Deep Pushdown Automata

Lukáš Vrábel

Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2, Brno 61266, Czech Republic

Formal Language Theory Workshop, 2010

Motivation

- hierarchy between context-free and context-sensitive languages
- automaton counterpart to state grammars
- generalization of the classical pushdown automata
- expansion deeper on stack expand n-th non-input symbol

Deep Pushdown Automaton

Deep Pushdown Automaton

A Deep Pushdown Automaton is septuple

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$

- Q finite set of states
- Σ input alphabet
- Γ pushdown alphabet, where $\Sigma \subset \Gamma$
- R finite set of rules
- s is the start state, $s \in Q$
- S is the start pushdown symbol, $S \in \Gamma$
- F set of final states, $F \subset Q$

where I, Q and Γ are pairwise disjoint

Rules

Rule

A Rule is quintuple

$$mqA \rightarrow pv$$

where

m is the depth of expansion, $m \in I$

 $q, p \in Q$

A non-input symbol, $A \in \Gamma - \Sigma$

v string of pushdown symbols, $v \in \Gamma^+$

Depth

- Finite number of rules \Rightarrow exists n such that depth of each rule $\leq n$
- \blacksquare M_n denotes automaton with depth n

Computational Step

Configuration

$$x \in Q \times \Sigma^* \times \Gamma^*$$

Move

Let x, y be configurations. Then

$$x \Rightarrow y$$

if and only if one of the following holds:

pop
$$x = (q, au, az), y = (q, u, z)$$

expand $x = (q, w, uAz), y = (p, w, uvz)$ with $mqA \rightarrow pv \in R$ and $occur(u, \Gamma - \Sigma) = m - 1$

with $u, v, w, z \in \Gamma^*$

Accepted Language

Accepted Word

Deep pushdown automaton M accepts $w \in \Sigma^*$ if

$$(s, w, S) \Rightarrow^* (f, \varepsilon, \varepsilon)$$

with $f \in F$ and \Rightarrow^* denoting the reflexive and transitive closure of \Rightarrow

Accepted Language

All words accepted by M is the language of M, denoted by L(M):

$$L(M) = \{ w \in \Sigma^* : (s, w, S) \Rightarrow^* (f, \varepsilon, \varepsilon), f \in F \}$$

$$M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\})$$

$$R = \{ \begin{array}{cc} 1: 1sS \to pXX, & 2: 1pX \to qaXb, & 3: 2qX \to pXc, \\ 4: 1pX \to rab, & 5: 2rX \to fc \end{array} \}$$

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\})
R = \{ \begin{array}{ccc} 1 \colon 1sS \to pXX, & 2 \colon 1pX \to qaXb, & 3 \colon 2qX \to pXc, \\ 4 \colon 1pX \to rab, & 5 \colon 2rX \to fc \end{array} \}
(s, aabbcc, S) \Rightarrow (p, aabbcc, XX) [1]
```

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\})
R = \{\begin{array}{ccc} 1: 1sS \rightarrow pXX, & 2: 1pX \rightarrow qaXb, & 3: 2qX \rightarrow pXc, \\ 4: 1pX \rightarrow rab, & 5: 2rX \rightarrow fc \end{array}\}
(s, aabbcc, S) \Rightarrow (p, aabbcc, XX) [1]
(p, aabbcc, XX) \Rightarrow (q, aabbcc, aXbX) [2]
```

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\})
R = \{\begin{array}{ccc} 1: 1sS \rightarrow pXX, & 2: 1pX \rightarrow qaXb, & 3: 2qX \rightarrow pXc, \\ 4: 1pX \rightarrow rab, & 5: 2rX \rightarrow fc \end{array}\}
(s, aabbcc, S) \Rightarrow (p, aabbcc, XX) [1]
(p, aabbcc, XX) \Rightarrow (q, aabbcc, aXbX) [2]
(q, aabbcc, aXbX) \Rightarrow (q, abbcc, XbX) [pop]
```

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\}))
R = \{\begin{array}{ccc} 1: 1sS \rightarrow pXX, & 2: 1pX \rightarrow qaXb, & 3: 2qX \rightarrow pXc, \\ 4: 1pX \rightarrow rab, & 5: 2rX \rightarrow fc \end{array}\}
(s, aabbcc, S) \Rightarrow (p, aabbcc, XX) [1]
(p, aabbcc, XX) \Rightarrow (q, aabbcc, aXbX) [2]
(q, aabbcc, aXbX) \Rightarrow (q, abbcc, XbX) [pop]
(q, abbcc, XbX) \Rightarrow (p, abbcc, XbXc) [3]
```

