TID, November 25, 2009
SCATTERED CONTEXT GRAMMARS &
VLIW ARCHITECTURE MODELING

Motivation

= PhD thesis: Debugging Tools for Optimized Code
of VLIW Architectures (doc. Kolar)

= Applied research — Exploitation of SCG in VLIW
Architecture Modeling
1. Generator of Proper VLIW Assembler Code

2. VLIW assembler code analysis (parsing)
3. New techniques for instruction scheduling

= Co-author: Stanislav Zidek

Contents

1. Introduction
= VLIW architecture overview
= Scattered Context Grammar
2. Generator of Proper VLIW Assembler Code
° Examples
= SCG-based generators

3. Future Research
= SCG with Priority Rules

PART 1

VLIW Architecture Overview

= \ery Long Instruction Word
= 1980 (Josh Fisher)
= |nstruction Level Parallelism

= Control of many (10+) function units in every cycle
= ALU, MEMORY, BRANCH UNIT, MMU ...
= |nstructions contain many independent operations

VLIW Constraints

= Very complicated compilers (schedulers)
= High ILP = utilization of all units
= Not always possible = NOPs
* Planning of function unit utilizations at compile time!
= Knowledge of operation latencies, dependencies, ...

= Must control code for conflicts (no HW runtime check!)
= RAW (read after write), WAR (write after read)
= Write conflicts - WAW (write after write)

(Propagating) Scattered Context Grammar

» (Propagating) SCG is quadruple G=(V,T,P, S)

= Vis finite set of symbols

= Tissetof terminals, TCV
= Sisthestartsymbol,SeV-T
= Pisafinite set of productions of the form
(A, o, A 2 (X, oe) X)),
where VA :AEV-T, Vx.: x, EV
(Propagating SCG: x, € V)

Derivation Step, Generated Language

= Derivation Step

Let (A, ..., A)) 2 (Xy, ..., X,) EPandfor1<i<n+l
let u, € V*:

U AJULA, o U AU 0 U X UsXy e U XU

= Let — _ be a reflexive transitive closure of —_

= Generated Language
= L(G)={xET :S=:x}

Generative Power

= Z(SC) = Z(RE)
» Z(CF) c #(PSC) € #(CS)

PART 2

Example

- VLIW processor with 8 registersry, ..., rg
= 3 function units—A, B, C (e.g. ALU, MUL, MEM)
= Aoperations:oplr,r,, r3;0p2 71,1,y (r,=r,oprs)
= Boperations:op3r,,r,, r;(r,=r,opr;)
= Coperations:op4dr,ry; 0p5ry, 1, (r,=[r,Jor[r,]=r,)
- Function units are not pipelined
- nop operation = no new job for function unit
= QOperation latency
= A:opl,op2-1cycle

- B: op3 — 2 cycles

VLIW Assembler Code lllustration (1/4)

(1) opl rl,r2,r3 nop op5 r2,r3 -
(2) op2 r6,r3,r2 op3 r7,r3,r2 nop ;7
(3) nop nop nop ;o
(4) opl r4,r2,r3 nop op4 r4d,r2 B

No conflicts

opl rl,r2,r3 nop op5 r2,r3

VLIW Assembler Code lIllustration (2/4)

(1) opl rl,r2,r3 nop op5 r2,r3 B
(2) op2 r6,r3,r2 op3 r7,r3,r2 nop ¥
(3) nop nop nop ;o
(4) opl r4,r2,r3 nop op4 r4d,r2 B

No conflicts

op2 r6,r3,r2 op3 r7,r3,r2 nop

VLIW Assembler Code Illustration (3/4)

(1) opl rl,r2,r3 nop op5 r2,r3
(2) op2 r6,r3,r2 op3 r7,r3,r2 nop
(3) nop nop nop
(4) opl r4,r2,r3 nop op4 r4d,r2

No conflicts

nop nop nop

VLIW Assembler Code lllustration (4/4)

(1) opl rl,r2,r3 nop opS r2,r3 -
(2) op2 r6,r3,r2 op3 r7,r3,r2 nop ;7
(3) nop nop nop ;o
(4) opl r4,r2,r3 nop op4 r4d,r2 -

Write conflict!

opl r4,r2,r3 nop opd r4,r2

Generator — Motivation

= State of the art
= Manually created assembler code generators
= Reservation tables
= Register allocation
= We need formal method => automation
= Minimal number of rules

= Easy to parse

Methods 1

= Assume we have only ONE instruction:

Number of allowed combinations of operations is finite
Instruction is a sentence of language

Finite set of all allowed sentences is language (regular)
67 millions of combinations!

