Digital Images and Formal Languages

Jakub Žák

TID 2009

FIT BUT Brno

Outline

- I. motivation
- **II.image representation**
- III.grayscale images and WFA
- IV.conclusion

Motivation

- how to describe various types of images in efficient way?
- how to realize operations like zoom, filtering, compression...?

could formal languages help?

Image representation- basics

- raster/vector graphics vs. formal languages
- languages over n-letter alphabet Σ -> rational numbers
- 2D points- 2 coordinates- n^2 -letter alphabet
- sets of points-> images
- regular sets- black&white images

Image representation- addressing

- resolution- $2^n x 2^n, n \ge 1$
- alphabet- $\Sigma = \{0, 1, 2, 3\}$
- 2ⁿ x 2ⁿ => addressing quadrants
- each quadrant -> single symbol of \varSigma
- subquadrants inductively => whole address- n symbols long

Image representation- example

- Example 1:
 - for n=1 we obtain 4 pixel image

Example 2:		
for n=2 is it 16 pixel image	е	

		and a state of the	
11	13	31	33
10	12	30	32
01	03	21	23
00	02	20	22

3

2

0

Jakub Žák

Image representation- black & white

- resolution- $2^m x 2^m, m \ge 1$
- specify image
 - Boolean function- $\Sigma^m \rightarrow \{0,1\}$
 - black pixels- $L \subseteq \Sigma^m$
- multiresolution images- specified simultaneously for all possible resolutions
- specify multires. image
 - black pixels- $L \subseteq \Sigma^*$, where $\Sigma = \{0, 1, 2, 3\}$

Image representation- example

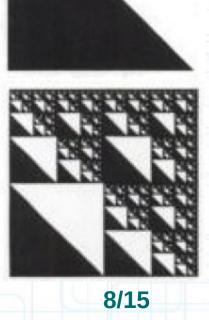
- Example 3: lets have $2^m x 2^m$ picture defined by regular set $\{1,2\} \Sigma^{m-1}$
- Example 4:

generally multiresolution image of(8x8) chess board by regular set $\Sigma^2 \{1,2\} \Sigma^*$

they both look the same for all resolutions
 Jakub Žák
 FIT BUT

Image representation- fractals

• Example 5:


now we have regular set $\{1,2\}^*0$

- we have clearly addressed infinitely many squares ilustrated at the top picture
- Example 6: $\{1,2\}^* 0 \Sigma^*$ (center picture)
- Example 7:

 {1,2,3}* {1,2}* 0 Σ*
 (bottom picture)

Jakub Žák

FIT BUT

- pixel values- real numbers (scaled to $0 2^k 1$)
- resolution $2^m x 2^m$
 - $-f: \Sigma^m \to \Re$
- multiresolution

 $-g: \Sigma^* \to \Re$

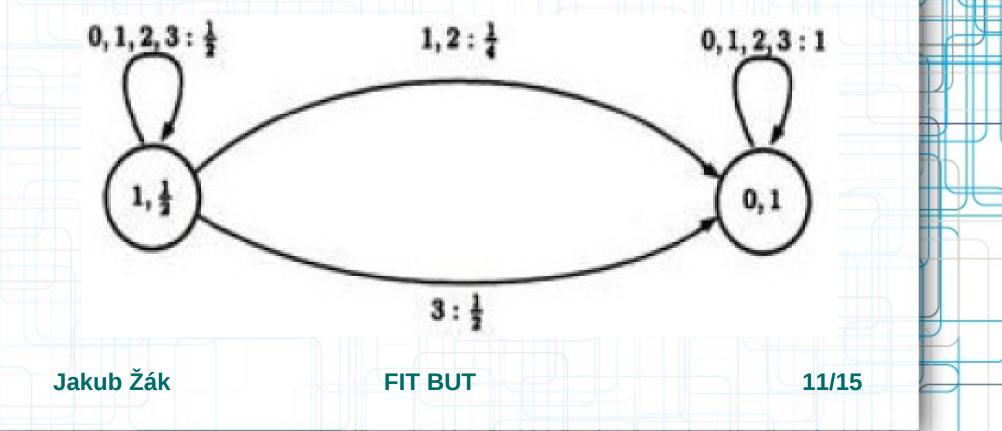
 average preserving(ap) function- same spot, same color for all resolutions

$$f(w) = 1/4 * [f(w0) + f(w1) + f(w3) + f(w4)], \forall w \in \Sigma$$

Jakub Žák

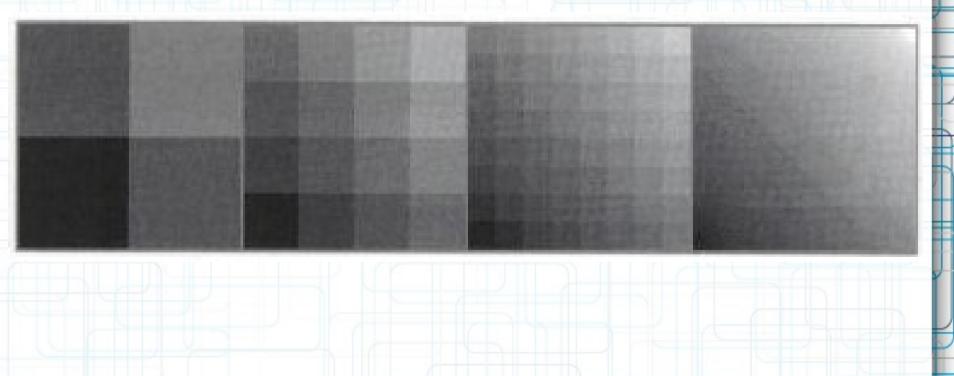
FIT BUT

• an m-state weighted finite automata(WFA) A over alphabet Σ is defined by


- 1) a row vector $I^A \in \Re^{1 \times m}$ (initial distribution) 2) a column vector $F^A \in \Re^{m \times 1}$ (final distribution) 3) weight matrices $W^A_a \in \Re^{m \times m}, \forall a \in \Sigma$
- the WFA A defines a multiresolution function f_A over Σ by $f_A(a_1a_2...a_k) = I^A * W^A_{a_1} * W^A_{a_2} * ... * W^A_{a_k} * F^A$, where $a_1...a_k$ is the pixel address

Jakub Žák

FIT BUT


• Example 8: automata $A, \Sigma = \{0, 1, 2, 3\}, I = (1, 0), F = (\frac{1}{2}, 1)$

$$W_{0} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}, W_{1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ 0 & 1 \end{pmatrix}, W_{2} = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ 0 & 1 \end{pmatrix}, W_{3} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$$

• Example 8: image corresponding to automata A

- resolutions 2x2, 4x4, 16x16, 256x256

Jakub Žák

FIT BUT

- note, that deterministic ap-WFA is weaker than nondet. ap-WFA
- image operations- matrices transformations

zooming

for an arbitrary multires. image f over Σ and word $u \in \Sigma^*$, let f_u denote the multiresolution image

 $-f_u(w) = f(uw)$, for every $w \in \Sigma^*$

$$I_u = I * W_{a_1} * W_{a_2} * ... * W_{a_k}$$
, where $u = a_1 ... a_k$

Jakub Žák

FIT BUT

Conclusion

- all images of regular character and fractals can be with infinite precision described by regular expressions(finite automata)
- all grey-scale images can be described by nondet. ap-WFA
- advantage in image compression, when described by WFA
- basic image operations like zoom

References

[1] G. Rozenberg, A. Salomaa eds. Handbook of Formal Languages. Springer-Verlag. 3 vol., chap 10.

15/15

• all images in this presentation are taken from [1]

FIT BUT

