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hierarchy between context-free and context-sensitive languages

[
m automaton counterpart to state grammars

m generalization of the classical pushdown automata
[

expansion deeper on stack - expand n-th non-input symbol
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Deep Pushdown Automaton

Deep Pushdown Automaton

A Deep Pushdown Automaton is septuple
M = (Q7 Z? r’ R7s7 S? F)

Q finite set of states

input alphabet

pushdown alphabet, where  C I’
finite set of rules

is the start state, s € @

is the start pushdown symbol, S € T

M n uw I T M

set of final states, F C Q

where I, @ and I are pairwise disjoint
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Rules

A Rule is quintuple
mgA — pv
where
m is the depth of expansion, m € /
q,p €Q
A non-input symbol, Acl — %

v string of pushdown symbols, v € '

Depth

m Finite number of rules = exists n such that depth of each rule < n
m M, denotes automaton with depth n
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Computational Step

Configuration

XEQR XX xTI*

Move
Let x, y be configurations. Then

X =Yy

if and only if one of the following holds:

pop x = (q,au,az),y = (q,u,z)
expand x = (g, w, uAz),y = (p, w, uvz) with mgA — pv € R and
occur(u,l —X)=m-—1

with u,v,w,z € I'*
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Accepted Language

Accepted Word

Deep pushdown automaton M accepts w € ¥* if

(s,w,S) =" (f,e,e)

with f € F and =" denoting the reflexive and transitive closure of =

Accepted Language
All words accepted by M is the language of M, denoted by L(M):

L(M) = {w e *: (s,w,S) =* (f,e,e),f € F}

Vrabel Lukas (FIT, BUT) Deep PDA FLTW, 2010 6 /21



Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R’ 57 {f})

R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }
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Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R’ 57 {f})

R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }

(s,aabbcc, S) = (p,aabbcc, XX) [1]
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Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R’ S? {f})

R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }

(s,aabbcc, S) = (p,aabbcc, XX) [1]
(p, aabbcc, X X) = (g, aabbcc, aXbX) [2]
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Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R’ 57 {f})
R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,

4:1pX — rab, 5:2rX — fc }
(s,aabbcc, S) = (p,aabbcc, XX) [1]
(p, aabbcc, X X) = (g, aabbcc, aXbX) [2]
(g,aabbcc,aXbX) = (q,abbcc, XbX) [pop]
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Example

M = ({S7p7 q? r’ f}’{a7 b’ C}7 {a’ b? C? S’X}7 R’ S?{f})
R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }

(s,aabbcc, S) = (p,aabbcc, XX) [1]
(p, aabbcc, X X) = (g, aabbcc, aXbX) [2]
(g,aabbcc,aXbX) = (q,abbcc, XbX) [pop]
(g, abbcc, XbX) = (p,abbcc, XbXc) [3]
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Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R’ S? {f})

R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }

s, aabbcc, S)
p, aabbcc, X X)

E (p, aabbcc, XX) [1]
(g, aabbcc, aXbX)

(

(p

(g, aabbcc, aXbX) [2]
(g, abbce, XbX) [pop]
(p, abbcc, XbXc) [3]
(r,abbcc, abbXc) [4]

q, abbcc, XbX)
, abbcc, X bXc)

R
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Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R’ S? {f})

R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }

(s,aabbcc, S)

(p, aabbcc, X X) =
(g, aabbcc, aXbX) =
(g, abbce, XbX) =
( =
( =

4

(p, aabbcc, XX) [1]
(g, aabbcc, aXbX) [2]
(g, abbce, XbX) [pop]
(p, abbcc, XbXc) [3]

p, abbcc, X bXc) (

r,abbcc, abbXc) (

r,abbcc, abbXc) [4]

* (r,cc, Xc) [pop, pop, pop]
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Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R7 S? {f})

R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }

s,aabbcc, S)
p, aabbcc, X X)
q, aabbcc, aXbX)

