
Partial Commutation and Traces
Jǐŕı Novotňák

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 612 00 Brno, CZ

www.fit.vutbr.cz/∼inovotnak



Table of contents

3 Introduction

4 Independence and dependence relation

7 Equivalence of traces

8 Trace monoids

9 Normal forms

14 Recognizable trace languages

15 Dependence graphs

17 Asynchronous automata

21 Asynchronous cellular automata

22 Practical use

Jǐŕı Novotňák Partial Commutation and Traces 2 / 24



Introduction

Motivation
• Model of parallelism and concurrency
• Rigorous mathematical model

What is the trace
• A sequence of letters
• One process containing jobs
• Some jobs can be commuted or executed simultaneously
• Some jobs have to be execute in order

Jǐŕı Novotňák Partial Commutation and Traces 3 / 24



Independence relation

Definition
• Let Σ a finite alpabet of letters
• I ⊆ Σ× Σ is a independece relation
• If (a,b) ∈ I, then their order doesn’t matter
• I(a) = {b ∈ Σ|(a,b) ∈ I}

Jǐŕı Novotňák Partial Commutation and Traces 4 / 24



Graphic representation

Graphic representation

• (Σ, I) is called independence alphabet
• For example

Σ = {a,b,c,d},
I = {(a,d), (d,a), (b,c), (c,b)}

(Σ, I) =

c
�
�
��

a
@
@
@@

d

b

Jǐŕı Novotňák Partial Commutation and Traces 5 / 24



Dependence relation

Definition
• D ⊆ Σ× Σ is a dependence relation
• If (a,b) ∈ D, then there exist dependency between a and

b and order is important
• D = Σ× Σ \ I
• D(a) = {b ∈ Σ | (a,b) /∈ I}
• Since I is irreflexive, there is a ∈ D(a)

Graphic representation

• (Σ,D) is called Dependence alphabet

(Σ,D) =

c

a

d

b

Jǐŕı Novotňák Partial Commutation and Traces 6 / 24



Equivalence of traces

Equivalence relation

• The relation I induces ∼I over Σ∗

• Two words x and y are equivalent under ∼I (denoted by
x ∼I y), if there exist a sequence z1, z2, ..., zk of words such
that x = z1 and y = zk and for all i, 1 ≤ i < k there exists
words z ′i , z ′′i and letters ai , bi satisfying:
zi = z ′i aibiz ′′i , zi+1 = z ′i biaiz ′′i and (a,b) ∈ I

Example

• Σ = {a,b,c,d}
• I = {(a,d), (d,a), (b,c), (c,b)}
• acdb ∼I cabd
• acdb and cabd are the same trace
• abcd and cabd are different traces

Jǐŕı Novotňák Partial Commutation and Traces 7 / 24



Trace monoids

Free partially commutative monoids

• ∼I is a congruence over Σ∗

• Monoid induced by the relation I is the Free partially
commutative monoid M(Σ, I)

• The elements of M(Σ, I) which are equivalence classes of
words of Σ∗ under the relation ∼I are called traces

• M(Σ, I) is called Trace monoid too

Jǐŕı Novotňák Partial Commutation and Traces 8 / 24



Normal forms

Normal forms of traces
• There are two normal forms
• Lexicographic normal form
• Foata normal form
• Σ must be totally ordered

Lexicographic normal form

• A word x is the lexicographic normal form of a trace if and
only if for all factorization x = ybuaz, where
y ,u, z ∈ Σ∗, (a,b) ∈ I and a < b, there exist a letter of u
which does not commute with a.

Jǐŕı Novotňák Partial Commutation and Traces 9 / 24



Normal forms

Foata normal form
• A word x of Σ∗ is in the Foata normal form, if it is the empty

word or if there exist an integer n > 0 and non-empty words
xi (1 ≤ i ≤ n) such that

• x = x1...xn

• for each i, the word xi is a product of pairwise independent
letters and xi is minimal with respect to the lexicographic
ordering

• For each 1 ≤ i < n and for each letter a of xi+1 there exist a
letter b of xi such that (a,b) ∈ D

• Every trace has a unique Foata normal form.

Jǐŕı Novotňák Partial Commutation and Traces 10 / 24



Computing normal forms

Algorithm to prepare data structures

• There is a simple algorithm to compute normal forms
• Let M(Σ, I) is a partially commutative monoid
• We use a stack for each letter of the alphabet Σ

• We scan word x (x ∈ Σ∗) from right to left
• When processing a letter a it is pushed on its stack and a

marker is pushed on the stack of all the letters b (b 6= a)
which do not commute with a

• When all letters has been processed we can compute
either the lexicographic normal form or the Foata normal
form

Jǐŕı Novotňák Partial Commutation and Traces 11 / 24



Retrieve normal forms

How to get lexicographic normal form

• We get a letter from top of stack of minimal letters
• We we pop a marker on each stack corresponding to a

letter b (b 6= a) which does not commute with a
• We repeat this loop until all stack are empty

How to get foata normal form

• We take within a loop the set formed by letters being on
the top of stacks

• Arrange the letters in the lexicographic order
• Pop corresponding markers (for each letter)
• Repeat this loop until all stacks are empty

Jǐŕı Novotňák Partial Commutation and Traces 12 / 24



Normal forms - lexNF example

Lexicographic normal form

• Let Σ = a,b,c,d
• Let I = (a,d), (d,a), (b,c), (c,b)

• Let w = badacb

* b
a * * *
a * * d
* * * *
* b c *

• w ′ = baadbc
• w ∼I w ′

Jǐŕı Novotňák Partial Commutation and Traces 13 / 24



Recognizable trace languages

Definition
• Let M be a monoid with the unit element 1
• A subset T ⊆ M is said to be recognizable if there exist a

homomorphism η from M to a finite monoid S such that
T = η−1(F) for some subset F ⊆ S.

