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Introduction

Motivation
• Model of parallelism and concurrency
• Rigorous mathematical model

What is the trace
• A sequence of letters
• One process containing jobs
• Some jobs can be commuted or executed simultaneously
• Some jobs have to be execute in order
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Independence relation

Definition
• Let Σ a finite alpabet of letters
• I ⊆ Σ× Σ is a independece relation
• If (a,b) ∈ I, then their order doesn’t matter
• I(a) = {b ∈ Σ|(a,b) ∈ I}
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Graphic representation

Graphic representation

• (Σ, I) is called independence alphabet
• For example

Σ = {a,b,c,d},
I = {(a,d), (d,a), (b,c), (c,b)}

(Σ, I) =

c
�
�
��
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@
@
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d

b
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Dependence relation

Definition
• D ⊆ Σ× Σ is a dependence relation
• If (a,b) ∈ D, then there exist dependency between a and

b and order is important
• D = Σ× Σ \ I
• D(a) = {b ∈ Σ | (a,b) /∈ I}
• Since I is irreflexive, there is a ∈ D(a)

Graphic representation

• (Σ,D) is called Dependence alphabet

(Σ,D) =

c

a

d

b
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Equivalence of traces

Equivalence relation

• The relation I induces ∼I over Σ∗

• Two words x and y are equivalent under ∼I (denoted by
x ∼I y), if there exist a sequence z1, z2, ..., zk of words such
that x = z1 and y = zk and for all i, 1 ≤ i < k there exists
words z ′i , z ′′i and letters ai , bi satisfying:
zi = z ′i aibiz ′′i , zi+1 = z ′i biaiz ′′i and (a,b) ∈ I

Example

• Σ = {a,b,c,d}
• I = {(a,d), (d,a), (b,c), (c,b)}
• acdb ∼I cabd
• acdb and cabd are the same trace
• abcd and cabd are different traces
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Trace monoids

Free partially commutative monoids

• ∼I is a congruence over Σ∗

• Monoid induced by the relation I is the Free partially
commutative monoid M(Σ, I)

• The elements of M(Σ, I) which are equivalence classes of
words of Σ∗ under the relation ∼I are called traces

• M(Σ, I) is called Trace monoid too
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Normal forms

Normal forms of traces
• There are two normal forms
• Lexicographic normal form
• Foata normal form
• Σ must be totally ordered

Lexicographic normal form

• A word x is the lexicographic normal form of a trace if and
only if for all factorization x = ybuaz, where
y ,u, z ∈ Σ∗, (a,b) ∈ I and a < b, there exist a letter of u
which does not commute with a.
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Normal forms

Foata normal form
• A word x of Σ∗ is in the Foata normal form, if it is the empty

word or if there exist an integer n > 0 and non-empty words
xi (1 ≤ i ≤ n) such that

• x = x1...xn

• for each i, the word xi is a product of pairwise independent
letters and xi is minimal with respect to the lexicographic
ordering

• For each 1 ≤ i < n and for each letter a of xi+1 there exist a
letter b of xi such that (a,b) ∈ D

• Every trace has a unique Foata normal form.
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Computing normal forms

Algorithm to prepare data structures

• There is a simple algorithm to compute normal forms
• Let M(Σ, I) is a partially commutative monoid
• We use a stack for each letter of the alphabet Σ

• We scan word x (x ∈ Σ∗) from right to left
• When processing a letter a it is pushed on its stack and a

marker is pushed on the stack of all the letters b (b 6= a)
which do not commute with a

• When all letters has been processed we can compute
either the lexicographic normal form or the Foata normal
form
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Retrieve normal forms

How to get lexicographic normal form

• We get a letter from top of stack of minimal letters
• We we pop a marker on each stack corresponding to a

letter b (b 6= a) which does not commute with a
• We repeat this loop until all stack are empty

How to get foata normal form

• We take within a loop the set formed by letters being on
the top of stacks

• Arrange the letters in the lexicographic order
• Pop corresponding markers (for each letter)
• Repeat this loop until all stacks are empty
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Normal forms - lexNF example

Lexicographic normal form

• Let Σ = a,b,c,d
• Let I = (a,d), (d,a), (b,c), (c,b)

• Let w = badacb

* b
a * * *
a * * d
* * * *
* b c *

• w ′ = baadbc
• w ∼I w ′
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Recognizable trace languages

Definition
• Let M be a monoid with the unit element 1
• A subset T ⊆ M is said to be recognizable if there exist a

homomorphism η from M to a finite monoid S such that
T = η−1(F) for some subset F ⊆ S.

