

Fast regular expression
matching in network

traffic

Jan Kaštil

Teoretická Informatika 10.12.2008

Motivation
● Security applications

– Snort, Bro, L7 filters
● Modern networks work at the 10 Gb/s speed

– More than 109 characters per second
● Not all data belongs to one stream

– More searching units can work in parallel
● Streams can be interleaved

– Need for storing information about previous
search for each stream

– Possible thousands or million streams

Finite Automata for pattern
matching

● Pattern could be described by regular
expressions

● Searching for regular expression is done by
Finite automata.

● Need for optimal implementation of Finite
Automata.

Nondeterministic Finite Automata
NFA is 5-tuple (Σ, Q, S, F, δ) :

– Σ is an alphabet
– Q is a set of states
– Is a starting state
– Is a set of finite states
– Is a state transition relation

● More than linear time complexity or more than one active
state

● Require big amount of data per stream
● Easier HW implementation
● Changing patterns is difficult

F⊂Q
S∈Q

⊆Q×∪{}×Q

Thompson's construction

● Create NFA for each part of the regular
expression and connect them together by
epsilon transitions.

● NFA can be easily transform into ɛ-free NFA
and implement in HW

● Commonly used for construction of NFA

Glushkov's construction
● Properties of Glushkov automaton

–

–

⊆Q××Q

∀〈q1 , a1 , q2〉 ,〈q3 , a2 , q4〉∈ :
q2=q4⇒a1=a2

● Example: (AT|GA)((AG|AAA)*)

Bitparallel implementation
● Each state of NFA is represented by bit vector with only one

active bit
– Each set of active states can be represented by bit vector of the same

length

● Bits for storing transition table without using any
property of the automaton

● Reducing this memory consumption by using property of
Glushkov construction
– Each state has vector of next states

– Each symbol has vector of states reachable by this symbol
– Bitwise and of these tables is vector of new states

– Leads to needed bits of memory

2∣Q∣∗∣∣∗∣Q∣

2∣Q∣∣∣∗∣Q∣

Deterministic Finite Automata
● DFA is NFA with condition that:

● Can be minimized, yet can have exponentially more states
than NFA in worst case

● Only one active state
– Small amount of memory per stream
– Only one possible transition

● Small implementation logic and big memory table
– Implementing DFA can be reduced to fast lookup in

transition table

∀〈qs1 , a1 , qk1〉 ,〈qs2 , a2 , qk2〉∈ :
qs1=qs2∧a1=a2⇒qk1=qk2

Reducing Memory Requirements
● Bit-Split algorithm

– Split input FA into several FA each of them
accept part of the input symbol. If all FAs
end in ending state, pattern is found.

● Special Memory structure
– If patterns are only string, FA is a tree.

Special structure such as treebitmap can
implement transition table.

● Transition table with hash functions
– Addition memory for collision resolution

Faster matching
● More matching units work in parallel

– Fails for faster streams
– Or scan each packets separately

● Accepting more characters per step
– Bigger alphabets
– Bigger transition table
– Sparse transition table

Literature

Gonzalo Navarro and Mathieu Raffinot: New Techniques for Regular Expression
Searching, Algorithmica (2005) 41: 89–116

Lin Tan, Brett Brotherton, Timothy Sherwoon: Bit-Split String Matching Engines
for Intrussion Detection and Prevention

Nathan Tuck, Timothy Sherwood, Brad Calder and George Varghese:
Deterministic memory-efficient string matching algorithms for intrusion
detection. In IEEE Infocom, Hong Kong, pages 333–340, 2004.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