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\}))
R = \{\begin{array}{ccc} 1: 1sS \rightarrow pXX, & 2: 1pX \rightarrow qaXb, & 3: 2qX \rightarrow pXc, \\ 4: 1pX \rightarrow rab, & 5: 2rX \rightarrow fc \end{array}\}
(s, aabbcc, S) \Rightarrow (p, aabbcc, XX) [1]
(p, aabbcc, XX) \Rightarrow (q, aabbcc, aXbX) [2]
(q, aabbcc, aXbX) \Rightarrow (q, abbcc, XbX) [pop]
(q, abbcc, XbX) \Rightarrow (p, abbcc, XbXc) [3]
(p, abbcc, XbXc) \Rightarrow (r, abbcc, abbXc) [4]
```

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\})
R = \{ 1: 1sS \rightarrow pXX, 2: 1pX \rightarrow gaXb, 3: 2gX \rightarrow pXc, \}
         4: 1pX \rightarrow rab, 5: 2rX \rightarrow fc
    (s, aabbcc, 5)
                                    (p, aabbcc, XX) [1]
                      \Rightarrow
    (p, aabbcc, XX) \Rightarrow
                                   (q, aabbcc, aXbX) [2]
    (q, aabbcc, aXbX)
                            \Rightarrow (q, abbcc, XbX) [pop]
    (q, abbcc, XbX)
                       \Rightarrow (p, abbcc, XbXc) [3]
    (p, abbcc, XbXc) \Rightarrow (r, abbcc, abbXc) [4]
                            \Rightarrow 3
    (r, abbcc, abbXc)
                                   (r, cc, Xc) [pop, pop, pop]
```

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\})
R = \{ 1: 1sS \rightarrow pXX, 2: 1pX \rightarrow gaXb, 3: 2gX \rightarrow pXc, \}
         4: 1pX \rightarrow rab, 5: 2rX \rightarrow fc
    (s, aabbcc, 5)
                                    (p, aabbcc, XX) [1]
                       \Rightarrow
    (p, aabbcc, XX) \Rightarrow
                                    (q, aabbcc, aXbX) [2]
    (q, aabbcc, aXbX)
                             \Rightarrow
                                   (q, abbcc, XbX) [pop]
    (q, abbcc, XbX)
                       \Rightarrow (p, abbcc, XbXc) [3]
    (p, abbcc, XbXc) \Rightarrow (r, abbcc, abbXc) [4]
                            \Rightarrow 3
    (r, abbcc, abbXc)
                                   (r, cc, Xc) [pop, pop, pop]
    (r, cc, Xc)
                             \Rightarrow
                                   (f, cc, cc) [5]
```

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\})
R = \{ 1: 1sS \rightarrow pXX, 2: 1pX \rightarrow gaXb, 3: 2gX \rightarrow pXc, \}
         4: 1pX \rightarrow rab, 5: 2rX \rightarrow fc
    (s, aabbcc, 5)
                                     (p, aabbcc, XX) [1]
                       \Rightarrow
    (p, aabbcc, XX) \Rightarrow
                                     (q, aabbcc, aXbX) [2]
    (q, aabbcc, aXbX)
                              \Rightarrow (q, abbcc, XbX) [pop]
    (q, abbcc, XbX)
                        \Rightarrow (p, abbcc, XbXc) [3]
    (p, abbcc, XbXc) \Rightarrow (r, abbcc, abbXc) [4]
                             \Rightarrow 3
    (r, abbcc, abbXc)
                                    (r, cc, Xc) [pop, pop, pop]
    (r, cc, Xc)
                         \Rightarrow (f, cc, cc) [5]
                              \Rightarrow 2 (f, \varepsilon, \varepsilon) [pop, pop]
    (f, cc, cc)
```

```
M = (\{s, p, q, r, f\}, \{a, b, c\}, \{a, b, c, S, X\}, R, s, \{f\})
R = \{ 1: 1sS \rightarrow pXX, 2: 1pX \rightarrow gaXb, 3: 2gX \rightarrow pXc, \}
         4: 1pX \rightarrow rab, 5: 2rX \rightarrow fc
    (s, aabbcc, 5)
                     \Rightarrow
                                    (p, aabbcc, XX) [1]
    (p, aabbcc, XX) \Rightarrow (q, aabbcc, aXbX) [2]
    (q, aabbcc, aXbX) \Rightarrow (q, abbcc, XbX) [pop]
    (q, abbcc, XbX)
                       \Rightarrow (p, abbcc, XbXc) [3]
    (p, abbcc, XbXc) \Rightarrow (r, abbcc, abbXc) [4]
    (r, abbcc, abbXc) \Rightarrow (r, cc, Xc) [pop, pop, pop]
                      \Rightarrow (f, cc, c) [5]
    (r, cc, Xc)
                             \Rightarrow 2 (f, \varepsilon, \varepsilon) [pop, pop]
    (f, cc, cc)
```

