Scattered context grammars and generic
reverse compilation

Luk4¥ Durfina

UIFS FIT VUT

SCG and reverse compilation | 1/44

| Introduction i

e Motivation and aims
e |deas
e Scattered context grammar

e Application in reverse compilation

SCG and reverse compilation | 2/44

| Motivation i

e a lot of space for research

e usefull applications

SCG and reverse compilation | 3/44

| Software security i

Probably the most usefull application

e every year milions of new unique malware programs

families of malware with similar code and behaviour

polymorphic and metamorphic viruses

e antivirus software, 1DS

SCG and reverse compilation | 4/44

| Way of reverse compilation T

e part of reverse engineering
e do not produce code in high level language
e find and mark patterns

e recognize specific behaviour

SCG and reverse compilation | 5/44

| Aim fl

Give answer

YES or NO

And what was a question?

e same behaviour

e level of an accuracy

SCG and reverse compilation | 6/44

| Ideas of solution i

Base

e imagine executable as word of some language L

e we need mechanism for comparing these words

SCG and reverse compilation | 7 /44

| Ideas of solution i

Transformation

e transformational grammar

e we are [not]? able to transform one word (executable) to
another

SCG and reverse compilation | 8 /44

| Ideas of solution i

Transformation

e transformational grammar

e we are [not]? able to transform one word (executable) to
another

° WA=?>WB

SCG and reverse compilation | 9 /44

| Ideas of solution i

Transformation

e transformational grammar

e we are [not]? able to transform one word (executable) to
another

° WA =7> WB
?
o W= Wcl, Wg = Wcz, WC1 = Wc2

SCG and reverse compilation | 10/ 44

| Ideas of solution i

Generation

e we are [not]? able to create generative grammar G

e G can generate “all” words (executables) with specific
behaviour

SCG and reverse compilation | 11 /44

| Ideas of solution i

Generation

e we are [not]? able to create generative grammar G

e G can generate “all” words (executables) with specific
behaviour

e G can also parse them

SCG and reverse compilation | 12 /44

| Ideas of solution i

Generation

e we are [not]? able to create generative grammar G

e G can generate “all” words (executables) with specific
behaviour
e G can also parse them
o LL-parsing

SCG and reverse compilation | 13 /44

| Formal model "

e has strong generative power
e can describe the problem

e is not too much complex for implementation

SCG and reverse compilation | 14 /44

| Scattered context grammar i

Definition

G=(V,T,P,S)
V is the total alphabet
T is the set of terminals, T C V
S is the start symbol, Se V — T
P is a finite set of productions of the form

(Al,...,An) — (Xl,...,Xn),

where A;,..., A €V —T,x1,...,x, € V*

SCG and reverse compilation | 15 /44

| Reasons for SCG i

Derivation step naturaly describes problem

For (A1,...,An) = (x1,...,%,) € P and

u= U1A1 000 u,,A,,u,,+1
V = U1X]1...UpXpnlUp+1

we write u = v[(A1,...,An) = (x1,...,Xn)]

SCG and reverse compilation | 16 /44

| Reasons for SCG i

Strong generative power

Z(SC) = Z(RE)

SCG and reverse compilation | 17 /44

| Reasons for SCG i

Strong generative power

Z(SC) = Z(RE)

Comparison with PSCG

allow € rules

SCG and reverse compilation | 18/44

| Reasons for SCG i

a = countA(); b = countB();
b = countB(); a = countA();
return magic(a,b); return magic(a,b);

SCG and reverse compilation | 19 /44

| Reasons for SCG i

a = countA(); b = countB();
b = countB(); a = countA();
return magic(a,b); return magic(a,b);

((b = countB()), (a = countA())) — ({(a = countA()), (b = countB()))

SCG and reverse compilation | 20/ 44

| Reasons for SCG i

a = countA(); a = countA();
b = countB(); b = countB();
return magic(a,b); return magic(a,b);

((b = countB()), (a = countA())) — ((a = countA()), (b = countB()))

SCG and reverse compilation | 21/44

| Reasons for SCG i

Example

countAQ);
b = countBQ);
c = countC();
return magic(a,b);

a

SCG and reverse compilation | 22 /44

| Reasons for SCG i

Example

int a = countA();

int b = countB();

volatile int ¢ = countC();
return magic(a,b);

SCG and reverse compilation | 23 /44

| Reasons for SCG i

Example

A: int a = countA(Q);
B: int b = countB();
C: volatile int ¢ = countC();
(AB): return magic(a,b);

(A, B,C,(AB)) = (A, B,¢, (AB))

SCG and reverse compilation | 24 /44

| Reasons for SCG i

Example

A: int a = countA(Q);
B: int b = countB();
C: volatile int ¢ = countC();
(AB): return magic(a,b);

(A, B, C,(AB)) — (A, B,¢, (AB))

SCG and reverse compilation | 25 /44

| Reasons for SCG i

Example

int a = countA();
int b = countB();
return magic(a,b);

SCG and reverse compilation | 26 /44

| Transformational scattered context grammar 0

Definition

G=(V,T,P,I)

V is the total vocabulary

T is the set of terminals (or the output vocabulary), T C V

P is a finite set of productions of scattered context productions
| is the input vocabulary, | C V

Derivation step

T(G, K): transformation T that G defines from K C [*
T(G,K)= {(x,y) x=cy,xeK,ye T*}

SCG and reverse compilation | 27 /44

| Transformational scattered context grammar 0

G=(V,T,PI)
V={AB,C,a,b,c}
T ={a, b, c}
I ={A B,C}

P ={(A,B,C) — (a,bb,c)}
We can take input sentence AABBCC:

AABBCC = ¢ aABbbcC = ¢ aabbbbcc

SCG and reverse compilation | 28 /44

| Description model for executables i

Action blocks

e granularity

e connections

SCG and reverse compilation | 29 /44

| ASM code transformation m

INC ax INC bx
INC bx INC ax
MUL bx MUL bx
ADD bx, ax MOV ebx, eax

PUSH eax PUSH eax

SCG and reverse compilation | 30/44

| ASM code transformation | &

(INCA) (INCB)
(INCB) (INCA)
(MULB) (MULB)
(ADDBA) (MOVBA)
(PUSHA) (PUSHA)

SCG and reverse compilation | 31/44

| ASM code transformation | &

(INCA) (INCB)
(INCB) (INCA)
(MULB) (MULB)
(ADDBA) (MOVBAY)
(PUSHA) (PUSHA)
Rules:

((INCBY), (INCA)) — ({INCAY), (INCB))

SCG and reverse compilation | 32/44

| ASM code transformation | &

(INCA) (INCB)
(INCB) (INCA)
(MULB) (MULB)
(ADDBA) (MOVBAY)
(PUSHA) (PUSHA)
Rules:

((INCB), (INCA)) — ({INCAY), (INCB))

SCG and reverse compilation | 33/44

| ASM code transformation | &

(INCA) (INCA)
(INCB) (INCB)
(MULB) (MULB)
(ADDBA) (MOVBAY)
(PUSHA) (PUSHA)
Rules:

((INCBY), (INCA)) — (({INCAY), (INCB))

SCG and reverse compilation | 34 /44

| ASM code transformation | &

(INCA) (INCA)
(INCB) (INCB)
(MULB) (MULB)
(ADDBA) (MOVBAY)
(PUSHA) (PUSHA)
Rules:

((INCBY), (INCA)) — ({INCAY), (INCB))
((MULB), (MOVBAY), (PUSHA)) — ((MULBY), ¢, (PUSHAY))

SCG and reverse compilation | 35/44

| ASM code transformation | &

(INCA) (INCA)
(INCB) (INCB)
(MULB) (MULB)
(ADDBA) (MOVBA)
(PUSHA) (PUSHA)
Rules:

((INCBY), (INCA)) — ({INCAY), (INCB))
((MULB), (MOVBA), (PUSHA)) — ((MULBY), ¢, (PUSHAY))

se compilation | 36 /44

| ASM code transformation | &

Emg?) (INCA)
e (INCB)
st)
(PUSHA) <)
Rules:

((INCBY), (INCA)) — ({INCAY), (INCB))
((MULB), (MOVBAY), (PUSHA)) — ((MULBY), ¢, (PUSHAY))

SCG and reverse compilation | 37 /44

| ASM code transformation | &

e e
(MULB) (INCB)
obis e
(PUSHA) <)
Rules:

((INCBY), (INCA)) — ({INCAY), (INCB))
((MULB), (MOVBAY), (PUSHA)) — ((MULBY), ¢, (PUSHAY))
((MULB), (ADDBA), (PUSHA)) — ((MULBY), ¢, (PUSHAY))

SCG and reverse compilation | 38 /44

| ASM code transformation | &

(INCA) o
{INCB) (INCB)
(MULB) o
(ADDBA) (PUSHA)
(PUSHA)

Rules:

((INCBY), (INCA)) — ({INCAY), (INCB))
((MULB), (MOVBAY), (PUSHA)) — ((MULBY), ¢, (PUSHAY))
((MULB), (ADDBA), (PUSHA)) — ((MULBY), ¢, (PUSHAY))

SCG and reverse compilation | 39 /44

| ASM code transformation m

INCA)

((INCA)
(INCB) (INCB)
(MULB) (MULB)
(PUSHA) (PUSHA)
Rules:

((INCBY), (INCA)) — ({INCAY), (INCB))
((MULBY), (MOVBAY), (PUSHA)) — ((MULBY), ¢, (PUSHA))
((MULB), (ADDBAY), (PUSHA)) — ((MULB), ¢, (PUSHA))

SCG and reverse compilation | 40/ 44

| ASM code transformation m

INCA)

((INCA)
(INCB) (INCB)
(MULB) (MULB)
(PUSHA) (PUSHA)
Rules:

((INCBY), (INCA)) — ({INCAY), (INCB))
((MULBY), (MOVBAY), (PUSHA)) — ((MULBY), ¢, (PUSHA))
((MULB), (ADDBAY), (PUSHA)) — ((MULBY), ¢, (PUSHA))

SCG and reverse compilation | 41 /44

| Grammar for ASM transformation i

Example
G=(V,T,P,I)

V = {{INCA), (INCB), (MULB), (ADDBAY), (MOVBA), (PUSHAY),
INCA, INCB, MULB, ADDBA, MOVBA, PUSHA}

T = {INCA, INCB, MULB, ADDBA, MOVBA, PUSHA}

I = {{INCA), (INCB), (MULB), (ADDBA), (MOVBAY), (PUSHA) }

P = {({INCBY), (INCA)) — ({INCA), (INCB)),

((MULB), (MOVBAY), (PUSHA)) — ((MULBY), ¢, (PUSHAY)),

((MULB), (ADDBA), (PUSHA)) — ((MULBY), ¢, (PUSHAY)),

((INCAY) — (INCA), ... }

SCG and reverse compilation | 42 /44

| Conclusion z

Thank you for your attention

SCG and reverse compilation | 43 /44

| Literature i

¥, A. Meduna and J. Techet.

Scattered Context Grammars and their Applications.
WIT Press, 2010.

¥ P. Szor.

Pocitacové viry - analyza ttoku a obrana.
Zoner Press, 2006.

SCG and reverse compilation | 44 /44

	Motivation
	Scattered context grammars
	Application in reverse compilation

