Use of Probabilistic Context-Free Grammars in Password Cracking

Radim Janča
Brno University of Technology, Faculty of Information Technology Božetěchova 2, 61266 Brno
ijanca@fit.vutbr.cz
BRNO
UNIVERSITY

- Motivation
- Password cracking
- Probabilistic Context-Free Grammars
- PCFG in Password Cracking
- Conclusion
- Human-memorable passwords remain a common form of access control to data and computational resources.
- Legitimate restoration of forgotten/lost password
- Illegal attack on legitimate systems
- If the most efficient attack is indeed publicly known, then at least legitimate system operators will not underestimate the risk of password compromise.
- Systems that allow users to choose their own passwords are typically vulnerable to space-reduction attacks that can break passwords considerably more easily than through a brute-force attack
- Attacker/administrator has access to password hashes
- Brute force attack using rainbow tables (precomputed hashes)
- Dictionary attack
- Dictionary attack + word mangling rules
- Brute force attack
- Attacker/administrator has access to salted password hashes hash(salt + password)
- Dictionary attack
- Dictionary attack + word mangling rules
- Brute force attack
- Users typically don't use unmodified elements from dictionaries (password policies).
- Users typically modify words to be recalled eassily with some word mangling rules.
- adding symbols/digits to words
- combining words
- ...
- Ideally we would like to get sorted set of passwords ordered from the highest probability to the lowest.
- How to decide which rules are most probable?
- Application of wordmangling rule on dictionary words multiplies the number of possible passwords.
- Combining multiple word mangling rules results in exponential growth of final database.
- Choosing the word order and word-mangling rule is crucial.
- Learning the probability of rules from real world passwords.
- Information can be modeled with probabilistic context free grammar (PCFG).
- Probabilistic Context-Free Grammars G is a quintuple:

$$
G=(N, T, R, S, P)
$$

- N - finite set of nonterminal symbols
- T - finite set of terminal symbols
- R - finite set of production rules of the form:

$$
A \rightarrow x
$$

where $A \in N$ and $x \in(N \cup T)^{*}$

- S - start symbol, $S \in N$
- P - set of probabilities p on production rules, where for each $A \in N$ and all rules $(A \rightarrow x) \in R$:

$$
\sum p(A \rightarrow x)=1
$$

- Password corpus - collection of passwords, typically leaked database of passwords
- Preprocessing - transformation from passwords corpus into PCFG
- Password generation from PCFG and chosen dictionary
- Password database - list of generated password sorted with descending probability of its occurrence
- We define:
L_{n} - alpha string
D_{n} - digit string
S_{n} - special string
- $L_{n} \in\{a, b, c, d, e, f \ldots, z\}^{*},\left|L_{n}\right|=n$ and $n \in \mathbb{N}^{+}$
- $D_{n} \in\{0,1,2,3,4,5,6,7,8,9\}^{*},\left|D_{n}\right|=n$ and $n \in \mathbb{N}^{+}$
- $S_{n} \in\{!, @, \#, \$, \%, \&, \ldots\}^{*},\left|S_{n}\right|=n$ and $n \in \mathbb{N}^{+}$
- For each password we derive its base form $\in\left\{L_{n}, D_{n}, S_{n}\right\}^{*}$.
- For example password !Pa\$\$word53 derives into $S_{1} L_{2} S 2 L_{4} D_{2}$.
- We compute frequency of occurence from password corpus (traning set) with respect to n for each
- base form
- digit string D_{n}
- special string S_{n}
- Probability of L_{n} alpha strings is not learned from training set, since corpus of words possibly used by users is much larger.
- We generate PCFG G

$$
\begin{aligned}
G & =(N, T, P, S, R) \\
N & =\left\{L_{n}, D_{n}, S_{n}\right\} \cup\{S\}(n \text { is based on training set }) \\
T & =\{a, b, c, \ldots, z\} \cup\{0,1,2, . ., 9,\} \cup\{!, @, \#, \$, \%, \&, \ldots\}
\end{aligned}
$$

- Generation of production rules from starting symbol S to base form
- Generation of production rules from symbols L_{n}, D_{n}, S_{n} to terminal strings
- Production rules from L_{n} are separately from dictionary.
- Example of PCFG rules R and their probabilities P:

Rule	Probability
$S \rightarrow D_{1} L_{6} D_{1}$	0.8
$S \rightarrow S_{1} L_{6} D_{1}$	0.2
$D_{1} \rightarrow 3$	0.5
$D_{1} \rightarrow 7$	0.3
$D_{1} \rightarrow 8$	0.2
$S_{1} \rightarrow!$	0.8
$S_{1} \rightarrow \$$	0.2
$L_{6} \rightarrow ?$	$?$