• Homomorphism η recognizes T .

M-automaton
• A = (M,Q, δ,q0, F)

• δ : Q ×M → Q
• ∀q ∈ Q δ(q, 1) = q
• ∀q ∈ Q ∀m1,m2 ∈ M δ(q,m1m2) = δ(δ(q,m1),m2)

• The subset T of M recognized by the automaton A is
defined by T = {m ∈ M | δ(q0,m) ∈ F}
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Dependence graphs

Dependence graph

• G(V , E, λ)

• G is directed node-labeled acyclic graph
• V is an at most countable set of vertices
• E ⊆ V × V is the directed edge relation
• λ : V → Σ is the node-labeling such that (λ(x), λ(y)) ∈ D if

and only if (x , y) ∈ E
⋃

E−1⋃ idV

Hasse diagram

• Allows visualization of factors
• Allows visual working with trace
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Example

Dependency and input word

t = [acebdac]

(Σ,D) =

a

e
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b
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d
�� SS

Dependence graph
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Asynchronous automata

Asynchronous automata A

• Has a distributed finite state control such that independent
actions may be performed in parallel

• The set of global states is modeled as a Cartesian product
Q =

∏
i∈J

Qi , where the Qi are states of the local component

i ∈ J and J is some index set.
• With each letter a ∈ Σ we associate a read domain

R(a) ⊆ J and a write domain W (a) ⊆ J
• W (a) ⊆ R(a)
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Transition function

Local transition function(
δa :

∏
i∈R(a)

Qi →
∏

i∈W (a)

Qi

)
a∈Σ

Global transition function

δ :

(∏
i∈J

Qi

)
× Σ→

∏
i∈J

Qi

Where
• δ is partially defined transition function
• δ

(
(qi)i∈J ,a

)
=
(
q′i
)

i∈J is defined if and only if δa
(
(Qi)i∈R(a)

)
is

defined
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Read-write conflicts

Allowed conflicts
• Concurrent Read Exclusive Write

if R(a)
⋂

W (b) = ∅ for all (a,b) ∈ I
• Concurrent Read Owner Write

if R(a)
⋂

W (b) = ∅ for all (a,b) ∈ I and W (a)
⋂

W (b) = ∅ for
all a 6= b

• Exclusive Read Exclusive Write
if R(a)

⋂
R(b) = ∅ for all (a,b) ∈ I

• Exclusive Read Owner Write
if R(a)

⋂
R(b) = ∅ for all (a,b) ∈ I and W (a)

⋂
W (b) = ∅ for

all a 6= b
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Changing between conflicts types

Changing between conflicts types

• Concurrent Read can be changed to Exclusive Read
• Exclusive Write can be changed to Owner Write

Changing between whole conflict types

• The original definition an asynchronous automaton
demands an EREW (Exclusive Read Exclusive Write) type
with R(a) = W (a) for all a ∈ Σ.

• EROW (Exclusive Read Owner Write) type is even a stronger
condition

• Each of the four described types can be changed to
EROW type.
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Asynchronous cellular automata

Definition of asynchronous cellular automata

• An asynchronous automation A is called asynchronous
cellular, if the state space Q can be decomposed as
Q =

∏
a∈Σ

Qa such that W (a) = a and

R(a) = D(a) = {b ∈ Σ|(a,b) ∈ D} for all a ∈ Σ

Remark
• Every CROW-type asynchronous automata can be viewed

as asynchronous cellular by trivial transformation
(regrouping components) which does not change the
number of reachable global states
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Practical use

Asynchronous automata

• Parallel control mechanism
• One-phase updating in cellular automata.

Traces self
• Optimization of executable code (Foata normal form)
• Comparing executables
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Thank for your attention.
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