Scattered Context Generators of Sentences

with Their Parses

Radim Kocman

Department of Information Systems
Faculty of Information Technology
Brno University of Technology
BoZet&chova 2, Brno 61266, Czech Republic

Modern Theoretical Computer Science, 2014

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014

Based on Scattered Context Grammars

Scattered Context Grammar (SCG)

G = (V’ T’ P? S)
is finite alphabet
is a set of terminals, T C V
is the start symbol, S € V — T

T »nw <

is a finite set of productions of the form
(Al7 co0g An) — (X17 ...,Xn)

where A1,...,Ap eV —-T,x1,...,x, € V*

Propagating Scattered Context Grammar (PSCG)

where Ay, ..., A, €V — T, x1,...,xa € VT

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 2/23

Generative Power of Scattered Context Grammars

Scattered Context Grammar

£(5C) = ZL(RE)

Propagating Scattered Context Grammar

L(CF) ¢ £(PSC) C £(CS)

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 3/23

Can we somehow simulate SCG with PSCG?

Yes

Let G be SCG and PG be PSCG simulating G
Add new terminal symbol $ to PG
Instead of € generate
Move all to the left (or right)

Generated Language

L(PG) = { {$}"x : x € L(G)}

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 4 /23

Scattered Context Generators

Instead of meaningless symbols $ add useful information -

What is the parse?

Assume that for every SCG G = (V/, T, P, S) there is a set of production
labels, denoted by lab(G), such that |/ab(G)| = |P| and there is bijection
from P to lab(G):

I:(A1,...;,Apn) = (x1,...,xn) where | € lab(G) and production € P

Derivation step:
u = v[l] where u,v € V* and | € lab(G)

Generated language:
L(G)={xeT":S= "x|[p] and p € lab(G)"}

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 5/23

Scattered Context Generators

Generated Language

Let G be PSCG. Let /ab(G) C T. G is a proper generator of its sentences
with their parses if and only if

L(G)={x: x=yp,y € (T — 1ab(G))",p € lab(G)*,S = ¢x[p]}

Theorem

For every recursively enumerable language L, there is a propagating
scattered context grammar G such that G is a proper generator of its
sentences with their parses, and L = L(G)//lab(G)™.

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 6 /23

Example Conversion of SCG to Proper Generator

Example SCG

G = ({57’47 Ba Caa7 b7 C}?{a7 b7 C}7P75)

where P:
ABC)

5) = (
A B, C (aA, bB, cC)
A B, C

1:
2:) —
3:) — (€, €, €)

Generated language:

L(G) ={a"b"c" : n>0}

Example derivations

S = ABC = €][13]
S = ABC = aAbBcC = abc [123]

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 7/23

Basic Conversion Method

where:
BV =VUab(G)U{S,X,Y,Z,$1,$:,%3}U{a:ac T}
m 7 = T Ulab(G)

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 8 /23

General Generator - Rules P

Add these types of rules:
Start rules

Simulation rules
Stop rules

Shift rules
Erase rule

@A End rule

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses

TID, 2014

9/23

Start rules

Start rules

(1) = (5) = (X(1)$:25)
(1) : (5) = ((1c)325)

Example derivation S = ABC = ¢

S= (1e)$1S

Example derivation S = ABC = aAbBcC = abc

S = X(1)$:2S

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 10 / 23

Simulation rules

Simulation rules

m For each rule in P add simulation rule
m Convert terminals to nonterminals

m ConvertetoY

(1) : ($1,A1, -, An) = ((1)%1, x1, - -, Xn)

Example simulation rules

(11) : (%1,S) — ((11)%1,ABC)
(12) : ($1,A, B, C) — ((12)$1, aA,BB,EC)
(13) : ($1,A,B,C) — ((13)%1,Y,V.Y)

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 11 /23

Simulation rules

Example derivation S = ABC = ¢

(1)$:S = (1)(11)$ABC
= (L)(11)(13)$ YYY

Example derivation S = ABC = aAbBcC = abc

X(1)$1ZS = X(1)(11)$:ZABC
= X(1)(11)(12)$1ZaAbBcC
= X(1)(11)(12)(13)$1ZaYbYcY

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 12 /23

Stop rules

Stop rules

(2) = ($1) — ((2)32)
(2<) : (31) = ((2:)33)