Accepted language: $L = \{a^n b^n c^n : n \ge 1\}$

Infinite Hierarchy

Family of Languages

deepPD_n denotes family of languages accepted by deep pushdown automata of depth k, where $1 \le k \le n$

Theorem

 $deepPD_1 = CF$

Theorem

For every $n \ge 1$, $deepPD_n \subset deepPD_{n+1} \subset \mathit{CS}$

Generalization

ε -Rules

- Natural generalization adding ε rules in the form: $mqA \rightarrow p\varepsilon$
- $deepPD_n^{\varepsilon}$ denotes family of languages accepted by deep pushdown automata fo depth n with ε rules

Generalization

ε -Rules

- Natural generalization adding ε rules in the form: $mqA \to p\varepsilon$
- $deepPD_n^{\varepsilon}$ denotes family of languages accepted by deep pushdown automata fo depth n with ε rules

Theorem

 $deepPD_n \subset deepPD_n^{\varepsilon}$

Proof.

M cannot accept empty string without ε rules.

Generalization

ε -Rules

- Natural generalization adding ε rules in the form: $mqA \to p\varepsilon$
- $deepPD_n^{\varepsilon}$ denotes family of languages accepted by deep pushdown automata fo depth n with ε rules

Theorem

 $deepPD_n \subset deepPD_n^{\varepsilon}$

Proof.

M cannot accept empty string without ε rules.

Open Promblem

What about languages without empty string?

Informal Proof

Idea

- simulate moves of M_n^{ε} by M_n
- do not generate to-be-erased symbols on stack
- but we must be able to simulate the moves involving this symbols
- solution: "save" them into the state logic
- restriction: as set of states is finite, the number of "remembered" symbols is limited by some k

$$(q, u, aaAbbBcc) \rightarrow (\langle q, AB \rangle, u, aaAbbBcc)$$

Example

With ε -Rules

$$\begin{array}{lll} (q,u,aaAbb{\color{red}B}cc) & \Rightarrow & (p,u,aaAbb{\color{red}B}ccc) & [2q{\color{red}B} \rightarrow p{\color{red}B}c] \\ (p,u,aaAbb{\color{red}B}ccc) & \Rightarrow & (p,u,aaAbbccc) & [2p{\color{red}B} \rightarrow p\varepsilon] \end{array}$$

Example

With ε -Rules

$$(q, u, aaAbbBcc)$$
 \Rightarrow $(p, u, aaAbbBccc)$ $[2qB \rightarrow pBc]$ $(p, u, aaAbbBccc)$ \Rightarrow $(p, u, aaAbbccc)$ $[2pB \rightarrow p\varepsilon]$