- In PCFGs probability p of generated terminal string is computed as sum of all probabilities of all rules used.

$$
S \xrightarrow{0.3} S_{1} L_{6} D_{1} \xrightarrow{0.8}!L_{6} D_{1} \xrightarrow{0.5}!L_{6} 3 \xrightarrow{0.1}!\text { letter } 3
$$

!letter3 is terminal string with assigned probability p

$$
\begin{gathered}
p(\text { ! letter } 3)=(0.3 * 0.8 * 0.5 * 0.1) \\
p(!\text { letter } 3)=0.012
\end{gathered}
$$

- Rules for L_{n} are created as follows:

$$
L_{n} \rightarrow \text { dictionary word, where } \mid \text { dictionary word } \mid=n
$$

- Probabilities of these rules are not gathered from training dataset.
- Probabilities of these rules can be assigned in multiple ways:
- Pre-terminal probability order
- Terminal probability order
- ...
- Pre-terminal probability order - probability p of derived password is equal to the probability of the sentence containing only L_{n} nonterminal and terminal symbols.
- This can be viewed as assigning probability equal to 1 to all rules $L_{n} \rightarrow$ dictionary word rules.

$$
\begin{gathered}
S \xrightarrow{0.3} S_{1} L_{6} D_{1} \xrightarrow{0.8}!L_{6} D_{1} \xrightarrow{0.5}!L_{6} 3 \xrightarrow{1}!\text { letter } 3 \\
p(!\text { letter } 3)=0.12
\end{gathered}
$$

- Terminal probability order - probability p of derived password is based on how many dictionary words of length n are present in dictionary.

$$
p\left(L_{n} \rightarrow \text { dictionary word }\right)=\frac{1}{|x|},
$$

$$
\text { where } x=\{i \mid i \in \text { dictionaryand }|i|=n\}
$$

- For example, if we have 10 words of length 6 in our dictionary, we would get:

$$
\begin{gathered}
S \xrightarrow{0.3} S_{1} L_{6} D_{1} \xrightarrow{0.8}!L_{6} D_{1} \xrightarrow{0.5}!L_{6} 3 \xrightarrow{0.1}!\text { letter } 3 \\
p(!\text { letter } 3)=0.012
\end{gathered}
$$

- Passwords need to be generated with decreasing probability
- Generation of all possible passwords can be huge (TB)
- Online algorithm (we want to end when password is found)
- Priority queue
- Nonterminals in base form have index based on position from the left.
example: index of L_{6} in $D_{1} L_{6} D_{1}$ is 1
- For each base form we find pre-terminal form with highest probability
- These rows are put into priority queue based on probability with pivot set to 1

Base form	Pre-terminal	Probability	Pivot (index)
$D_{1} L_{6} D_{1}$	$3 L_{6} 3$	0.175	0
$S_{1} L_{6} D_{1}$	$!L_{6} 3$	0.12	0

- In the next step top entry of queue is popped
- Next pre-terminal structures are generated by substituting variables in the popped base structure by values with next highest probability
- Only one nonterminal is replaced to create each new candidate
- Only nonterminals with index equal or higher than pivot
- Index of nonterminal in base form is stored as pivot

Initial state

Base form	Pre-terminal	Probability	Pivot (index)
$D_{1} L_{6} D_{1}$	$3 L_{6} 3$	0.175	0
$S_{1} L_{6} D_{1}$	$!L_{6} 3$	0.12	0

State after top row of queue is popped

Base form	Pre-terminal	Probability	Pivot (index)
$S_{1} L_{6} D_{1}$	$!L_{6} 3$	0.12	0
$D_{1} L_{6} D_{1}$	$7 L_{6} 3$	0.105	0
$D_{1} L_{6} D_{1}$	$3 L_{6} 7$	0.105	2

- PCFG can be used as viable option for improving dictionary attacks
- Proposed method can be targeted to specified field
- Method is can be updated to accurately map actual password practices
- Method can be further improved with addition of other type of word-mangling rules and strategies
- Weir, M.; Aggarwal, S.; de Medeiros, B.; Glodek, B., "Password Cracking Using Probabilistic Context-Free Grammars," Security and Privacy, 2009 30th IEEE Symposium on , vol., no., pp.391,405, 17-20 May 2009 doi: 10.1109/SP. 2009.8
- Jelinek, Frederick, John D. Lafferty, and Robert L. Mercer. Basic methods of probabilistic context free grammars. Springer Berlin Heidelberg, 1992.

Thank you for your attention.

