is loopless graph containing 
edge with at least one vertices with degree 1 
and after its removing, the remaining graph is 
still acyclic. Graph without edges is acyclic.

● Probability that random graph or hypergraph is 
acyclic depends on the rate between |V| and    
|E|.

● Loop in graph is the edge e:
∃ir∧∃ jr : vi=v j



  

Hash functions 
&

Random graphs
● Lets have r randomly chosen hash functions 

h
i 
and set of the keys S.

– Create the set V
– Set of edges 

● Such graph is random because hash functions 
are random

∣V∣=∣M∣

E={h1x , h2x , ... , hr x∣∀ x∈S }



  

Graph and Information
● We can create a mapping from E to any 

interval just by storing pairs <Edge, Number>
– This mapping could be perfect hash, but
– How efficiently found the right edge?

● Add information to the vertices
– Fast to retrieve

● Acyclic graph can have simple function (plus) 
to compute label of edge from the labeled 
vertices



  

Illustration



  

Algorithm CHM for Perfect 
Hashing

● Presented by Czech, Havas and Majevski
● Uses two random hash functions 
● Random graph formed by hashes and set S

– Has to be acyclic graph (loopless, not multigraph)
● If random graph doesn't meet criteria, hashes are 

generated again.
● To found graph in sufficiently small number of steps, 

graph should have 
● CHM is order preserving
● CHM requires about bits

∣V∣2,09∣E∣

∣S∣log ∣S∣



  

BMZ algorithm
● Why graph has to be acyclic?

– For fast computation of values of vertices
– To generate order preserving hash function

● BMZ does not require acyclic graph
– Maximal half of the graph can be in the cycles
– “right” graph can be found in reasonable time: 

∣V∣0,93∣E∣

● Only difference against CHM is in labeling 
vertices in the cycles   



  

BDZ algorithm
● Uses r hash functions (best results for r = 3)

– Each hash maps keys into subset of V
● No loops can exists 

● Generated r-graph has to be acyclic
● Values of edges do not represent the output of 

 PHF, but points to the right hash 
– Only linear space requirements
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