Dependency parsing

(based on paper written by Joakim Nivre)

Michal Mrnuštík

Fakulta informačních technologií

7. prosince 2010

Motivation

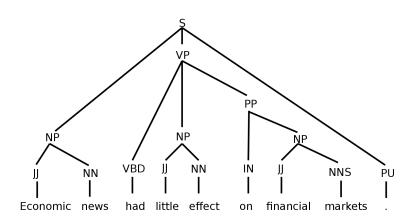
Applications

- Machine translation
- Information extraction

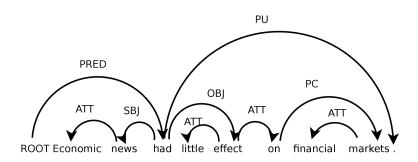
Advantages

- Transparent predicate-argument structure
- Better for languages with free or flexible word order

Phrase structure



Dependency structure



Dependency Graphs and Trees

Sentence x

- \bullet $x = w_0 w_1 \dots w_n$
- n words w₁ . . . w_n
- artificial root node w₀

Dependency graph

A dependency graph for sentence x is directed graph G = (Vx, A) where:

- $V_x = 0, 1, \dots, n$ is a set of nodes
- 2 $A \subseteq V_X \times L \times V_X$ is a set of labeled arcs

Well-formed dependency graph

• tree rooted at the node 0

Approaches

Data-driven

- Transition-based
- Graph-based

Grammar-based

- Context-free
- Constraint-based

Transition System

Transition System

$$S = (C, T, c_s, C_t)$$

- C is a set of configurations
- T is a set of *transitions* transition is function $t: C \rightarrow C$
- c_s is an *initialization function*, mapping a sentence $x = w_1, \dots, w_n$ to a configuration $c \in C$.
- $C_t \subseteq C$ is set of terminal configurations.

Configurations

Configuration

$$c = (\Sigma, B, A)$$

- $c \in C$
- Σ is stack containing nodes from V_X
- B is buffer containing nodes from V_x
- A is set of dependency arcs

Configurations

Initial configuration

$$c_s(x) = ([0], [1, \ldots, n], \{\})$$

Terminal configurations

$$c_t = ([0], [], A)$$

 $c_t \in C_t$ for any arc set A

Configurations

Configuration

$$c = ([\sigma|i], [j|\beta], A)$$

- i is node on top of the stack Σ
- σ is the rest of the stack Σ
- j is the first node in the buffer B
- β is the rest of the buffer B

Transitions

Transition sequence

$$C_{0,m} = (c_0, c_1, \ldots, c_m)$$

- $c_0 = c_s(x)$
- $c_m \in c_t$
- for every $i(1 \le i \le m)$, $c_i = t(c_{i-1})$ for some $t \in T$.

Result of parsing

$$G_{c_m} = (V_x, A_{c_m})$$

- G_{c_m} is dependency graph
- A_{c_m} is is the set of arcs in c_m

Transition set for projective sentences

LeftArc_l

$$([\sigma|i,j], B, A) \Rightarrow ([\sigma|j], B, A \cup \{(j,l,i)\})$$

 $i \neq 0$

RightArc_l

$$([\sigma|i,j],B,A) \Rightarrow ([\sigma|i],B,A \cup \{(i,l,j)\})$$

Shift

$$([\sigma], [i|\beta], A) \Rightarrow ([\sigma|i], [\beta], A)$$

Transition set for projective sentences

Set of all transitions T_p

- L is set of labels
- $|T_p| = 2 \cdot |L| + 1$
- there are two transitions for each $I \in L$ (LeftArc_i a RightArc_i) and Shift transition

Deterministic Transition-Based Parsing

Oracle

$$o: C \rightarrow T$$

- ideally should allways return the optimal transition t for a given configuration c
- can be aproximated by a classifier trained on treebank data

Parsing algorithm

PARSE(o,x)

- $c \leftarrow c_s(x)$
- ② while $c \notin C_t$
 - $t \leftarrow o(c); c \leftarrow t(c)$
- **1** return G_c

Projectivity

Projectivite arc

An arc $(w_i, l, w_j) \in A$ is projective if an only if $w_i \to^* w_k$ for all i < k < j when i < j, or j < k < i when j < i.

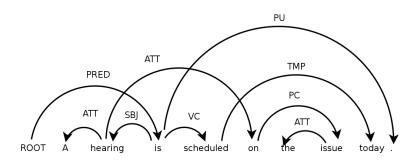
Projectivite dependency tree

A dependency tree G = (V, A) is projective dependency tree if it is dependency tree and all $(w_i, I, w_i) \in A$ are projective.

Non-projectivite dependency tree

A dependency tree is non-projective dependency tree if at least one $(w_i, I, w_j) \in A$ is not projective.

Non-projective dependency structure



Transition set for non-projective sentences

Set of all transitions T_u

- All transitions for projective sentences are used.
- Swap transition is added.

$$T_u = T_p \cup \{Swap\}$$

Swap

$$([\sigma|i,j],[\beta],A) \Rightarrow ([\sigma|j],[i|\beta],A)$$

0 < i < j

- projectivity is a property of dependency tree and word order
- Swap and Shift can sort input to projective order
 - o do *k Shift* transitions to get next word in projective order to stack
 - ② do k-1 Swap transitions to move preceeding words back to buffer

Thank you for your attention.

Bibliography I

- Holan, T.: Závislostní analýza češtiny.
 URL holan/gram
- Kübler, S.; McDonald, R.; Nivre, J.: Dependency Parsing. Synthesis Lectures on Human Language Technologies, 2009.
- Nivre, J.: Non-projective dependency parsing in expected linear time. 2009.
- Zeman, D.: A Complete Guide to Czech Language Parsing. URL http://ufal.mff.cuni.cz/czech-parsing/