• Homomorphism η recognizes T .

M-automaton
• A = (M,Q, δ,q0, F)

• δ : Q ×M → Q
• ∀q ∈ Q δ(q, 1) = q
• ∀q ∈ Q ∀m1,m2 ∈ M δ(q,m1m2) = δ(δ(q,m1),m2)

• The subset T of M recognized by the automaton A is
defined by T = {m ∈ M | δ(q0,m) ∈ F}

Jǐŕı Novotňák Partial Commutation and Traces 14 / 24



Dependence graphs

Dependence graph

• G(V , E, λ)

• G is directed node-labeled acyclic graph
• V is an at most countable set of vertices
• E ⊆ V × V is the directed edge relation
• λ : V → Σ is the node-labeling such that (λ(x), λ(y)) ∈ D if

and only if (x , y) ∈ E
⋃

E−1⋃ idV

Hasse diagram

• Allows visualization of factors
• Allows visual working with trace

Jǐŕı Novotňák Partial Commutation and Traces 15 / 24



Example

Dependency and input word

t = [acebdac]

(Σ,D) =

a

e

CC
b
��
c

d
�� SS

Dependence graph

a
Z
ZZ~

- s

c -�
��>

��
��

��1

:

e -
PPPPPPq

s

b -��
��
��1d

Z
ZZ~

a

c

Hasse diagram

a
Z
ZZ~

-

c -�
��>

e -
PPPPPPq

s

b -��
��
��1d

Z
ZZ~

a

c

Jǐŕı Novotňák Partial Commutation and Traces 16 / 24



Asynchronous automata

Asynchronous automata A

• Has a distributed finite state control such that independent
actions may be performed in parallel

• The set of global states is modeled as a Cartesian product
Q =

∏
i∈J

Qi , where the Qi are states of the local component

i ∈ J and J is some index set.
• With each letter a ∈ Σ we associate a read domain

R(a) ⊆ J and a write domain W (a) ⊆ J
• W (a) ⊆ R(a)

Jǐŕı Novotňák Partial Commutation and Traces 17 / 24



Transition function

Local transition function(
δa :

∏
i∈R(a)

Qi →
∏

i∈W (a)

Qi

)
a∈Σ

Global transition function

δ :

(∏
i∈J

Qi

)
× Σ→

∏
i∈J

Qi

Where
• δ is partially defined transition function
• δ

(
(qi)i∈J ,a

)
=
(
q′i
)

i∈J is defined if and only if δa
(
(Qi)i∈R(a)

)
is

defined

Jǐŕı Novotňák Partial Commutation and Traces 18 / 24



Read-write conflicts

Allowed conflicts
• Concurrent Read Exclusive Write

if R(a)
⋂

W (b) = ∅ for all (a,b) ∈ I
• Concurrent Read Owner Write

if R(a)
⋂

W (b) = ∅ for all (a,b) ∈ I and W (a)
⋂

W (b) = ∅ for
all a 6= b

• Exclusive Read Exclusive Write
if R(a)

⋂
R(b) = ∅ for all (a,b) ∈ I

• Exclusive Read Owner Write
if R(a)

⋂
R(b) = ∅ for all (a,b) ∈ I and W (a)

⋂
W (b) = ∅ for

all a 6= b

Jǐŕı Novotňák Partial Commutation and Traces 19 / 24



Changing between conflicts types

Changing between conflicts types

• Concurrent Read can be changed to Exclusive Read
• Exclusive Write can be changed to Owner Write

Changing between whole conflict types

• The original definition an asynchronous automaton
demands an EREW (Exclusive Read Exclusive Write) type
with R(a) = W (a) for all a ∈ Σ.

• EROW (Exclusive Read Owner Write) type is even a stronger
condition

• Each of the four described types can be changed to
EROW type.

Jǐŕı Novotňák Partial Commutation and Traces 20 / 24



Asynchronous cellular automata

Definition of asynchronous cellular automata

• An asynchronous automation A is called asynchronous
cellular, if the state space Q can be decomposed as
Q =

∏
a∈Σ

Qa such that W (a) = a and

R(a) = D(a) = {b ∈ Σ|(a,b) ∈ D} for all a ∈ Σ

Remark
• Every CROW-type asynchronous automata can be viewed

as asynchronous cellular by trivial transformation
(regrouping components) which does not change the
number of reachable global states

Jǐŕı Novotňák Partial Commutation and Traces 21 / 24



Practical use

Asynchronous automata

• Parallel control mechanism
• One-phase updating in cellular automata.

Traces self
• Optimization of executable code (Foata normal form)
• Comparing executables

Jǐŕı Novotňák Partial Commutation and Traces 22 / 24



References

References

G. Rozenberg and A. Salomaa, editors.
Handbook of formal languages, vol. 3: beyond words.
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

Jǐŕı Novotňák Partial Commutation and Traces 23 / 24



Thank for your attention.


	Introduction
	Independence and dependence relation
	Equivalence of traces
	Trace monoids
	Normal forms
	Recognizable trace languages
	Dependence graphs
	Asynchronous automata
	Asynchronous cellular automata
	Practical use

