Tree-Adjoining
Grammars

Michal Minarik
Dilna moderni teoretické informatiky 2010
15.12.2010

Motivation

* linguistic considerations

» construct formalism related directly to the strong generative
capacity (structural description), more relevant to linguistic
descriptions than the weak generative capacity (set of strings)

* |exicalization of grammar formalism

* CFGs
string generating system
weak generative capacity

* Tree-Adjoining Grammars (TAGSs)
object generating (tree) system
strong generative capacity

Tree-adjoining grammar (TAG)

G=(ZN,[AS)
* where
Y. — finite set of terminal symbols
N — finite set of non-terminal symbols: X N N = @;
S — distinguished non-terminal symbol: S € N;

[— finite set of finite trees, called initial trees:
interior nodes — labeled by non-terminal symbols

frontier nodes — terminals or non-teminals , non-terminals marked
for substitution (anotated with a down arrow)

A —finite set of finite trees, called auxiliary trees:
interior nodes — labeled by non-terminal symbols

frontier nodes — terminals or non-terminals, non-terminals markes
for substitution except for one node, called foot note (anotated with
an asterisk *)

TAG - operations

I U A —set of elementary trees

* Elementary tree is called an X-type elementary tree if its root
is labeled by the non-terminal X.

A tree build by composition of two other tree is called a
derived tree.

Two composition operations — adjoining and substitution.

Adjoining
Operators

auxiliary tree f —root labeled by X

any (initial, auxiliary or derived) tree a — contaning a non-
substitution node n labeled by X

Resulting tree y — obtained by adjoining 5 to a at node n
Adjoining on a node marked for substitution is disallowed.

TAG - operations

Y
* |llustration of adjoining
Y N)
(a) (5]
X —
/\ y

* Substitution

on non-terminal nodes of the frontier of the tree
node is replaced by the tree to be substituted

A /N
X N — N\

TAG - derivation

* Both operations, adjunction and substitution, are considered
in a TAG derivation.

* Derived tree does not give enough information to determine
how it was constructed, derivation tree specifies it uniquely.

* Derivation tree
Root node — labeled by an S-type initial tree

Other nodes — labeled by auxiliary trees in case of adjunction or
initial trees in the case of substitution

A tree address is associated with each node — address of the node
in the parent tree to which operation has been performed.

0 — address of the root node, k — address of the kt"* child of the root node,
p - q — address of the gt"* child of the node at address p.

Lines (convention)
unbroken line — joins tree adjoined to its parent
dashed line — joins tree substituted to its parent

TAG - derivation example

* Elementary trees of some TAG * Derived tree for: yesterday a man
saw Mary s
Ad S
(ﬁyest) /\ (aa) ‘ I /\
Adv S*
| a yesterday NP VP
yesterday D/\ N \Y; NP
NP
(Xman) /\ | | |
S a man N
Dl N saw |
/\ | Mary
NP, | VP
/\ man * Derivation tree for: yesterday a man
(Asqw) saw Mary
- |
Saw (mary) N Aman (1) Apary (2.2) Byest (0) (]
! 6
I

a, (1
Mary a (1)

Properties of TAGs

* Tree set of a TAG:

T; ={t | tis derived from some S-rooted initial tree and t is
completed}

Initial tree is completed if there is no substitution nodes on the frontier of it.

* The string language of a TAG:
L; ={w | wis the yield of some t in T;}

* Properties of string languages of a TAG (TAL):
CFL c TAL c Indexed Languages < CSL
All closure properties of context-free languages also hold for tree-
adjoining languages.
Tree-adjoining languages can be parsed in polynomial time, in the
worst case in 0(n®) time.

Lexicalized grammars

* A grammar is lexicalized if it consist (only) of:

a finite set of structures (lexicon) each associtated with a lexical
item; each lexical item will be called the anchor of the
coresponding structure;
an operation or operations for composing the structures.
Requirements:
anchor must be an overt lexical item (not the empty string)
structures be of finite size

combining operations combine a finite set of structures into a finite
number of structures

* A structure is lexicalized if there is at least one overt lexical
item that appears in it.

One is designated as the anchor or the subset of more are
designated as multi-component anchor.

Lexicalization

* Set of selected structures during analysis of an arbitrary
sentence of finite length is finite. = These structures can be
combined in finitely many ways. = Lexicalized grammars are
finitely ambiguous.

* A sentence of finite length can only be finitely ambiguous. =
The search space used for analysis is finite. = It is decidable
whether or not a string is accepted by a lexicalized grammar.

* Lexicalization

We say that a formalism F can be lexicalized by another
formalism F’, if for any finitely ambiguous grammar G in F there
isa grammar G’ in F’ such that G’ is a lexicalized grammar and
such that G and G’ generate the same tree set.