Example

Without ε -Rules

1:
$$2\langle q, AB\rangle B \rightarrow \langle p, A\bar{B}\rangle c$$
 3: $1\langle p, A\bar{B}\rangle A \rightarrow \langle p, A\rangle A$
2: $2\langle q, AB\rangle B \rightarrow \langle p, AB\rangle Bc$

Example

With ε -Rules

$$(q, u, aaAbbBcc)$$
 \Rightarrow $(p, u, aaAbbBccc)$ $[2qB \rightarrow pBc]$ $(p, u, aaAbbBccc)$ \Rightarrow $(p, u, aaAbbccc)$ $[2pB \rightarrow p\varepsilon]$

Example

Without ε -Rules

1:
$$2\langle q, AB\rangle B \rightarrow \langle p, A\bar{B}\rangle c$$
 3: $1\langle p, A\bar{B}\rangle A \rightarrow \langle p, A\rangle A$ 2: $2\langle q, AB\rangle B \rightarrow \langle p, AB\rangle Bc$

$$(\langle q, AB \rangle, u, aaAbbBcc) \Rightarrow (\langle p, AB \rangle, u, aaAbbccc)$$
[1]
$$(\langle p, AB \rangle, u, aaAbbccc) \Rightarrow (\langle p, A \rangle, u, aaAbbccc)$$
[3]

k-Limited Erasing

As there is finite number of states, we can track the erased symbols only to some depth k - we can eliminate the ε -rules only from automata with k-limited erasing.

k-Limited Erasing

Let $M_n^{\varepsilon}=(Q,\Sigma,\Gamma,R,s,S,F)$ be a deep pushdown automaton with erasing rules. M_n^{ε} erases its non-input symbols in k-limited way, if for every $w\in L(M_n^{\varepsilon})$ there exists a sequence of configurations $(s,w,S)\Rightarrow^*(f,\varepsilon,\varepsilon)$, $f\in F$, that satisfies following properties:

- Let N_{ε} be the set of non-input symbols erased at some point of derivation.
- There exists such $k \in I$, that the depth of each $A \in N_{\varepsilon}$ in each configuration is $\leq k$

Sketch of Proof

Lemma

For each deep PDA M_n^{ε} , which erases its non-input symbols in k-limited way, there exists a deep PDA M_n such that $L(M_n^{\varepsilon}) = L(M_n)$. $\varepsilon \notin L(M_n^{\varepsilon})$.

Proof

- Let $M_n^{\varepsilon} = (Q, \Sigma, \Gamma, R, s, S, F)$ that erases its non-input symbols in k-limited way.
- We will construct $M_n = (Q', \Sigma, \Gamma, R', \langle s, S \rangle, S, F')$, that simulates M_n^{ε} 's derivations.
- We must describe the construction of Q', R' and F'

Construction of Q'

Notation

- *N* the set of non-input symbols, $N = \Gamma \Sigma$
- $N_{arepsilon}$ the set of symbols that can be erased in arbitrary number of moves, $N_{arepsilon}\subseteq N$

$$\overline{N} = {\overline{A} | A \in N}$$

prefix(u, i) is u's prefix of length i if $|u| \ge i$, otherwise it is u. $i \ge 0$.

$$suffix(u, i)$$
 $u = prefix(u, i)suffix(u, i)$.

occur(u, W) number of occurrences of symbols from W in the word u

Construction of Q'

$$Q' = \{ \langle q, u \rangle | q \in Q, u \in \textit{prefix}((N \cup \overline{N})^*, k) \}$$

Construction of F' and R'

Construction of F'

Add each $\langle f, \varepsilon \rangle \in Q'$, such that $f \in F$, to F'

Construction of R'

Construction of R' consists of three steps:

- 1 transfer rules transfering non-input symbols from stack to the state
- 2 simulation of erasing rules
- 3 simulation of expansion rules

