
Tree-Adjoining

Grammars
Michal Minárik

Dílna moderní teoretické informatiky 2010

15.12.2010

Motivation

• linguistic considerations

• construct formalism related directly to the strong generative

capacity (structural description), more relevant to linguistic

descriptions than the weak generative capacity (set of strings)

• lexicalization of grammar formalism

• CFGs

• string generating system

• weak generative capacity

• Tree-Adjoining Grammars (TAGs)

• object generating (tree) system

• strong generative capacity

1

Tree-adjoining grammar (TAG)

� = (Σ,�, �,�, �)

• where

• Σ – finite set of terminal symbols

• � – finite set of non-terminal symbols: Σ ∩ � = ∅;

• � – distinguished non-terminal symbol: � ∈ �;

• � – finite set of finite trees, called initial trees:

• interior nodes – labeled by non-terminal symbols

• frontier nodes – terminals or non-teminals , non-terminals marked

for substitution (anotated with a down arrow ↓)

• � – finite set of finite trees, called auxiliary trees:

• interior nodes – labeled by non-terminal symbols

• frontier nodes – terminals or non-terminals, non-terminals markes

for substitution except for one node , called foot note (anotated with

an asterisk ∗)
2

TAG – operations

• � ∪ � – set of elementary trees

• Elementary tree is called an �-type elementary tree if its root

is labeled by the non-terminal �.

• A tree build by composition of two other tree is called a

derived tree.

• Two composition operations – adjoining and substitution.

• Adjoining

• Operators

• auxiliary tree � – root labeled by �

• any (initial, auxiliary or derived) tree � – contaning a non-

substitution node � labeled by �

• Resulting tree � – obtained by adjoining � to � at node �

• Adjoining on a node marked for substitution is disallowed.
3

TAG – operations

• Illustration of adjoining

• Substitution

• on non-terminal nodes of the frontier of the tree

• node is replaced by the tree to be substituted

4

Y

X

X

Y

X

(�) (�)

(�)

X

A↓

A
A

TAG – derivation

• Both operations, adjunction and substitution, are considered

in a TAG derivation.

• Derived tree does not give enough information to determine

how it was constructed, derivation tree specifies it uniquely.

• Derivation tree

• Root node – labeled by an S-type initial tree

• Other nodes – labeled by auxiliary trees in case of adjunction or

initial trees in the case of substitution

• A tree address is associated with each node – address of the node

in the parent tree to which operation has been performed.

• 0 – address of the root node, � – address of the ��� child of the root node,

� ∙ � – address of the ��� child of the node at address �.

• Lines (convention)

• unbroken line – joins tree adjoined to its parent

• dashed line – joins tree substituted to its parent

5

TAG – derivation example

• Elementary trees of some TAG • Derived tree for: yesterday a man

saw Mary

• Derivation tree for: yesterday a man

saw Mary

6

S*Adv

S

(�����)

yesterday

(��)

D

a

(����)
NP

D↓ N

man

S

NP� ↓ VP

NP	 ↓V

saw

(���
)

NP

N

Mary

(�����)

S

Ad S

yesterday NP VP

D N

mana

V

N
saw

NP

Mary

���

���� (1) ����� (2.2) ����� (0)

�� (1)

Properties of TAGs

• Tree set of a TAG:

• 	� = {
 |
 is derived from some S-rooted initial tree and
 is

completed}

• Initial tree is completed if there is no substitution nodes on the frontier of it.

• The string language of a TAG:

• �� = {� | � is the yield of some
 in 	�}

• Properties of string languages of a TAG (TAL):

• �� ⊂ 	�� ⊂ �������	���������	 ⊂ ��

• All closure properties of context-free languages also hold for tree-

adjoining languages.

• Tree-adjoining languages can be parsed in polynomial time, in the

worst case in O(��) time. 7

Lexicalized grammars

• A grammar is lexicalized if it consist (only) of:

• a finite set of structures (lexicon) each associtated with a lexical

item; each lexical item will be called the anchor of the

coresponding structure;

• an operation or operations for composing the structures.

• Requirements:

• anchor must be an overt lexical item (not the empty string)

• structures be of finite size

• combining operations combine a finite set of structures into a finite

number of structures

• A structure is lexicalized if there is at least one overt lexical

item that appears in it.

• One is designated as the anchor or the subset of more are

designated as multi-component anchor.
8

Lexicalization

• Set of selected structures during analysis of an arbitrary
sentence of finite length is finite. ⇒ These structures can be
combined in finitely many ways. ⇒ Lexicalized grammars are
finitely ambiguous.

• A sentence of finite length can only be finitely ambiguous. ⇒
The search space used for analysis is finite. ⇒ It is decidable
whether or not a string is accepted by a lexicalized grammar.

• Lexicalization

• We say that a formalism � can be lexicalized by another
formalism �’, if for any finitely ambiguous grammar � in � there
is a grammar �’ in �’ such that �’ is a lexicalized grammar and
such that � and �’ generate the same tree set.

