

TREE CONTROLLED GRAMMARS

Part One: Controlling Levels

Jiří Koutný ikoutny@fit.vutbr.cz

Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2 612 66 Brno, CZ

Contents

- Introduction and Motivation
 - Language Classes
 - Why TC Grammars?
- TC Grammars
 - Basic Definitions
 - Examples of Languages
- Properties of TC Languages
- Applications and Future Research
 - Parsing Based on TC Grammars
 - Modification of TC Grammars
- References

Language Classes

Classical classes (by Chomsky)

- $\mathscr{L}(\mathsf{REG})$
- $\mathcal{L}(\mathsf{LIN})$
- $\mathscr{L}(\mathsf{CF})$
- $\mathscr{L}(\mathsf{CS})$
- $\mathscr{L}(\mathsf{RE})$
- $^{ extsf{0}}$ $\mathscr{L}(\mathsf{ALL})$

Other classes (by Controlled Grammars)

- $\mathscr{L}(\mathsf{RC})$
- $\mathcal{L}(M)$
- □ \(\mathcal{L}(P) \)
- □ ℒ(PER)
- □ ℒ(FOR)
- □ £(TC)
- ...etc.

Typically
CFG + something

Why TC Grammars?

- Generates languages beyond CF
 - Like other controlled grammars
- Simple and natural extensions of CF grammars
 - Simpler than other controlled grammars?
- Derivation tree exactly like in CF case
- Parsing methods working in time O(n²)

Prerequisites

- 1. Context Free Grammars (CFG)
- 2. Linear, Regular grammar
- Derivation Step (⇒),
 Refleive and Transitive Closure of ⇒ (⇒*)
- 4. Language Generated by CFG (L(G))
- 5. Unambigous, Ambigous, Inherently Ambigous CFG

Tree Controlled Grammar

TC Grammar is a pair (G,R), where:

- G = {N,T,P,S} is a context-free grammar
- $R \subseteq (N \cup T)^*$ is a regular

 $L(G,R) = \{x \in L(G) \mid \text{there exists a derivation tree} \}$ of x such that each word obtained by concatenating all symbols at any level (except the last one) from left to right is in R}

Example I: {a^{2ⁿ}|n≥0}

$$G_1 = (\{S\}, \{a\}, \{S \rightarrow SS \mid a\}, S)$$

 $R_1 = S^*$
 $L(G_1, R_1) = (a^{2^n} \mid n \ge 0)$


```
Example II: \{a^nb^nc^n \mid n \ge 1\}

G_2 = (\{S,A,B,C\}, \{a,b,c\}, P, S)

P = \{S \rightarrow ABC, A \rightarrow aA \mid a, B \rightarrow bB \mid b, C \rightarrow cC \mid c\}

R_2 = \{S \mid ABC \mid aAbBcC\}

L(G_2,R_2) = \{a^nb^nc^n \mid n \ge 1\}
```



```
Example II: \{a^nb^nc^n | n \ge 1\}

G_2 = (\{S,A,B,C\}, \{a,b,c\}, P, S)

P = \{S \rightarrow ABC, A \rightarrow aA | a, B \rightarrow bB | b, C \rightarrow cC | c\}

R_2 = \{(S)^*(ABC)^*(aAbBcC)^*\}

L(G_2,R_2) = \{a^nb^nc^n | n \ge 1\}
```


Determine if x∈L(G,R)

- (G,R) is a TC grammar, where G is unambigious \Rightarrow
 - We can determine if $x \in L(G, R)$ in $O(n^2)$, n = |x|

Proof

- We can determine if $x \in L(G)$ in $O(n^2)$, n = |x|
- x∉L(G) ⇒
 - x∉L(G,R)
- x∈L(G) ⇒
 - We can construct unique derivation tree of x in O(n²)
 - Number of levels of derivation tree is ≤k.n (k depends on G)
 - Each level y is of the length ≤n, determine if y∈R in O(|y|)
 - Thus whole tree in O(n²) steps

Determine if x∈L(G,R)

This parsing metod exists for

- All unambigous CF languages
- Some inherently abigous CF languages (see Example III)
- Some non CF languages.

For some inherently ambigous language L there exists TC grammar (G,R) such L(G,R) = L.

```
L = \{a^m b^m c^n \mid m, n \ge 1\} \cup \{a^m b^n c^n \mid m, n \ge 1\}
```

- Is inherently ambigous CF language
- Exists TC grammar (G,R), L = L(G,R),
 in which G is unambigous.

Let $G = (\{S\} \cup N_1 \cup N_2 \cup N_3, T, P_0 \cup P_1 \cup P_2 \cup P_3, S),$ where

$$N_1 = \{A_1, B_1\}$$
 $N_2 = \{A_2, B_2, E_2\}$ $N_3 = \{A_3, B_3, E_3\}$

$$P_0 = \{S \rightarrow A_1 B_1 | A_2 B_2 | A_3 B_3 \}$$

$$P_1 = \{A_1 \rightarrow aA_1 | a, B_1 \rightarrow bB_1c | bc\}$$

$$P_2 = \{A_2 \rightarrow aA_2 \mid a, B_2 \rightarrow bB_2c \mid bE_2c, E_2 \rightarrow cE_2 \mid c\}$$

$$P_3 = \{A_3 \rightarrow aA_3 | a, B_3 \rightarrow bB_3c | bE_3c, E_3 \rightarrow bE_3 | b\}$$