( (p, aabbcc, XX) [1]
(

(

(g, abbce, XbX)

(

(

(

(g, aabbcc, aXbX) [2]
(g, abbcc, XbX) [pop]
(p, abbce, XbXc) [3]
p, abbce, X bXc) (r,
r,abbcc, abbXc) (r,
r,cc,Xc) (

r,abbcc, abbXc) [4]

r, cc, Xc) [pop, pop, pop]
f,cc,cc) [5]

L R R
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Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R7 S? {f})

R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }

(s,aabbcc, S) (p, aabbcc, XX) [1]
(p, aabbcc, X X) (g, aabbcc, aXbX) [2]
(g, aabbcc, aXbX) (g, abbcc, XbX) [pop]
(g, abbce, XbX) (p, abbce, XbXc) [3]
(p, abbcc, X bXc) (r,abbcc, abbXc) [4]
(r,abbcc, abbXc) 3 (r, cc, Xc) [pop, pop, pop]
(r, (
(f, (

r,cc Xc) f,cc,cc) [5]
f,e,€) [pop, pop]

L I

2
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Example

M = ({57 p? q? r’ f}’ {37 b’ C}7 {a’ b? C? 5’ X}? R7 S? {f})

R={ 1:1s§ — pXX, 2:1pX — qaXb, 3: 29X — pXc,
4:1pX — rab, 5:2rX — fc }

(s,aabbcc, S) = (p,aabbcc, XX) [1]

(p, aabbcc, X X) = (g, aabbcc, aXbX) [2]

(g, aabbcc,aXbX) = (q,abbcc, XbX) [pop]

(g, abbce, XbX) = (p,abbcc, XbXc) [3]
(p,abbcc, XbXc) = (r,abbcc, abbXc) [4]
(r,abbcc,abbXc) =3 (r,cc,Xc) [pop, pop, pop]
(r,cc,Xc) = (f,cc,cc) 9]

(f, cc, cc) =2 (f,e,¢) [pop, pop]

Accepted language: L ={a"b"c" : n > 1}
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Infinite Hierarchy

Family of Languages

deepPD,, denotes family of languages accepted by deep pushdown
automata of depth k, where 1 < k < n

deepPD; = CF

Theorem
For every n > 1, deepPD,, C deepPD,.1 C CS
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Generalization

e-Rules

m Natural generalization - adding ¢ rules in the form: mgA — pe

m deepPD:, denotes family of languages accepted by deep pushdown
automata fo depth n with & rules
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Generalization

e-Rules

m Natural generalization - adding ¢ rules in the form: mgA — pe

m deepPD:, denotes family of languages accepted by deep pushdown
automata fo depth n with ¢ rules

deepPD,, C deepPD;,

Proof.

M cannot accept empty string without ¢ rules.
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Generalization

e-Rules

m Natural generalization - adding ¢ rules in the form: mgA — pe

m deepPD:, denotes family of languages accepted by deep pushdown
automata fo depth n with ¢ rules

Theorem
deepPD,, C deepPD;,

Proof.

M cannot accept empty string without & rules.

Open Promblem

What about languages without empty string?
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Informal Proof

m simulate moves of M} by M,
m do not generate to-be-erased symbols on stack
m but we must be able to simulate the moves involving this symbols
m solution: "save” them into the state logic
m restriction: as set of states is finite, the number of "remembered”
symbols is limited by some k
Example

(g, u,aaAbbBcc) — ({(g, AB), u,aaAbbBcc)
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Example

With e-Rules

(g, u, aaAbbBcc)
(p, u, aaAbbBccc)

(p, u,aaAbbBccc) [2gB — pBc]

=
= (p, u,aaAbbccc) [2pB — pe]
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With e-Rules

(g, u, aaAbbBcc)
(p, u, aaAbbBccc)

(p, u,aaAbbBccc) [2gB — pBc]
(p, u, aaAbbccc) [2pB — pe]