52 millions of allowed combinations!

= But we need to model also latencies and other constraints

=> This approach is not a solution!

LSlicing” Methods 2 (No Latencies)

* Right regular grammar
= 1255 rules
S =>op, A? =>op, r, B =>op, r;, CI" => op, r,, r,DI} =>"
=>0p, I, Iy, I3 | Opsry, I, 1, | Opy XT3 =>
= Right linear grammar
= 1165 rules
S =>op, A? => op, ry, B =>op, r,, r,,CIlt => .

= Context free grammar
= 447 rules

,Slicing” Methods 3 (No Latencies)

" Propagating SCG
= 447 rules — no improvement against CFG

= SCG

= 146 rules
= (@M, W) > (g, r, @MY1)
S => @°ABC# => @° op, W, R, R|BC# => op, r, @}, R, R|BC# =>
=>op, r, @™, R,R | op; W, R, R | C# =>
=>o0p, r, R, R|opyr, @24, R, R | C# =>
=>o0p, r;, R,R|opyr, @™, R, R | op, W, R # =>
=>o0p,r, R,R|opsr, R, R | op, ry @123}, Rt =>

LSlicing” Methods 4 (With Latencies)

= Right regular, right linear, CFG, ...
= 2500+ rules
= Propagating SCG
= 654 rules
= (@“, OP,) = (op,, @Y); (@™, R) = (ry, @Y); ...
= SCG
= 150 rules
S => @PABCSL,L L # => @? op; W, R, R|BCSAL,L# =>
=>op, r; @™, R, R|BCSAL,L# =>
=>op, r, @™, R, R | op; W, R, R |[CSAB,L# =>"

PART 3

Motivation

= SCG-based,slicing” generator — pretty good, but...
= The number of rules is still too high

@-rules are problem (large number of registers)
Replace @-rules with forbidding rules
(WR]_I WR1) % (ZI Z)

How to make sure that this rule will be applied
instead of a rule (Wg,) = (ry)?

,Default” SCG is not good enough
We need to add priority to rules!

(Propagating) SCG with Priority Rules

= (Propagating) SCG with Priority Rules is quintuple
G=(V,T,P,S)
= Vis finite set of symbols

= Tissetof terminals, TCV
= Sisthestartsymbol,SeV-T
= Pisafinite set of productions of the form
(A, o, A 2 (X, oe) X)),
wheren2>1, VA :AEV-T, Vx :x, EV
(Propagating SCG with Priority Rules: x, € V')

Priority Derivation, Generated Language

= letG=(V,T,P,m,S)is (P)SCG-P,pEP forl<i<n+llet
u. € V*: u=uA;...uA U,
V=U;X; ... U X U

n“*n>~n+11
W =UY; .o U Y, U
= Define Priority Derivation Step as
u T[:>G A [p]
iff u = v [p] and there is no r € P satisfying mt(r) > rt(p)
such that u =; w [r].

= Generated Language

* *

Generative Power

= ¥ (SC-P) =7? ¥ (RE)
= Z(PSC-P) =7 Z(CS)

= Proofs needed

,Forbidding” Method

= (P)SCG with priority rules (no latency)
= /A2 rules
= (P)SCG with priority rules (with latency)
= /6 rules
= i((Wgy, Wey) 2 (Z,2))=2 (Zis ,block” symbol)
= ((Wey) > (ry) =1
= (S, #) > (55, SLaLgLc#)) =0
S => ABCSL,LyL# =>"
=>0p; Wiy, Iy, I3 | 0p3 Wgy, fe, s | Nnop SAB,CH# =>

=>0p, , Iy r3 | 0p; , re rs | NOp SAB,CH

Conclusion

= New approach of VLIW assembler generators
= Minimal number of rules

= Still easy to parse

= Comparison of methods
(P)SCG-based generators
= (P)SCG with priority

References

= Fisher, Faraboschi, Young: Embedded ,\ggg;gggg

oistid o b

Computing - A VLIW Approach to &
Architecture, Compilers, and Tools, 2005

= Kolar: Exploitation of Scattered Context
Grammars to Model Constraints between
Components, ASIS 2009

= Meduna, Techet: Scattered Context
Grammars and their Applications, 2009 (2010)

Questions?