Transfer Rules

Transfer Rules

For each $\langle q, u \rangle \in Q', |u| < k$ and for each $A \in N$:

- let d = occur(u, N) + 1
- lacksquare add $d\langle q,u\rangle A
 ightarrow \langle q,uA\rangle A$ to R'

Transfer Rules

Transfer Rules

For each $\langle q, u \rangle \in Q', |u| < k$ and for each $A \in N$:

- let d = occur(u, N) + 1
- lacksquare add $d\langle q,u
 angle A
 ightarrow \langle q,uA
 angle A$ to R'

Notation

 $f_N(u)$ homomorphism over $(\Gamma \cup \overline{N})^*$ defined as $f_N(A) = A$ for $A \in (N \cup \overline{N})$ and $f_N(a) = \varepsilon$ otherwise.

Example

 $f_N(aAb\overline{B}c) = A\overline{B}$

Erasing Rules

Erasing Rules

For each $mqA \rightarrow p\varepsilon \in R$ and each $\langle q, u\overline{A}v \rangle \in Q'$:

- u or v must contain at least one non-input symbol
- let $X \in N$ denote the first non-input symbol occurring in the word $u\overline{A}v$
- add $1\langle q, u\overline{A}v\rangle X \to \langle p, uv\rangle X$ to R' if $occur(u, N \cup \overline{N}) = m-1$

Erasing Rules

Erasing Rules

For each $mqA \rightarrow p\varepsilon \in R$ and each $\langle q, u\overline{A}v \rangle \in Q'$:

- *u* or *v* must contain at least one non-input symbol
- let $X \in N$ denote the first non-input symbol occurring in the word $u\overline{A}v$
- add $1\langle q, u\overline{A}v\rangle X \to \langle p, uv\rangle X$ to R' if $occur(u, N \cup \overline{N}) = m-1$

What about states without non-input symbols? We can't use rules.

Erasing Rules

Erasing Rules

For each $mqA \rightarrow p\varepsilon \in R$ and each $\langle q, u\overline{A}v \rangle \in Q'$:

- u or v must contain at least one non-input symbol
- let $X \in N$ denote the first non-input symbol occurring in the word $u\overline{A}v$
- add $1\langle q, u\overline{A}v\rangle X \to \langle p, uv\rangle X$ to R' if $occur(u, N \cup \overline{N}) = m-1$

What about states without non-input symbols? We can't use rules.

"Empty" States

For each $\langle q, \overline{u} \rangle \in Q'$ where $\overline{u} \in \overline{N}^*$:

- $u \in N^*$ denotes the equivalent word to \overline{u}
- if there is sequence of configurations $(q, v, w) \Rightarrow^* (p, \varepsilon, \varepsilon), p \in F$ for M_n^{ε} , such that $f_N(w) = u$, then add $\langle q, \overline{u} \rangle$ to F'

Progress

Progress

- construction of Q': done
- construction of *F*′: done
- construction of R':
 - Erasing rules: done
 - Transfer rules: done
 - **■** Expansion rules

Notation

- $non_{\varepsilon}(u)$ homomorphism over $(\Gamma \cup \overline{N})^*$ defined as $non_{\varepsilon}(\overline{A}) = \varepsilon$ for $\overline{A} \in \overline{N}$ and $non_{\varepsilon}(A) = A$ otherwise.
 - $\sigma(u)$ substitution over $(\Gamma \cup \overline{N})^*$ defined as $\sigma(A) = \{A, \overline{A}\}$ for $A \in N_{\varepsilon}$ and $\sigma(A) = \{A\}$ otherwise.

Notation

- $non_{\varepsilon}(u)$ homomorphism over $(\Gamma \cup \overline{N})^*$ defined as $non_{\varepsilon}(\overline{A}) = \varepsilon$ for $\overline{A} \in \overline{N}$ and $non_{\varepsilon}(A) = A$ otherwise.
 - $\sigma(u)$ substitution over $(\Gamma \cup \overline{N})^*$ defined as $\sigma(A) = \{A, \overline{A}\}$ for $A \in N_{\varepsilon}$ and $\sigma(A) = \{A\}$ otherwise.