4u

Example

Without e-Rules

1:2(q,AB)B — (p,AB)c  3:1(p,AB)A — (p,A)A
2:2(q,AB)B — (p,AB)Bc
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With e-Rules

(g, u, aaAbbBcc)
(p, u, aaAbbBccc)

(p, u,aaAbbBccc) [2gB — pBc]
(p, u, aaAbbccc) [2pB — pe]

4u

Example

Without e-Rules

1:2(q,AB)B — (p,AB)c  3:1(p,AB)A — (p,A)A
2:2(q,AB)B — (p,AB)Bc

({q,AB),u,aaAbbBcc) = ({p, AB), u, aaAbbccc) [1]
((p,AB), u,aaAbbccc) = ((p,A),u, aaAbbccc) 3]
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k-Limited Erasing

As there is finite number of states, we can track the erased symbols only
to some depth k - we can eliminate the e-rules only from automata with
k-limited erasing.

k-Limited Erasing

Let M = (Q,%,T,R,s,S, F) be a deep pushdown automaton with
erasing rules. M: erases its non-input symbols in k-limited way, if for
every w € L(M:) there exists a sequence of configurations

(s,w,S) =* (f,e,e), f € F, that satisfies following properties:

m Let N, be the set of non-input symbols erased at some point of
derivation.

m There exists such k € /, that the depth of each A € N. in each
configuration is < k
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Sketch of Proof

For each deep PDA M, which erases its non-input symbols in k-limited
way, there exists a deep PDA M), such that L(M5) = L(M,). € ¢ L(M5).

Proof

mlet M =(Q,X,I,R,s,S, F) that erases its non-input symbols in
k-limited way.

m We will construct M,, = (Q',%,I, R, (s,S),S, F'), that simulates
M:'s derivations.

m We must describe the construction of Q’, R’ and F’
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Construction of Q'

the set of non-input symbols, N =T — %

=2

N the set of symbols that can be erased in arbitrary number of

moves, N. C N
N = {A|A € N}
prefix(u, i) is u's prefix of length i if |u| > i, otherwise it is u. i > 0.
suffix(u, i) u = prefix(u, i)suffix(u, i).
)

occur(u, W) number of occurrences of symbols from W in the word u

Construction of @’

Q' = {{q,u)|q € Q,u € prefix((NUN)*, k)}
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Construction of F/ and R’

Construction of F’

Add each (f,e) € Q’, such that f € F, to F’

Construction of R’

Construction of R’ consists of three steps:
transfer rules transfering non-input symbols from stack to the state
simulation of erasing rules

simulation of expansion rules
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Transfer Rules

Transfer Rules

For each (q,u) € Q',|u| < k and for each A € N:
m let d = occur(u, N) +1
m add d{q,u)A — (q,uA)Ato R’
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Transfer Rules

Transfer Rules

For each (q,u) € Q',|u| < k and for each A € N:
m let d = occur(u, N) +1
m add d{q,u)A — (q,uA)Ato R’

fn(u) homomorphism over (I U N)* defined as fy(A) = A for
A€ (NUN) and fy(a) = ¢ otherwise.

Example

m fy(aAbBc) = AB
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Erasing Rules

Erasing Rules

For each mgA — pe € R and each (g, uAv) € Q'

B u or v must contain at least one non-input symbol
m let X € N denote the first non-input symbol occuring in the word uAv
m add 1(q, uAv)X — (p,uv)X to R’ if occur(u,NUN) =m —1

Vrabel Lukas (FIT, BUT) Deep PDA FLTW, 2010 17 /21



Erasing Rules

Erasing Rules
For each mgA — pe € R and each (g, uAv) € Q'

B u or v must contain at least one non-input symbol

m let X € N denote the first non-input symbol occuring in the word uAv
m add 1(q, uAv)X — (p,uv)X to R’ if occur(u,NUN) =m —1

What about states without non-input symbols? We can’t use rules.
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Erasing Rules

Erasing Rules

For each mgA — pe € R and each (q, uAv) € Q"

B u or v must contain at least one non-input symbol
m let X € N denote the first non-input symbol occuring in the word uAv
m add 1{q, uAv)X — (p,uv)X to R’ if occur(u, NUN)=m —1

What about states without non-input symbols? We can’t use rules.

