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Based on Scattered Context Grammars

Scattered Context Grammar (SCG)

G = (V’ T’ P? S)
is finite alphabet
is a set of terminals, T C V
is the start symbol, S € V — T

T »nw <

is a finite set of productions of the form
(Al7 co0g An) — (X17 ...,Xn)

where A1,...,Ap eV —-T,x1,...,x, € V*

Propagating Scattered Context Grammar (PSCG)

where Ay, ..., A, €V — T, x1,...,xa € VT
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Generative Power of Scattered Context Grammars

Scattered Context Grammar

£(5C) = ZL(RE)

Propagating Scattered Context Grammar

L(CF) ¢ £(PSC) C £(CS)
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Can we somehow simulate SCG with PSCG?

Yes

Let G be SCG and PG be PSCG simulating G
Add new terminal symbol $ to PG
Instead of € generate
Move all  to the left (or right)

Generated Language

L(PG) = { {$}"x : x € L(G)}
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Scattered Context Generators

Instead of meaningless symbols $ add useful information -

What is the parse?

Assume that for every SCG G = (V/, T, P, S) there is a set of production
labels, denoted by lab(G), such that |/ab(G)| = |P| and there is bijection
from P to lab(G):

I:(A1,...;,Apn) = (x1,...,xn) where | € lab(G) and production € P

Derivation step:
u = v[l] where u,v € V* and | € lab(G)

Generated language:
L(G)={xeT":S= "x|[p] and p € lab(G)"}
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Scattered Context Generators

Generated Language

Let G be PSCG. Let /ab(G) C T. G is a proper generator of its sentences
with their parses if and only if

L(G)={x: x=yp,y € (T — 1ab(G))",p € lab(G)*,S = ¢x[p]}

Theorem

For every recursively enumerable language L, there is a propagating
scattered context grammar G such that G is a proper generator of its
sentences with their parses, and L = L(G)//lab(G)™.
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Example Conversion of SCG to Proper Generator

Example SCG

G = ({57’47 Ba Caa7 b7 C}?{a7 b7 C}7P75)

where P:
ABC)

5) = (
A B, C (aA, bB, cC)
A B, C

1:
2: ) —
3: ) — (€, €, €)

Generated language:

L(G) ={a"b"c" : n>0}

Example derivations

S = ABC = €][13]
S = ABC = aAbBcC = abc [123]
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Basic Conversion Method

where:
BV =VUab(G)U{S,X,Y,Z,$1,$:,%3}U{a:ac T}
m 7 = T Ulab(G)
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General Generator - Rules P

Add these types of rules:
Start rules

Simulation rules
Stop rules

Shift rules
Erase rule

@A End rule
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Start rules

Start rules

(1) = (5) = (X(1)$:25)
(1) : (5) = ((1c)325)

Example derivation S = ABC = ¢

S= (1e)$1S

Example derivation S = ABC = aAbBcC = abc

S = X(1)$:2S

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 10 / 23



Simulation rules

Simulation rules

m For each rule in P add simulation rule
m Convert terminals to nonterminals

m ConvertetoY

(1) : ($1,A1, -, An) = ((1)%1, x1, - -, Xn)

Example simulation rules

(11) : (%1,S) — ((11)%1,ABC)
(12) : ($1,A, B, C) — ((12)$1, aA,BB,EC)
(13) : ($1,A,B,C) — ((13)%1,Y,V.Y)
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Simulation rules

Example derivation S = ABC = ¢

(1)$:S = (1)(11)$ABC
= (L)(11)(13)$ YYY

Example derivation S = ABC = aAbBcC = abc

X(1)$1ZS = X(1)(11)$:ZABC
= X(1)(11)(12)$1ZaAbBcC
= X(1)(11)(12)(13)$1ZaYbYcY
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Stop rules

Stop rules

(2) = ($1) — ((2)32)
(2<) : (31) = ((2:)33)

Example derivation S = ABC = ¢

(.. DSLYYY = (.. )$3YYY

Example derivation S = ABC = aAbBcC = abc

X(...)$1ZaYbYcY = X(...)$2ZaYbYcY
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Shift rules

Shift rules

For each a € T, add

23) : (X, $2,2,3) = (aX, (24)$2, Y, 2)
(]38[) : (X, $2, Z,ﬁ) — (a, (]33D$3, Y, Y)

Example simulation rules

(2a) : (X,%2,Z,3) — (aX, (2a)%2, Y, 2)
(2b) : (X, $2,2Z,b) — (bX, (2b)%2, Y, 2)
(2¢) : (X,%2,2Z,2) = (cX, (2c)%2, Y, 2)
(3a) : (X,%2,Z,3) — (a,(34)%3, Y, Y)
136) : (X, 92, Z,E) — (b, (3b)%3,Y,Y)
(3¢c) : (X,9%2,2,2) = (c,(3¢)%3, Y, Y)
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Shift rules

Example derivation S = ABC = aAbBcC = abc

X(..)$:Z3YBYTY = aX(...)$YZYDYTY
= abX(..)$2YYYZYEY
= abc(...)$3YYYYYYY
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Erase rule

Erase rule

(3) - (33, V) — ((3), %3)

Example derivation S = ABC = ¢

(- )83YYY = (... )%3YY
= (...)%3Y

Example derivation S = ABC = aAbBcC = abc

abe(.. . )$3YYYYYYY = abc(.. . )$3YYYYYY
= abc(...)%3
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(4) - ($3) — ((4))

Example derivation S = ABC = ¢
(-.)%3 = (--.)(4)

Example derivation S = ABC = aAbBcC = abc

abe(...)$3 = abc(...)(4)
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Result for derivation S = ABC = ¢

(L) (12D (L3) (2D (3D (3D (3D (4)

Used rules

Start rules - (1)
Simulation rules - (11)(13)
Stop rules - (2¢)

Shift rules - None

Erase rule - (3)(3)(3)

@ End rule - (4)

18 / 23

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014



Result for derivation S = ABC = aAbBcC = abc

abe(1)(11)(12)(13) () (2a) (26D (3<) (3D (3D (3) (3D (3D (3D (3D (4D

Used rules

Start rules - (1)

Simulation rules - (11)(12)(13)
Stop rules - (2)

Shift rules - (2a)(2b)(3¢)

Erase rule - (3)(3)(3)(3)(3) (3)(3)
@ End rule - (4)
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Canonical Generators

Theorem - Leftmost Generator

For every recursively enumerable language L, there is a propagating
scattered context grammar G such that G is a proper leftmost generator of
its sentences with their parses, and L = L(G)//lab(G)™ .

Theorem - Rightmost Generator

For every recursively enumerable language L, there is a propagating
scattered context grammar G such that G is a proper rightmost generator
of its sentences with their parses, and L = L(G)//lab(G)*.
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Reduced Generators

Theorem - Minimal number of nonterminals

For every recursively enumerable language L, there is a propagating
scattered context grammar G = (V, T, P, S) such that G is a proper
leftmost generator of its sentences preceded by their parses, |V — T| <6,
mes(G) = 3, and L = lab(G)T\\L(G).

Theorem - Minimal context-dependency

For every recursively enumerable language L, there is a propagating
scattered context grammar G = (V, T, P, S) such that G is a proper
leftmost generator of its sentences preceded by their parses, |V — T| <9,
mcs(G) =1, and L = lab(G)T\\L(G).
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Conclusion

Main advantages

Scattered Context Generators can
m simulate any SCG with PSCG, which is less powerful

m generate additional useful information
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