* Can context-free grammars be lexicalized?

Lexicalization of CFGs

* Chain rules obtained by derivation (X =" X) or elementary
(X — X) are disallowed. (They generate infinitely ambiguous
branches without introducing lexical items.)

* Lexicalized CFG

each production rule has a terminal symbol on its right side
combining operation — standard substitution

* Greibach Normal Form CFG

weak lexicalization — it does not give us the same set od trees as
the original CFG

Lexicalization of CFGs - substitution

* Extension of the domain of locality of CFGs — making lexical
items appear as part of the elementary structures by using a
grammar on trees that uses substitution as comb. operation:

* Tree-Substitution Grammar (TSG)
G=(C,N,ILS)

* where
Y. — finite set of terminal symbols
N — finite set of non-terminal symbols: X N N = @;
S — distinguished non-terminal symbol: S € N;
[— finite set of finite trees, called initial trees:

interior nodes — labeled by non-terminal symbols

frontier nodes — terminals or non-teminals , non-terminals marked
for substitution (anotated with a down arrow !) [11 J

Lexicalization of CFGs with TSGs

* Finitely ambiguous context-free grammars cannot be
lexicalized with a tree-substitution grammar.

* Proof by contradiction

Suppose that finitely ambiguous CFGs can be lexicalized with TSG.

Idea: Any derived tree from lexicalized TSG G includes at least
one branch of bounded length from the root node to a node n
labeled by a (node on the frontier of an arbitrary initial tree t in

G).
Counter-example (CFG,):

S-S5S5,S5S—->a

a can occur arbitrary far from the root of the derivation tree.
Contradiction. =

Lexicalization of CFGs with TSGs

S S
| Sl S S Sl
(a1) a (az) | I (a3)

a a

* Lexicalized TSG given above does not generate all the trees
generated by the CFG (counter-example); for example:

S

N
S

S
VANVAN
S S S
.
a a

a

Q — n

Lexicalization of CFGs with TSGs

* Even if some CFGs can be lexicalized by using TSG, the choice
of the lexical items that emerge as the anchor may be too
restrictive.

* Example (CFG,):

S—->NPVP, VP - advVP, VP - v, NP - n

* Possible lexicalized TSG:

s VP VP NP
S
PN N /\ | |
NP vP adv. VPl v n
NPL VP
| (2) /\
(@) y v VPl (a3) (arg) (as)

* This lexicalization forces to choose adv (or n) as the anchor of
a structure a3, and it cannot be avoided. (Choice is not
linguistically motivated.) [14 J

Lexicalization of CFGs with TAGs

* Additional combining operation — adjunction.

* A tree-based system that uses substitution and adjunction
coincides with TAG.

* Example

CFG, lexicalized with TAG:
S
/N
(@) ‘ ; T

a (B1)
d

This lexicalization can derive all possible derived trees of CFG;,.

[15])

Lexicalization of CFGs with TAGs

* Example
CFG, lexicalized with TAG:

S

(1) /\ NP S
NP, VP (@) (B1) /\

| 0 adv Vp*

\

Now its possible to choose the anchor freely (a4).
The following trees can be derived:

S S

/\ /\
NP VP NP VP
| O
n adv VP

n Vv |

Vv

Lexicalization of CFGs with TAGs

* IfG = (%,N,P,S) is a finitely ambiguous CFG which does not
generate the empty string, then there is lexicalized tree-
adjoining grammar G,,, = (£,N, I, A, S) generating the same
language and tree set as G. Furthermore G,,, can be chosen to
have no substition nodes in any elementary trees.

* TAGs are closed under lexicalization

If G is a finitely ambiguous TAG that uses substition and
adjunction as combining operation, s.t. A € L(G), then there
exists a lexicalized TAG G, which generates the same language
and the same tree set as G.

Embedded push-down automaton (EPDA)

* Accepts TAL

* Similar to a PDA except that the push-down store is a
sequence od stacks.

* The stack head is always at the top of a stack, if it reaches the
bottom of a stack, it automatically moves to the top of the
stack below (left of) the current stack.

* M starts with one stack and may create new stack above and
below the current stack.

* Transition function §:

6 = (current state, input symbol, stack symbol) =
(new state, sb,, sb,, ..., sb,,, push/pop on current stack, st,, st,, ..., st,)

where sb,, sb,, ..., sb,, are the stacks introduced below the current stack
and st,, st,, ..., st, are the stacks introduced above the current stack
* In each of the new stacks specified information may be
pushed.

Embedded push-down automaton (EPDA)

* |llustration of the move of EPDA

) (input tape
'\

/

l

(current stack

Literature

* G. Rozenberg and A. Salomaa.
Handbook of Formal Languages, volume 3.
Springer, Berlin, 1997.