"Empty” States

For each (q,T) € @ where G e N
m u € N* denotes the equivalent word to T

m if there is sequence of configurations (g, v, w) =* (p,¢e,¢),p € F for
M¢, such that fy(w) = u, then add (q,T) to F’
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Progress

Progress

m construction of @’: done

m construction of F’: done
m construction of R’:

m Erasing rules: done
m Transfer rules: done
m Expansion rules
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Expansion Rules

non:(u) homomorphism over (I U N)* defined as non.(A) = ¢ for
A € N and non.(A) = A otherwise.

o(u) substitution over (I U N)* defined as o(A) = {A, A} for
A€ N; and o(A) = {A} otherwise.
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Expansion Rules

non:(u) homomorphism over (I U N)* defined as non.(A) = ¢ for
A € N and non.(A) = A otherwise.
o(u) substitution over (I U N)* defined as o(A) = {A, A} for
A€ N; and o(A) = {A} otherwise.

Example

= non.(ABCD) = ABD
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Expansion Rules

non:(u) homomorphism over (I U N)* defined as non.(A) = ¢ for
A € N and non.(A) = A otherwise.
o(u) substitution over (I U N)* defined as o(A) = {A, A} for
A€ N; and o(A) = {A} otherwise.

Example

= non.(ABCD) = ABD

= let N. = {A,B}. Then _ -
o(aAbBc) = {aAbBc, aAbBc, aAbBc, aAbBc}
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Expansion Rules

For each mgA — px in R, for each w € o(x) and for each (g, uAv) € Q' :
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Expansion Rules

For each mgA — px in R, for each w € o(x) and for each (g, uAv) € Q' :
m let d = occur(u, N) +1
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Expansion Rules

For each mgA — px in R, for each w € o(x) and for each (g, uAv) € Q' :

m let d = occur(u, N) +1
m let s = prefix(ufy(w)v, k)
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Expansion Rules

For each mgA — px in R, for each w € o(x) and for each (g, uAv) € Q' :

m let d = occur(u, N) +1
m let s = prefix(ufy(w)v, k)
m add d{(q, uAv)A — (p,s), non.(w) to R’ iff it satisfies following rules:
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Expansion Rules

For each mgA — px in R, for each w € o(x) and for each (g, uAv) € Q' :
m let d = occur(u, N) +1
m let s = prefix(ufy(w)v, k)
m add d{(q, uAv)A — (p,s), non.(w) to R’ iff it satisfies following rules:
m non.(w) # ¢
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Expansion Rules

For each mgA — px in R, for each w € o(x) and for each (g, uAv) € Q' :

m let d = occur(u, N) +1
m let s = prefix(ufy(w)v, k)
m add d{(q, uAv)A — (p,s), non.(w) to R’ iff it satisfies following rules:

m non(w) #e
m occur(u, NUN) =m—1 (i.e. we must satisfy the original depth of
expeansion)
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Expansion Rules

For each mgA — px in R, for each w € o(x) and for each (g, uAv) € Q' :

m let d = occur(u, N) +1
m let s = prefix(ufy(w)v, k)
m add d{(q, uAv)A — (p,s), non.(w) to R’ iff it satisfies following rules:

m non(w) #e
m occur(u, NUN) =m—1 (i.e. we must satisfy the original depth of

expeansion) -
m suffix(ufy(w)v, k) does not contain a symbol from N (i.e. we dont

want to lose the to-be-erased symbols)

Note: u,v € (NU N)*
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