• Can context-free grammars be lexicalized? 9

Lexicalization of CFGs

• Chain rules obtained by derivation (� ⇒∗
�) or elementary

(� → �) are disallowed. (They generate infinitely ambiguous

branches without introducing lexical items.)

• Lexicalized CFG

• each production rule has a terminal symbol on its right side

• combining operation – standard substitution

• Greibach Normal Form CFG

• weak lexicalization – it does not give us the same set od trees as

the original CFG

10

Lexicalization of CFGs - substitution

• Extension of the domain of locality of CFGs – making lexical

items appear as part of the elementary structures by using a

grammar on trees that uses substitution as comb. operation:

• Tree-Substitution Grammar (TSG)

� = (Σ,�, �, �)

• where

• Σ – finite set of terminal symbols

• � – finite set of non-terminal symbols: Σ ∩ � = ∅;

• � – distinguished non-terminal symbol: � ∈ �;

• � – finite set of finite trees, called initial trees:

• interior nodes – labeled by non-terminal symbols

• frontier nodes – terminals or non-teminals , non-terminals marked

for substitution (anotated with a down arrow ↓) 11

Lexicalization of CFGs with TSGs

• Finitely ambiguous context-free grammars cannot be

lexicalized with a tree-substitution grammar.

• Proof by contradiction

• Suppose that finitely ambiguous CFGs can be lexicalized with TSG.

• Idea: Any derived tree from lexicalized TSG � includes at least

one branch of bounded length from the root node to a node �

labeled by � (node on the frontier of an arbitrary initial tree
 in

�).

• Counter-example (CFG
1
):

• � → �	�, � → �

• � can occur arbitrary far from the root of the derivation tree.

• Contradiction. ∎

12

Lexicalization of CFGs with TSGs

• Lexicalized TSG given above does not generate all the trees

generated by the CFG (counter-example); for example:

13

S

a(�)

S

S↓ S

a
(�)

S

S S↓

a (��)

SS

S

S S S S

a a a a

Lexicalization of CFGs with TSGs

• Even if some CFGs can be lexicalized by using TSG, the choice

of the lexical items that emerge as the anchor may be too

restrictive.

• Example (CFG
2
):

• � → ��	��, �� → adv	VP, �� → �, �� → �

• Possible lexicalized TSG:

• This lexicalization forces to choose adv (or n) as the anchor of

a structure α�, and it cannot be avoided. (Choice is not

linguistically motivated.) 14

S

NP↓ VP

v(�)

S

NP↓ VP

adv VP↓

(�)

VP

adv VP↓

(��)

VP

v

(��)

NP

n

(��)

Lexicalization of CFGs with TAGs

• Additional combining operation – adjunction.

• A tree-based system that uses substitution and adjunction

coincides with TAG.

• Example

• CFG
1

lexicalized with TAG:

• This lexicalization can derive all possible derived trees of CFG
1
.

15

S

a

(�)

S

S* S

a
(�)

Lexicalization of CFGs with TAGs

• Example

• CFG
2

lexicalized with TAG:

• Now its possible to choose the anchor freely (��).

• The following trees can be derived:

16

S

NP↓ VP

v

(�) NP

n

(�)

S

adv VP*

(�)

S

NP VP

vn

S

NP

n

VP

adv VP

v

Lexicalization of CFGs with TAGs

• If � = Σ,�,�, � is a finitely ambiguous CFG which does not

generate the empty string, then there is lexicalized tree-

adjoining grammar �
���

= Σ,�, �,�, � generating the same

language and tree set as �. Furthermore �
���

can be chosen to

have no substition nodes in any elementary trees.

• TAGs are closed under lexicalization

• If � is a finitely ambiguous 	�� that uses substition and

adjunction as combining operation, s.t. � ∉ �(�), then there

exists a lexicalized 	��	�
���

which generates the same language

and the same tree set as �.

17

Embeddedpush-downautomaton (EPDA)

• Accepts TAL

• Similar to a PDA except that the push-down store is a
sequence od stacks.

• The stack head is always at the top of a stack, if it reaches the
bottom of a stack, it automatically moves to the top of the
stack below (left of) the current stack.

• M starts with one stack and may create new stack above and
below the current stack.

• Transition function �:

� = (current state, input symbol, stack symbol) =
(new state, sb

1
, sb

2
, …, sb

m
, push/pop on current stack, st

1
, st

2
, …, st

n
)

• where sb
1
, sb

2
, …, sb

m
are the stacks introduced below the current stack

• and st
1
, st

2
, …, st

n
are the stacks introduced above the current stack

• In each of the new stacks specified information may be
pushed. 18

Embeddedpush-downautomaton (EPDA)

• Illustration of the move of EPDA

19

input tape

z
0 current stack

z
0 y

2
z
0 y

1 z
0 y

0
z
0 w z

0 x
0

z
0 x

1

Literature

• G. Rozenberg and A. Salomaa.

Handbook of Formal Languages, volume 3.

Springer, Berlin, 1997.

20