Example

■ $non_{\varepsilon}(AB\overline{C}D) = ABD$

Notation

- $non_{\varepsilon}(u)$ homomorphism over $(\Gamma \cup \overline{N})^*$ defined as $non_{\varepsilon}(\overline{A}) = \varepsilon$ for $\overline{A} \in \overline{N}$ and $non_{\varepsilon}(A) = A$ otherwise.
 - $\sigma(u)$ substitution over $(\Gamma \cup \overline{N})^*$ defined as $\sigma(A) = \{A, \overline{A}\}$ for $A \in N_{\varepsilon}$ and $\sigma(A) = \{A\}$ otherwise.

- $non_{\varepsilon}(AB\overline{C}D) = ABD$
- let $N_{\varepsilon} = \{A, B\}$. Then $\sigma(aAbBc) = \{aAbBc, a\overline{A}bBc, a\overline{A}b\overline{B}c, a\overline{A}b\overline{B}c\}$

For each mqA o px in R, for each $w \in \sigma(x)$ and for each $\langle q, uAv \rangle \in Q'$:

For each $mqA \to px$ in R, for each $w \in \sigma(x)$ and for each $\langle q, uAv \rangle \in Q'$:

let d = occur(u, N) + 1

For each $mqA \to px$ in R, for each $w \in \sigma(x)$ and for each $\langle q, uAv \rangle \in Q'$:

- let d = occur(u, N) + 1
- $\blacksquare \text{ let } s = prefix(uf_N(w)v, k)$

For each $mqA \rightarrow px$ in R, for each $w \in \sigma(x)$ and for each $\langle q, uAv \rangle \in Q'$:

- let d = occur(u, N) + 1
- let $s = prefix(uf_N(w)v, k)$
- add $d\langle q, uAv\rangle A \rightarrow \langle p, s\rangle$, $non_{\varepsilon}(w)$ to R' iff it satisfies following rules:

For each mqA o px in R, for each $w \in \sigma(x)$ and for each $\langle q, uAv \rangle \in Q'$:

- let d = occur(u, N) + 1
- let $s = prefix(uf_N(w)v, k)$
- add $d\langle q, uAv\rangle A \rightarrow \langle p, s\rangle$, $non_{\varepsilon}(w)$ to R' iff it satisfies following rules:
 - $non_{\varepsilon}(w) \neq \varepsilon$

For each mqA o px in R, for each $w \in \sigma(x)$ and for each $\langle q, uAv \rangle \in Q'$:

- $\blacksquare \text{ let } d = occur(u, N) + 1$
- let $s = prefix(uf_N(w)v, k)$
- add $d\langle q, uAv\rangle A \rightarrow \langle p, s\rangle$, $non_{\varepsilon}(w)$ to R' iff it satisfies following rules:
 - $non_{\varepsilon}(w) \neq \varepsilon$
 - $occur(u, N \cup \overline{N}) = m 1$ (i.e. we must satisfy the original depth of expeansion)

For each mqA o px in R, for each $w \in \sigma(x)$ and for each $\langle q, uAv \rangle \in Q'$:

- let d = occur(u, N) + 1
- $\blacksquare \text{ let } s = prefix(uf_N(w)v, k)$
- add $d\langle q, uAv\rangle A \rightarrow \langle p, s\rangle$, $non_{\varepsilon}(w)$ to R' iff it satisfies following rules:
 - $non_{\varepsilon}(w) \neq \varepsilon$
 - $occur(u, N \cup \overline{N}) = m 1$ (i.e. we must satisfy the original depth of expeansion)
 - $suffix(uf_N(w)v, k)$ does not contain a symbol from \overline{N} (i.e. we dont want to lose the to-be-erased symbols)

Note: $u, v \in (N \cup \overline{N})^*$

Bibliography

Alexander Meduna.

Deep pushdown automata.

Acta Inf., 42(8-9):541-552, 2006.