And let $R = \{S\} \cup R_1 \cup R_2 \cup R_3$, where

$$R_1 = a^* A_1^* b^* B_1^* c^*$$

$$R_2 = a^*A_2b^*B_2c^* \cup a^*b^*E_2c^*$$

$$R_3 = a^*A_3b^*B_3c^* \cup a^*A_3b^*E_3c^*$$

- Define $G_i = (\{S\} \cup N_i, T, \{S \rightarrow A_i \mid B_i\} \cup P_i, S),$ for i=1,2,3
- Evidently $L(G) = L(G_1) \cup L(G_2) \cup L(G_3)$ and
 - $L(G_1) = \{a^m b^n c^n \mid m, n \ge 1\}$
 - □ $L(G_2) = {a^mb^nc^p | m,n \ge 1, p > n}$
 - □ $L(G_3) = \{a^mb^nc^p \mid m,p \ge 1, p < n\}$
- Each G_i is unambigous and $L(G_1)$, $L(G_2)$, $L(G_3)$ are mutually disjoint \Rightarrow G is unambigous

To see that L = L(G,R) observe that

- $L(G,R) = L(G_1, \{S \cup R_1\}) \cup L(G_2, \{S \cup R_2\}) \cup L(G_3, \{S \cup R_3\})$
- Choice of first production $S \rightarrow A_i B_i \Rightarrow$ only the production of P_i with control R_i can be applied.

Clearly $L(G_1, \{S\} \cup R_1) = L(G_1) = \{a^m b^n c^n | m, n \ge 1\}.$

Observe

- □ $L(G_2, {S} \cup R_2) = {a^nb^nc^p \mid n,p \ge 1, p > n}$
- □ $L(G_3, {S} \cup R_3) = {a^nb^nc^p \mid n,p \ge 1, p < n}$
- R₂ and R₃ guarantees the same number of a and b

Thus L(G,R) = L

ε-free TC Grammar

For every TC grammar (G,R) without ε-rules, the language L(G,R) is recursive.

Proof

- Let G=(N,T,P,S) and let x∈T*, |x|= n
- □ (note it's not necessary that x∈L(G))
- Let $T^{(N)} = \{y \in T^* \mid 1 \le |y| \le n\}$
- Let $F = \{x_1, x_2, ..., x_m \mid x_j \in R \text{ for } 1 \le j \le m, 1 \le |x_1| \le |x_2| \le ... \le |x_m| \le n, x_j \ne x_k \text{ for } j \ne k\}$
- Note that F is finite
- $\neg x \in L(G,R) \Leftrightarrow \exists F: x_1 \Rightarrow_G x_2 \Rightarrow_G ... \Rightarrow_G x_m, x_1 = 5, x_m = x$
- It suffices to check all F and thus L(G,R) is recursive.

TC Grammars and Chomsky hierarchy

Language L is

- a) Regular
- b) Linear
- c) Context-Free

if and only if there is a CF G=(N,T,P,S) such that

- a) $L = L(G, T^*N)$
- b) $L = L(G, T^*NT^*)$
- c) $L = L(G, (N \cup T)^*)$

L is regular \Leftrightarrow L = L(G,T*N)

Proof of a)

- $L(G,T^*N) \subseteq \mathcal{L}(REG)$
 - Let L = L(G, T^*N) for some G = (N,T,P,S)
 - In any derivation of (G, T^*N) it can be used rules of the form $A \rightarrow wB \mid w \ (A,B \in N, w \in T^*)$
 - Let $P' = P \cap N \times T^*(N \cup \{\epsilon\})$ and let G' = (N,T,P',S).
 - Then $L(G, T^*N) = L(G')$
- $\mathscr{L}(REG) \subseteq L(G,T^*N)$
 - Let L be regular and let G = (N,T,P,S) be a right linear grammar generating L
 - Then $L(G) = L(G,T^*N)$
- Thus L is regular \Leftrightarrow L = L(G,T*N)

Proof of **b**) is analogous, proof of **c**) is trivial.

TC Grammars and $\mathcal{L}(RE)$

- Let T be an alphabet. Then there exists a CF $G_T = (N,T,P,S)$ (depending only on T) such that for each type 0 language L, $L \subseteq T^*$, there exists regular set R_L , $R_L \subseteq (T \cup N)^*$, so that $L = L(G_T, R_L)$.
- Every type 0 language can be generated by a TC grammar (G,R), where G=(N,T,P,S) and $P \subseteq N \times (N^* \cup T)$.
- Every type 0 language can be generated by a TC grammar (G,R), where G=(N,T,P,S) and $R \subseteq N^*$.
- Proof can be found in [1].

Parsing Based on TC Grammars

- To determine if $x \in L(G,R)$
- Two phases
 - 1. To determine if $x \in L(G)$
 - Bottom-Up Parsing based on G in CNF
 - Don't need to generate derivation tree
 - Create sets with left sides of used rules
 - 2. To determine if $x \in L(G,R)$
 - Top-Down Parsing based on sets from phase 1
 - Construct derivation tree of x in L(G)
 - Test if each level of derivation tree is in R

See [2] for details and example.

Future Research

- Modification of TC Grammars
 - Controling Path in Derivation Tree (topic of my 2nd presentation)
- Controling by
 - Regular Language
 - Linear Language

References

1. K. Culik and H. A. Maurer: Tree controlled grammars, Computing, Vol. 19, pp. 129-139, 1977.

Navrátil Petr:

 Parsing Based on Regulated Grammars,
 diplomová práce,
 Brno, FIT VUT v Brně,
 2003

THANK YOU FOR YOUR ATTENTION