Example derivation S = ABC = ¢

(.. DSLYYY = (..)$3YYY

Example derivation S = ABC = aAbBcC = abc

X(...)$1ZaYbYcY = X(...)$2ZaYbYcY

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 13 /23

Shift rules

Shift rules

For each a € T, add

23) : (X, $2,2,3) = (aX, (24)$2, Y, 2)
(]38[) : (X, $2, Z,ﬁ) — (a, (]33D$3, Y, Y)

Example simulation rules

(2a) : (X,%2,Z,3) — (aX, (2a)%2, Y, 2)
(2b) : (X, $2,2Z,b) — (bX, (2b)%2, Y, 2)
(2¢) : (X,%2,2Z,2) = (cX, (2c)%2, Y, 2)
(3a) : (X,%2,Z,3) — (a,(34)%3, Y, Y)
136) : (X, 92, Z,E) — (b, (3b)%3,Y,Y)
(3¢c) : (X,9%2,2,2) = (c,(3¢)%3, Y, Y)

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 14 /23

Shift rules

Example derivation S = ABC = aAbBcC = abc

X(..)$:Z3YBYTY = aX(...)$YZYDYTY
= abX(..)$2YYYZYEY
= abc(...)$3YYYYYYY

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014

Erase rule

Erase rule

(3) - (33, V) — ((3), %3)

Example derivation S = ABC = ¢

(-)83YYY = (...)%3YY
= (...)%3Y

Example derivation S = ABC = aAbBcC = abc

abe(.. .)$3YYYYYYY = abc(.. .)$3YYYYYY
= abc(...)%3

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 16 / 23

(4) - ($3) — ((4))

Example derivation S = ABC = ¢
(-.)%3 = (--.)(4)

Example derivation S = ABC = aAbBcC = abc

abe(...)$3 = abc(...)(4)

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 17 / 23

Result for derivation S = ABC = ¢

(L) (12D (L3) (2D (3D (3D (3D (4)

Used rules

Start rules - (1)
Simulation rules - (11)(13)
Stop rules - (2¢)

Shift rules - None

Erase rule - (3)(3)(3)

@ End rule - (4)

18 / 23

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014

Result for derivation S = ABC = aAbBcC = abc

abe(1)(11)(12)(13) () (2a) (26D (3<) (3D (3D (3) (3D (3D (3D (3D (4D

Used rules

Start rules - (1)

Simulation rules - (11)(12)(13)
Stop rules - (2)

Shift rules - (2a)(2b)(3¢)

Erase rule - (3)(3)(3)(3)(3) (3)(3)
@ End rule - (4)

Radim Kocman (FIT, BUT) enerators of Sente i TID, 2014 19 /23

Canonical Generators

Theorem - Leftmost Generator

For every recursively enumerable language L, there is a propagating
scattered context grammar G such that G is a proper leftmost generator of
its sentences with their parses, and L = L(G)//lab(G)™ .

Theorem - Rightmost Generator

For every recursively enumerable language L, there is a propagating
scattered context grammar G such that G is a proper rightmost generator
of its sentences with their parses, and L = L(G)//lab(G)*.

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 20 / 23

Reduced Generators

Theorem - Minimal number of nonterminals

For every recursively enumerable language L, there is a propagating
scattered context grammar G = (V, T, P, S) such that G is a proper
leftmost generator of its sentences preceded by their parses, |V — T| <6,
mes(G) = 3, and L = lab(G)T\\L(G).

Theorem - Minimal context-dependency

For every recursively enumerable language L, there is a propagating
scattered context grammar G = (V, T, P, S) such that G is a proper
leftmost generator of its sentences preceded by their parses, |V — T| <9,
mcs(G) =1, and L = lab(G)T\\L(G).

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 21 /23

Conclusion

Main advantages

Scattered Context Generators can
m simulate any SCG with PSCG, which is less powerful

m generate additional useful information

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 22 /23

Bibliography

[A. Meduna and J. Techet.
Canonical scattered context generators of sentences with their parses.
Theoretical Computer Science, 389:73-81, 2007.

[A. Meduna and J. Techet.
Scattered Context Grammars and their Applications.
WIT Press, Southampton, Boston, 2010.

Radim Kocman (FIT, BUT) SC Generators of Sentences with Parses TID, 2014 23 /23

	Preliminaries
	Scattered Context Generators
	Bibliography

